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Mixed-Element Decomposition Method
for Three-Dimensional Grid Adaptation
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Abstract—A new method for adaptive tessellation of three-
dimensional (3-D) grids is presented. A mixed-element decom-
position method is introduced for local refinement of fully un-
structured grids, consisting of tetrahedra and octahedra. The
method preserves the shape of the elements of the initial grid
and therefore the element quality. Furthermore, local anisotropies
of the initial grid are preserved. The developed implementation
allows efficient adaptation and is used in a finite element program
for simulation of thermal diffusion processes.

Index Terms—Adaptive gridding, diffusion 3-D, finite-element
method, refinement, tetrahedral meshes.

I. INTRODUCTION

I MPRESSIVE work has been done to increase the number
of components of highly integrated semiconductor circuits.

The continuous down-scaling has lead to submicron devices
where three-dimensional (3-D) effects are becoming increas-
ingly important. This, most obviously, leads to the demand of
3-D simulation. There is a considerable lack in accuracy of
the results, however, because often, the doping profiles used
as input for the device simulation are derived either from
analytical models or from one- or two-dimensional process
simulation by a more or less naive extension to 3-D profiles.
These methods are not accurate enough, especially when the
feature size is small. Therefore, true 3-D process simulation
is needed.

Several process steps have already been dealt with in 3-D
process simulation and resulted in successful tools for the
simulation of, e.g., ion implantation [1], [2], etching, and
deposition processes [3], [4]. Also several approaches for
the simulation of diffusion and annealing steps have been
presented recently [5], [6]. But the treatment of complex 3-D
structures still suffers on difficulties in handling complicated
geometries and in obtaining well-suited 3-D meshes as well as
the difficulties in the verification of the computed 3-D profiles.

The grid strongly influences the necessary computational
resources for solving a typical diffusion problem. On the one
hand, generating an optimal 3-D grid itself needs considerable
CPU time and, as the diffusion advances, several regridding
steps may be required during the simulation. On the other
hand, the grid quality has a substantial influence on the
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convergence, and the accuracy as well as the number of grid
nodes affects the numerical effort for the solution.

One approach to solve this problem is to start with a coarse
initial grid which is then refined during the simulation. Both
the initial-grid generation and the subsequent grid refinement
can be carried out efficiently. An interesting, tree-based ap-
proach is shown in [7] and [8], where the adaptive refinement
starts from a rectangular bounding box. This, however, always
leads to elements which are aligned to this initial bounding
box. Therefore, it is hardly possible to obtain optimal grids
along oblique boundaries and interfaces of general geometries.

In our approach we start the refinement based on a domain
decomposition which accounts for the local geometrical prop-
erties of the structure: a coarse mixed-element grid consisting
of tetrahedra and octahedra, which resolves the geometry.
The generation of the initial grid may be carried out using
various grid-generators (e.g., [9] or [10]), which are respon-
sible for the quality of the initial grid. Our work focuses
on the refinement done by a mixed-element decomposition
preserving the essential grid properties, i.e., the grid quality
and the structural anisotropies. Thereby, we can avoid the
aforementioned problems effectively as long as the initial grid
fulfills the required grid quality, since the proposed refinement
method is basically isotropic.

In Section II, we define the demands on a grid refinement
algorithm. In Section III we introduce our new mixed-element
decomposition method. In Section IV we describe the nu-
merical methods used for the solution of thermal diffusion
problems. Section V shows the application of the new method
to an annealing step of a MOSFET source/drain implant, and
we conclude with Section VI.

II. DEMANDS ON AN ADAPTIVE REFINEMENT ALGORITHM

For recursive refinement algorithms it is indispensable to
preserve the grid quality. The unavoidable degradation of the
grid quality has to stay within a limit which is independent of
the number of refinements. To assess this degradation, some
quality criteria are necessary. In, e.g., [11], several quality
criteria for a finite-element approach are given. We use

(1)

as a measure for the element quality, wherestands for the
element quality, is the volume of the element, and
is the maximum dimension of the element. Additionally the
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Fig. 1. Incompatible elements.

local grid quality around one node is expressed using

(2)

where is the nodal grid quality and are the volumes of all
elements which are incident to the node. For a refinement

level of we have to show that the element quality is
independent of the number of the level. We have to prove that
there exists a constant such that

(3)

holds for all where are the nodal or element qualities
for the th refinement level of the grid, respectively.
describes the quality degradation.

