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Mixed-Element Decomposition Method
for Three-Dimensional Grid Adaptation

Ernst Leitner and Siegfried SelberheRellow, IEEE

Abstract—A new method for adaptive tessellation of three- convergence, and the accuracy as well as the number of grid
dimensional (3-D) grids is presented. A mixed-element decom- nodes affects the numerical effort for the solution.
position method is introduced for local refinement of fully un- One approach to solve this problem is to start with a coarse

structured grids, consisting of tetrahedra and octahedra. The . .. . L . . . .
method pregserves the shfpe of the elements of the initial grid initial grid which is then refined during the simulation. Both

and therefore the element quality. Furthermore, local anisotropies  the initial-grid generation and the subsequent grid refinement
of the initial grid are preserved. The developed implementation can be carried out efficiently. An interesting, tree-based ap-

allows efficient adaptation and is used in a finite element program proach is shown in [7] and [8], where the adaptive refinement

for simulation of thermal diffusion processes. starts from a rectangular bounding box. This, however, always
Index Terms—Adaptive gridding, diffusion 3-D, finite-element leads to elements which are aligned to this initial bounding
method, refinement, tetrahedral meshes. box. Therefore, it is hardly possible to obtain optimal grids

along oblique boundaries and interfaces of general geometries.
In our approach we start the refinement based on a domain
. decomposition which accounts for the local geometrical prop-
MPRESSIVE work _has been done to increase the Dum_*{ﬁ{ies of the structure: a coarse mixed-element grid consisting
of components of highly integrated semiconductor Circuit§¢ (eyrahedra and octahedra, which resolves the geometry.
The contmuou_s dovyn—scalmg has lead to subm|c_ron _dewcT:-ﬁe generation of the initial grid may be carried out using
yvherg three-dlmeq3|onal (3-D)_ effects are becoming incregsyious grid-generators (e.g., [9] or [10]), which are respon-
ingly important. This, most obviously, leads to the demand Qe for the quality of the initial grid. Our work focuses
3-D simulation. There is a considerable Iack_ln accuracy 8h the refinement done by a mixed-element decomposition
the results, however, because often, the doping profiles usedserying the essential grid properties, i.e., the grid quality
as input for the device simulation are derived either frorg,y he structural anisotropies. Thereby, we can avoid the
analytical models or from one- or two-dimensional procesg, ementioned problems effectively as long as the initial grid

simulation by a more or less naive extension to 3-D profileg, s the required grid quality, since the proposed refinement
These methods are not accurate enough, especially when they 4 is basically isotropic.

feature size is small. Therefore, true 3-D process simulation|, section I1. we define the demands on a grid refinement
is needed. ~algorithm. In Section Ill we introduce our new mixed-element

Several process steps have already been dealt with in §composition method. In Section IV we describe the nu-
process simulation and resulted in successful tools for igyrica| methods used for the solution of thermal diffusion
simulation of, e.g., ion implantation [1], [2], etching, and,rohiems. Section V shows the application of the new method

deposition processes [3], [4]. Also several approaches igf 4y annealing step of a MOSFET source/drain implant, and
the simulation of diffusion and annealing steps have begp, -onclude with Section V.

presented recently [5], [6]. But the treatment of complex 3-D

structures still suffers on difficulties in handling complicated

geometries and in obtaining well-suited 3-D meshes as well a. DEMANDS ON AN ADAPTIVE REFINEMENT ALGORITHM

the difficulties in the verification of the computed 3-D profiles. For recursive refinement algorithms it is indispensable to
The grid strongly influences the necessary computatioriteserve the grid quality. The unavoidable degradation of the

resources for solving a typical diffusion problem. On the ongid quality has to stay within a limit which is independent of

hand, generating an optimal 3-D grid itself needs consideralls number of refinements. To assess this degradation, some

CPU time and, as the diffusion advances, several regriddiggajity criteria are necessary. In, e.g., [11], several quality

steps may be required during the simulation. On the othgfiteria for a finite-element approach are given. We use
hand, the grid quality has a substantial influence on the

I. INTRODUCTION
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Fig. 2. Uniform refinement for triangular and quadrilateral elements.

Fig. 1. Incompatible elements.

local grid quality around one node is expressed using

to the neighboring elements. This condition is required for
convergence of the discretization scheme (see Section 1V-B).