In process and device simulation we often have to deal with
regions which show a mainly one-dimensional (1-D) behavior,
e.g., like a doping profile in the channel region of a MOS
transistor. In order to perform an economical simulation, the
grid should reflect this property. Thus, the grid may be locally
anisotropic, i.e., it has regions where it consists of long narrow
elements and it is important that the refinement algorithm
preserves this anisotropic character of the initial grid.

The above quality criteria (except for the nodal quality) are
satisfied if the element shape is not changed by the refinement,
which is the case for a uniform element decomposition, as
it is used for two-dimensional (2-D) grids. Unfortunately for
tetrahedral elements no uniform decomposition is available.

III. T HE MIXED-ELEMENT DECOMPOSITIONMETHOD

A. The Algorithm

Our method is based on unstructured finite-element grids
which may consist of different element types. Additionally, we
allow incompatible elements (Fig. 1), when the incompatible
elements satisfy the -continuity condition at the interfaces

(a)

(b)

Fig. 2. Uniform refinement for triangular and quadrilateral elements.

to the neighboring elements. This condition is required for
convergence of the discretization scheme (see Section IV-B).

For the adaptation of such a grid, we split the elements
into smaller ones and repeat the splitting as many times as
necessary to satisfy the desired discretization error. Regarding
a two-dimensional grid, it is well known that a triangle can
be split into four smaller ones with same shape by adding
one node at the center of each line and connecting them with
lines. For quadrilaterals the situation is similar (Fig. 2). This
refinement method preserves the element shape, and thus, the
element quality is preserved as well.

Unfortunately, for tetrahedral elements no splitting method
is known, which preserves the shape of the element. It is
possible, however, to define a two-level splitting method,
which preserves the element shape during multiple refinement.
In contrast to a uniform decomposition of an element into
elements of the same topology, we perform a mixed-element
decomposition, where the original element is split into parts
of different topology. The mixed-element decomposition is
defined by the following rules.

Rule 1: We divide a tetrahedron into four tetrahedra of
same shape and one octahedron. The child tetrahedra are
located at the parents’ corners, and the remaining part has
octahedral shape (Fig. 3).

Rule 2: We divide an octahedron into six octahedra of same
shape and eight tetrahedra. The child octahedra are located at
the parents’ corners and the remaining parts have tetrahedral
shape (Fig. 4).

Rule 3: The new nodes at the surface are located in the
center of the respective edges, and the new inner nodes are
located at the center of the parent element.

It is important to note that the element shapes remain
unchanged during further refinement steps. To illustrate this,
we look at the elements, which are generated by a second
refinement step of a tetrahedron (Fig. 5). The tetrahedra come
from the refinement of either a tetrahedral or an octahedral
child of the original tetrahedron. Clearly, the tetrahedra with
tetrahedral parents have the same shape as the original tetra-
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Fig. 3. Refinement for tetrahedron.

Fig. 4. Refinement for octahedron.

hedron. But also the tetrahedra derived from the octahedral
child have the same shape as the original tetrahedron (Fig. 6).
This shape preservation property holds for octahedra created
by multiple refinement, too.

For the purpose of discretization an octahedron is split into
eight tetrahedra, each of which has one face of the octahedron

Fig. 5. Mixed element tree.

(a)

(b)

Fig. 6. Shape preservation at multiple refinement.

as ground plane and the octahedral center as opposite node
(Fig. 7). Thus, only tetrahedra are treated during the finite
element assembly. At the first refinement step of an initial
element (octahedron or tetrahedron), a new element shape
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Fig. 7. Discretization for octahedron.

is introduced. All following refinement steps preserve the
element shapes exactly, and therefore the quality degradation
is independent of the number of grid refinements.

B. Verification of the Method

To assess the efficiency of the method it is of interest
how much the grid quality is decreased through the different
element shapes generated by the first refinement step. To
quantify the quality degradation, the octahedral element quality
is related to the tetrahedral element quality and vice versa.
Taking into account the discretization of the octahedra permits
a reasonable comparison of the octahedron and the tetrahedron,
when we compare the tetrahedra used for discretization of the
octahedron (Fig. 7) with the tetrahedral parent.