For the adaptation of such a grid, we split the elements
into smaller ones and repeat the splitting as many times as

where™ is the nodal grid quality an; are the volumes of all N€cessary to satisfy the desired discretization error. Regarding

n. elements which are incident to the node. For a refinemehffWwo-dimensional grid, it is well known that a triangle can
level of i >1, we have to show that the element quality i€ SPIit into four smaller ones with same shape by adding

independent of the number of the level. We have to prove tH}€ node at the center of each line and connecting them with
there exists a constat, >0 such that lines. For quadrilaterals the situation is similar (Fig. 2). This

refinement method preserves the element shape, and thus, the
element quality is preserved as well.
Qi >Qy"Cq, Cy = const. (3)  Unfortunately, for tetrahedral elements no splitting method
is known, which preserves the shape of the element. It is
en o possible, however, to define a two-level splitting method,
" arethe nodal or element qualltles\[/)vhich preserves the element shape during multiple refinement.
describes the quality degradation. In contrast to a uniform decomposition of an element into

In process and device simulation we often have to deal wiféments of the same topology, we perform a mixed-element
regions which show a mainly one-dimensional (1-D) behavidi€composition, where the original element is split into parts
e.g., like a doping profile in the channel region of a M0§f Qn‘ferent topology._The mixed-element decomposition is
transistor. In order to perform an economical simulation, tfi€fined by the following rules. _
grid should reflect this property. Thus, the grid may be locally Rule 1: We divide a tetrahedron into four tetrahedra of
anisotropic, i.e., it has regions where it consists of long narrcy@™€ Shape and one octahedron. The child tetrahedra are
elements and it is important that the refinement algorithficated at the parents’ corners, and the remaining part has
preserves this anisotropic character of the initial grid. octahedral shape (Fig. 3). S

The above quality criteria (except for the nodal quality) are Rule 2: We divide an octahedron into six octahedra of same

satisfied if the element shape is not changed by the refinemé&h@pPe and ?ight tetrahedra. The child octahedra are located at
which is the case for a uniform element decomposition, the parents’ corners and the remaining parts have tetrahedral

it is used for two-dimensional (2-D) grids. Unfortunately foehare (Fig. 4).

tetrahedral elements no uniform decomposition is available. Rul€ 3: The new nodes at the surface are located in the
center of the respective edges, and the new inner nodes are

located at the center of the parent element.
It is important to note that the element shapes remain
) unchanged during further refinement steps. To illustrate this,
A. The Algorithm we look at the elements, which are generated by a second
Our method is based on unstructured finite-element gridsfinement step of a tetrahedron (Fig. 5). The tetrahedra come
which may consist of different element types. Additionally, wérom the refinement of either a tetrahedral or an octahedral
allow incompatible elements (Fig. 1), when the incompatiblehild of the original tetrahedron. Clearly, the tetrahedra with
elements satisfy th€y-continuity condition at the interfacestetrahedral parents have the same shape as the original tetra-

n _ min(V;) L
Q - InaX(%)’ t= 17 7n€ (2)

holds for alli, where@
for the ith refinement level of the grid, respectivelyi,

I1l. THE MIXED-ELEMENT DECOMPOSITION METHOD
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Fig. 5. Mixed element tree.

Fig. 3. Refinement for tetrahedron.
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Fig. 4. Refinement for octahedron.
(b)

hedron. But also the tetrahedra derived from the octahedF&. 6. Shape preservation at multiple refinement.
child have the same shape as the original tetrahedron (Fig. 6).
This shape preservation property holds for octahedra creatadground plane and the octahedral center as opposite node
by multiple refinement, too. (Fig. 7). Thus, only tetrahedra are treated during the finite

For the purpose of discretization an octahedron is split inedement assembly. At the first refinement step of an initial
eight tetrahedra, each of which has one face of the octaheded@ment (octahedron or tetrahedron), a new element shape
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Fig. 7. Discretization for octahedron.

is introduced. All following refinement steps preserve the
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and one octahedron is limited by

‘/tet,parent

. ‘/tet,disc > 16
Qtet,disc — h3 sl 3
tet,disc htet,parent
2
Vvtet,parent 1

= _Qtet, parent
2 I

2(htet,parent)3 (7)
where Q.. aisc IS the quality of the discretizing tetrahedron
and Qet parent, 1S the quality of the parent tetrahedron.

A similar calculation can be done to estimate the maximum
degradation of the element quality due refinement of an octa-
hedron. In this case the element qualities of the discretization
tetrahedra and the child tetrahedra are compared. The result
shows that

(8)

1
Qtet,child Z ZQtet,disc

element shapes exactly, and therefore the quality degradatigire Qetaise is the quality of the discretizing tetrahedron

is independent of the number of grid refinements.

B. Verification of the Method

To assess the efficiency of the method it is of intere

and Qe chila IS the quality of the child tetrahedron.

In conclusion the maximum element quality degradation is
given by a factor of 1/2 for the tetrahedron and by a factor
of 1/4 for the octahedron.

how much the grid quality is decreased through the different Usually grid refinement is done only locally. This results in

element shapes generated by the first refinement step.

the fact that refined elements are adjacent to unrefined ones.

quantify the quality degradation, the octahedral element qualﬂ?ese neighboring elements are called incompatible elements,

is related to the tetrahedral element quality and vice ver
Taking into account the discretization of the octahedra permft
a reasonable comparison of the octahedron and the tetrahed

when we compare the tetrahedra used for discretization of
octahedron (Fig. 7) with the tetrahedral parent.

According to the refinement method, the element volume
of the octahedral child is related to the volume of the parent

tetrahedron by

(4)

whereV,; is the octahedral ant..; is the tetrahedral volume.
The volume of a discretization tetrahedron is given by

_ Vvtet,parent

va‘,t
8 16

(5)

‘/tet,disc =

where Vi qisc is the volume of the discretization tetrahedron

Veoct is the volume of the octahedron, an@e; paren: iS the

volume of the parent tetrahedron. The maximum size of the 1/g Additionally

discretization tetrahedra is

htet,parent

htet,disc < 9

(6)

and we define the order of incompatibility as the difference

gthe refinement levels of two adjacent elements (Fig 1).
fnsidering a compatible point of an incompatible element
ig. 1) we can determine the effect of the incompatibility on

the nodal quality
k
b = (72
where@Q? "

mcomp —
comp IS the nodal quality without refinemer®y, ..,
is the nodal quality after refinement, amdis the order of
incompatibility.

Equation (9) shows that the amount of quality degradation
strongly depends on the order of incompatibility. To limit the
quality degradation to a small finite value, we restrict the
order of incompatibility to one (also called one-irregularity
condition), which means that elements which are incident to
an incompatible node are not allowed to get refined again. For
mixed-element decomposition with tetrahedra and octahedra it
can be shown thamin(Vuiia/Vparent) = 1/8, which is also
the limit for the degradation of the nodal quality.

* Thus, the degradation of the element quality is limited
to 1/4, and the degradation of the nodal quality is limited
from the shape preserving property of
the algorithm it follows that our algorithm preserves the
boundaries and interfaces and the structural anisotropy of
the initial grid. Although the element quality degradation is
limited, the refinement algorithm cannot assure other quality
criteria like the Delaunay condition or the M-matrix property.

Venila "
comp

(9)

‘/parent

whereh:e qisc IS the overall size of the discretization tetrahe-
dron andhc; parent IS the overall size of the parent tetrahedron. . ) ) )
Properties (4)—(6) hold for all tetrahedral shapes because of freAlgorithmic Details of the Implementation

special node inserting method according to Rule 3.

For the implementation of the method we developed al-

Using (5) and (6) we find that the degradation of the elemegorithms and data structures which allow local refinement
quality due to refinement of a tetrahedron into four tetrahedaad unrefinement (coarsening) as well as the control of the
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Fig. 8. Storage of the neighbor relations.

one-irregularity condition. We store the whole element tree,
where the parent elements reference their children and each
child references its parent (Fig. 5). Furthermore, each element
references its neighbors opposite its faces (Fig. 8).

The storage of the neighboring relations allows direct de-
termination of all neighboring elements which are incident to
a face (face-neighbors). Besides referencing the neighboring
element for each face, we additionally store the index of the ' ,
opposite face within the neighboring element and the relative
position of the two incident faces. Utilizing an element-based
lookup-table which holds the two face-indexes sharing one \
line direct determination of all neighbors incident to a certain ey A
line (line-neighbors) is implemented without any searching
algorithm. Fig. 8 shows an example for line-neighbors. The ()
Cog:nglil':t?r?glsadlirﬁt\;vnoferz;_rr:aglceemdént a grid node has to bFeig. 9. Examples for the relevant lines (enhanced) of parents.
inserted at this line. This node, however, may exist already
in one of the elements incident to this line. Before generatirigose lines, which are (partially) common to the (in this case
a new node we query all line-neighbors, whether their corrtetrahedral) element to refine. These “relevant” lines are drawn
sponding line is split and the node already exists or not. In trémhanced in Fig. 9.
way we ensure, that each grid node exists exactly once. In turnThe refinement for the relevant neighbors is done by means
before we remove a node we first have to ensure that no otbéa recursive call of the refinement function for them. Hence,
line-neighbor or face-neighbor references that point anymotbe recursion depth is limited to the number of subsequent

The neighboring relations together with the parent—chilgarents of the considered element, usually a small number.
relations are used to preserve the one-irregularity condition.On local grid coarsening we replace all the children of
This condition means, that two neighboring elements (linen element by the element itself, and therefore all children
neighbors as well as face-neighbors) have a difference in theist be coarseable, i.e., the local discretization error is small
number of subsequent refinements of at most one. enough. Furthermore, we have to check all neighbors of

This condition is satisfied on refinement of a certain eleme] children, whether they have children to meet the one-
when we refine all “relevant neighbors” of the parent elementregularity condition. In this case, we have to check these
In Fig. 9 we show a tetrahedron with a tetrahedral pareneighbors for possible coarsening, once again by means of a
and a tetrahedron with an octahedral parent, respectivalgcursion. Here the recursion depth is limited to the number
The “relevant neighbors” of the parent are the neighbors ofi subsequent refinements within the neighboring elements.
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Fig. 10. Initial grid for cube.