According to the refinement method, the element volume
of the octahedral child is related to the volume of the parent
tetrahedron by

(4)

where is the octahedral and is the tetrahedral volume.
The volume of a discretization tetrahedron is given by

(5)

where is the volume of the discretization tetrahedron,
is the volume of the octahedron, and is the

volume of the parent tetrahedron. The maximum size of the
discretization tetrahedra is

(6)

where is the overall size of the discretization tetrahe-
dron and is the overall size of the parent tetrahedron.
Properties (4)–(6) hold for all tetrahedral shapes because of the
special node inserting method according to Rule 3.

Using (5) and (6) we find that the degradation of the element
quality due to refinement of a tetrahedron into four tetrahedra

and one octahedron is limited by

(7)

where is the quality of the discretizing tetrahedron
and is the quality of the parent tetrahedron.

A similar calculation can be done to estimate the maximum
degradation of the element quality due refinement of an octa-
hedron. In this case the element qualities of the discretization
tetrahedra and the child tetrahedra are compared. The result
shows that

(8)

where is the quality of the discretizing tetrahedron
and is the quality of the child tetrahedron.

In conclusion the maximum element quality degradation is
given by a factor of 1/2 for the tetrahedron and by a factor
of 1/4 for the octahedron.

Usually grid refinement is done only locally. This results in
the fact that refined elements are adjacent to unrefined ones.
These neighboring elements are called incompatible elements,
and we define the order of incompatibility as the difference
of the refinement levels of two adjacent elements (Fig 1).
Considering a compatible point of an incompatible element
(Fig. 1) we can determine the effect of the incompatibility on
the nodal quality

(9)

where is the nodal quality without refinement,
is the nodal quality after refinement, andis the order of
incompatibility.

Equation (9) shows that the amount of quality degradation
strongly depends on the order of incompatibility. To limit the
quality degradation to a small finite value, we restrict the
order of incompatibility to one (also called one-irregularity
condition), which means that elements which are incident to
an incompatible node are not allowed to get refined again. For
mixed-element decomposition with tetrahedra and octahedra it
can be shown that which is also
the limit for the degradation of the nodal quality.

Thus, the degradation of the element quality is limited
to 1/4, and the degradation of the nodal quality is limited
to 1/8. Additionally, from the shape preserving property of
the algorithm it follows that our algorithm preserves the
boundaries and interfaces and the structural anisotropy of
the initial grid. Although the element quality degradation is
limited, the refinement algorithm cannot assure other quality
criteria like the Delaunay condition or the M-matrix property.

C. Algorithmic Details of the Implementation

For the implementation of the method we developed al-
gorithms and data structures which allow local refinement
and unrefinement (coarsening) as well as the control of the
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Fig. 8. Storage of the neighbor relations.

one-irregularity condition. We store the whole element tree,
where the parent elements reference their children and each
child references its parent (Fig. 5). Furthermore, each element
references its neighbors opposite its faces (Fig. 8).

The storage of the neighboring relations allows direct de-
termination of all neighboring elements which are incident to
a face (face-neighbors). Besides referencing the neighboring
element for each face, we additionally store the index of the
opposite face within the neighboring element and the relative
position of the two incident faces. Utilizing an element-based
lookup-table which holds the two face-indexes sharing one
line direct determination of all neighbors incident to a certain
line (line-neighbors) is implemented without any searching
algorithm. Fig. 8 shows an example for line-neighbors. The
common line is drawn enhanced.

On splitting a line of an element a grid node has to be
inserted at this line. This node, however, may exist already
in one of the elements incident to this line. Before generating
a new node we query all line-neighbors, whether their corre-
sponding line is split and the node already exists or not. In this
way we ensure, that each grid node exists exactly once. In turn,
before we remove a node we first have to ensure that no other
line-neighbor or face-neighbor references that point anymore.

The neighboring relations together with the parent–child
relations are used to preserve the one-irregularity condition.
This condition means, that two neighboring elements (line-
neighbors as well as face-neighbors) have a difference in the
number of subsequent refinements of at most one.

This condition is satisfied on refinement of a certain element,
when we refine all “relevant neighbors” of the parent element.
In Fig. 9 we show a tetrahedron with a tetrahedral parent
and a tetrahedron with an octahedral parent, respectively.
The “relevant neighbors” of the parent are the neighbors on

(a)

(b)

Fig. 9. Examples for the relevant lines (enhanced) of parents.

those lines, which are (partially) common to the (in this case
tetrahedral) element to refine. These “relevant” lines are drawn
enhanced in Fig. 9.

The refinement for the relevant neighbors is done by means
of a recursive call of the refinement function for them. Hence,
the recursion depth is limited to the number of subsequent
parents of the considered element, usually a small number.

On local grid coarsening we replace all the children of
an element by the element itself, and therefore all children
must be coarseable, i.e., the local discretization error is small
enough. Furthermore, we have to check all neighbors of
all children, whether they have children to meet the one-
irregularity condition. In this case, we have to check these
neighbors for possible coarsening, once again by means of a
recursion. Here the recursion depth is limited to the number
of subsequent refinements within the neighboring elements.
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Fig. 10. Initial grid for cube.

The use of recursions for refinement and coarsening allows
for the adaption of to the whole grid with one single sweep
over just those elements which are marked for refinement and
coarsening, respectively. Therefore, the effort for grid adapta-
tion is approximately proportional to the number of changed
elements. Without the recursions the one-irregularity condition
would require sweeping over all grid elements several times
until no more changes occur, which is times in the worst
case, when denotes the number of subsequent refinement
levels. Thus, the effort for our adaptation algorithm depends
linearly on the number of changed elements, which are usually
just a few percent of the total number of elements in the grid.

The element topologies are represented by lookup tables
which hold, e.g., the relevant lines of a child or how many
children and which kind of children a certain element type has,
etc. These lookup tables are generated automatically based on
simple element descriptions, which allow an easy extension
of the refinement and coarsening algorithms for all relevant
kinds of 1-D, 2-D, and 3-D elements.

All operations used within the adaptation algorithm
are based on pure topological operations. Therefore, the
algorithm does not rely on the geographical coordinates of
the nodes and permits moving grid methods as well. Clearly,
in such cases the element quality is determined by the
moving grid algorithm itself [12]. Using adequate equations,
our adaptation algorithm is also suitable for moving grid
problems arising from process simulation.

D. An Illustrating Example

The mechanisms described are illustrated by means of two
successive refinement steps of a cubic domain consisting of

five tetrahedra as initial grid (Fig. 10). The grid elements are
plotted shrunk, which allows to have some insight into the grid.
For the first refinement step we trigger the refinement only
for the right-uppermost tetrahedron (Fig. 11). This tetrahedron
is just replaced by its children: four small tetrahedra and
one octahedron. The one-irregularity condition has not been
violated, thus no propagation of refinement occurs. For the
second refinement step, we tag the foremost child of the
just refined tetrahedron. The result shows the propagation of
refinement due to the one-irregularity condition and verifies the
correctness of the above algorithms (Fig. 12). Furthermore, the
shape preserving property becomes obvious for the octahedra
and tetrahedra which are irregular in this case.

IV. THE THERMAL DIFFUSION PROBLEM

A. Governing Physical Equations

The set of diffusion equations (10) and (11) and the
boundary conditions (12) allow the implementation of
almost arbitrary physical models

(10)

(11)

(12)

where are the concentrations (dependent variables) and
is the number of quantities (equations). The coefficients

allow modeling of recombination/generation terms. In
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Fig. 11. Grid after first refinement step.

Fig. 12. Grid after second refinement step.

the flux definition (11) the flux may depend on the
gradient of all other quantities according the coefficients

All coefficients may be functions of
temperature, time, and the spatial coordinates. All coefficients
but may be functions of the dependent variables In
the boundary conditions (12) denotes the flux component

perpendicular to the boundary for the quantity Thus, all
practically relevant boundary conditions can be treated.

B. Spatial Discretization

For discretization of the above equations, we use the finite
element method. The tetrahedron with linear shape functions
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is chosen as discretizing element. We build a weak form of the
above equations by means of the Galerkin weighted residuals
method. The numerical computation of the weak form is done
by Gaussian integration at one integration point in the center
of the tetrahedron for (10) and (11) and at one Gaussian point
in the center of the boundary triangles for (12). The Gaussian
integration methods requires an at least piecewise continuous
integrand. Otherwise the numerical integration would not
converge to the exact value on reducing the element size
toward zero. As the weak form contains first-order spatial
derivatives of the shape functions, the shape functions have
to fulfill the -continuity condition. This leads to a special
treatment for the incompatible nodes occurring at transitions
between refined and unrefined neighboring elements. The
solution values at such nodes have to be interpolated using
the parents’ shape functions, which enforces the-continuity
condition. These values depend on the solution values of
the parents’ nodes and are not free variables. Therefore, the
corresponding equations values are pre-eliminated from the
system matrix before solving the global linear system. This
effort is needed in addition to the standard finite element
assembly.

The application of the mass lumping technique [13] for
the integration of the time derivatives as well as for gener-
ation/recombination terms improves the convergence rate of
the iterative solver considerably and additionally reduces the
discretization errors due to error cancellation effects [13].

C. Estimation of Discretization Errors

Utilization of the grid adaptation algorithm requires a suit-
able error estimation for determining the regions of refinement
and unrefinement, respectively. We use an error-estimator
which is originally mentioned in [14] and provides a simple
and effective basis for adaptive refinement algorithms.

Although the overall integral of the weighted residuals of
a solution of the weak form is zero, locally the residuum
is nonzero. By locally smoothing the solution these local
residuals are reduced, and therefore, the smooth approximation
is (at least locally) more accurate than the original solution,
which also holds for the gradient of the solution. This fact
is used for estimation of the discretization error, which is
computed from the difference between the original solution
and the smoothed approximation. A proof for the stability of
this error estimator is given in [15].

In our approach we use a piecewise linear finite element
approximation with piecewise constant gradients. We imple-
mented a gradient smoothing by means of a least-square fit of
a piecewise linear gradient to a piecewise constant
gradient by minimizing

(13)

This allows the use of the same type of finite elements for
gradient smoothing as for the finite element solution itself. To
obtain the piecewise linear gradient approximation, the mass-
matrix of the finite element formulation has to be inverted.
Using the mass-lumping technique, this matrix degenerates
to a diagonal matrix and the effort of obtaining a higher

order approximation is kept low as the effort is approximately
proportional to the number of elements.

Finally, the gradient error can be estimated with good
accuracy as

(14)

which is used as refinement and coarsening criterion.

D. Time Discretization and Time Step Control

The discretization in time is done by the standard finite
differences method for a backward-Euler integration scheme.
Error estimation is used to test the accuracy of the previous
time step as well as to predict the size of the next time step.

Similar to the error estimation in space, we use a higher
order approximation in time, too. The piecewise linear evo-
lution of the solution is approximated parabolically, and the
difference is used for error estimation. When the estimated
discretization error is small enough, the time step is accepted.
Otherwise we reduce the size of the time step and compute
the solution again.

Once a time step is accepted, the parabolic approximation
in time is used for estimation of the size of the next time
step. We assume that the evolution of the solution follows the
extrapolation of the parabolic approximation. According to the
extrapolated discretization error, the next time step is chosen.
Additionally, this parabolic extrapolation is used as an initial
condition for the solution of the next time step which reduces
the average number of nonlinear iterations per time step by
one.

E. Grid Adaptation Strategy

On starting a diffusion simulation, the initial grid is refined
according to the initial solution, e.g., a doping profile com-
puted by an ion implantation simulator. First the nodal values
of the initial grid are interpolated from the initial profile. Then
a loop is formed where we estimate the discretization error
and adapt the grid locally. On new generated nodes we get the
solution values again by interpolation from the initial solution.
This loop terminates, when the desired accuracy is reached
over the whole region.

Throughout the simulation, the grid criterion is checked after
the solution of each time step and the grid becomes adapted
accordingly. On local refinement new nodes are generated. The
solution values on these nodes are computed by interpolation
from the solution at the parent elements. We use an arithmetic
interpolation as an interpolation function.

This strategy ensures that the discretization errors remain
within the specified bounds during the simulation. Additional
benefits stem from the fact that the profiles become smoother
during the diffusion process, and lower discretization errors
allow local grid coarsening, which reduces the number of grid
nodes. Thus, every time step is computed with a nearly optimal
grid and a well-known discretization error.

F. Solution of the Nonlinear Equation Systems

For solution of the nonlinear equation systems, we imple-
mented a damped Newton iteration scheme for the coupled
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Fig. 13. Initial grid for the LOCOS-structure.

equations. The resulting linear equation systems are solved it-
eratively by means of a BiCGStab-solver [16] with incomplete
Gauss-elimination for preconditioning [17]. For a particular
time step the initial condition for the Newton iteration scheme
is obtained by quadratic extrapolation of the solution of the
previous time steps (cf. Section IV-D).

On computation of the Jacobian matrix for an incompatible
element (cf. Section IV-B), we pre-eliminate the dependent
variables of the incompatible nodes before we add this matrix
to the global stiffness matrix.

V. ANNEALING OF A MOSFET SOURCE/DRAIN IMPLANT

The formation of source and drain is an intrinsically 3-D
problem in minimum size transistor design, which raises the
need for full 3-D simulation.

For our example we simulated the ion implantation and the
following annealing step for the lightly doped drain (LDD)
LDD-implant in a conventional LOCOS-structure. Fig. 13
shows a corner of the considered example.

The Boron implantation has been computed by the Monte
Carlo ion implantation module [18] of the VISTA framework
[19] for an energy of 20 keV, a dose of 310 cm and a
tilt angle of 7 . The wafer is oriented in direction and is
covered by a screening oxide of 30-nm thickness. The surface
distribution of the implanted boron profile is shown in Fig. 14.
The grid consists of 73 739 elements and 36 163 nodes. It has
been generated by adaptive refinement of the initial grid shown

in Fig. 13 according to the implanted profile, where the error
limit has been set to 1% dose error.

First we show the simulation of a technologically relevant
annealing step at 875C for a time of 20 min in inert ambi-
ent. As physical model we used a concentration-dependent
diffusion model with no point defects included. To save
computational resources, the annealing step has been simulated
just for the silicon region by assuming a zero-flux boundary
condition between silicon and oxide. The computational grid
for the silicon region consists of 22 549 elements and 11 898
free nodes at the beginning of the simulation (Fig. 15). As
diffusion advances the profile moves deeper, and therefore at
the diffusion front additional refinement becomes necessary.
This results in grids consisting of up to 23 721 elements and
12 743 nodes. The simulation finished after six time steps
and totally 18 Newton-iterations with a final grid consisting
of 23 553 elements and 12 672 nodes (Fig. 16) and the used
computational resources were 23-MB memory and 9-min
CPU-time on an HP9000-735 workstation.

For this simulation the diffusion length is small and the
profile does not change its shape substantially. Therefore, less
grid adaptation is required. To give a demonstration of the
capabilities of the automatic grid adaptation, we performed
a simulation for the same structure and initial profile but
with 1050 C and 30 min as annealing conditions. In this
case substantial diffusion occurs and more grid adaptation
was necessary. The largest grid consisted of 24 030 elements
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Fig. 14. Surface concentration of the boron profile after ion implantation.

Fig. 15. Grid for simulation region after initial adaptation to implanted boron profile.

and 12 892 nodes due to additional refinement at the mov-
ing diffusion front. The further diffusion reduced the profile
gradients and the grid could be reduced to 18 485 elements
and 10 437 nodes at the end of the simulation after 33 time
steps and totally 71 Newton-iterations (Fig. 17). In this case

the used computational resources were 25-MB memory and
30-min CPU-time.

This example shows one major benefit of fully adaptive
gridding: there is no need for the user to take care about the
grid density except to specify the desired accuracy.
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Fig. 16. Boron profile in the silicon block after annealing at 875�C, 20′.

Fig. 17. Boron profile in the silicon block after annealing at 1050�C, 30′.

VI. CONCLUSION

A method for automatic adaptation of 3-D grids has been
presented which allows to locally refine and coarsen the
computational grid. We have shown that the method pre-
serves the quality of the initial grid elements as well as
local anisotropies and that boundaries and interfaces of the
computational domain are respected.

The adaptation is based on an efficient estimation of dis-
cretization errors and therefore automatically produces nearly

optimal grids for a certain discretization error limit. The
coupling of the error estimation and local grid adaptation
dispenses the user from the difficult and time-consuming task
of checking the grid density.

The computational effort for checking the discretization
error depends linearly on the number of grid elements, and
the effort for grid adaptation depends linearly on the number
of adapted elements. Thus, the presented methods and algo-
rithms combine computational efficiency and robustness of the
simulation.
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