The use of recursions for refinement and coarsening allofisge tetrahedra as initial grid (Fig. 10). The grid elements are
for the adaption of to the whole grid with one single sweeplotted shrunk, which allows to have some insight into the grid.
over just those elements which are marked for refinement aRadr the first refinement step we trigger the refinement only
coarsening, respectively. Therefore, the effort for grid adapti@r the right-uppermost tetrahedron (Fig. 11). This tetrahedron
tion is approximately proportional to the number of changad just replaced by its children: four small tetrahedra and
elements. Without the recursions the one-irregularity conditimme octahedron. The one-irregularity condition has not been
would require sweeping over all grid elements several timg®lated, thus no propagation of refinement occurs. For the
until no more changes occur, which istimes in the worst second refinement step, we tag the foremost child of the
case, whem denotes the number of subsequent refinemeuist refined tetrahedron. The result shows the propagation of
levels. Thus, the effort for our adaptation algorithm dependsfinement due to the one-irregularity condition and verifies the
linearly on the number of changed elements, which are usuatigrrectness of the above algorithms (Fig. 12). Furthermore, the
just a few percent of the total number of elements in the gridhape preserving property becomes obvious for the octahedra

The element topologies are represented by lookup tabkesd tetrahedra which are irregular in this case.
which hold, e.g., the relevant lines of a child or how many
children and which kind of children a certain element type has,
etc. These lookup tables are generated automatically based on
simple element descriptions, which allow an easy extensign
of the refinement and coarsening algorithms for all relevant
kinds of 1-D, 2-D, and 3-D elements. The set of diffusion equations (10) and (11) and the

All operations used within the adaptation algorithnpoundary conditions (12) allow the implementation of
are based on pure topological operations. Therefore, tnost arbitrary physical models

IV. THE THERMAL DIFFUSION PROBLEM

Governing Physical Equations

algorithm does not rely on the geographical coordinates of aC,, R n
the nodes and permits moving grid methods as well. Clearly, 9t div Ji + Z’m, k=1,---,n (10)
in such cases the element quality is determined by the =1

moving grid algorithm itself [12]. Using adequate equations,
our adaptation algorithm is also suitable for moving grid
problems arising from process simulation.

Ji=Y onigad Ci,  k=1,--,n (11)

i=1

S Bl i)+ @k =0, k=1--n (12

. =1

D. An lllustrating Example where ¢}, are the concentrations (dependent variables) and
The mechanisms described are illustrated by means of twois the number of quantities (equations). The coefficients

successive refinement steps of a cubic domain consistingy@f allow modeling of recombination/generation terms. In
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Fig. 11. Grid after first refinement step.
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Fig. 12. Grid after second refinement step.

the flux definition (11) the flux.Jj, may depend on the perpendicular to the boundary for the quantity. Thus, all
gradient of all other quantities according the coefficiengractically relevant boundary conditions can be treated.

ag; . All coefficients (., Bri, vii, 1) may be functions of

temperature, time, and the spatial coordinates. All coefficierffs Spatial Discretization

but 8., may be functions of the dependent variab{&s. In For discretization of the above equations, we use the finite
the boundary conditions (127);, -71 denotes the flux componentelement method. The tetrahedron with linear shape functions
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is chosen as discretizing element. We build a weak form of tleeder approximation is kept low as the effort is approximately
above equations by means of the Galerkin weighted residupteportional to the number of elements.

method. The numerical computation of the weak form is doneFinally, the gradient error can be estimated with good
by Gaussian integration at one integration point in the centeccuracy as
of the tetrahedron for (10) and (11) and at one Gaussian point

in the center of the bo(un(iary tr?anzgles for (12). The Gauspsian ¢ = ((VO)iin = (VC)const) (14)
integration methods requires an at least piecewise continugusich is used as refinement and coarsening criterion.
integrand. Otherwise the numerical integration would not

converge to the exact value on reducing the element si2e Time Discretization and Time Step Control

toward zero. As the weak form contains first-order spatial
derivatives of the shape functions, the shape functions h
to fulfill the Cy-continuity condition. This leads to a special

The discretization in time is done by the standard finite
ifferences method for a backward-Euler integration scheme.

treat t for the i tibl d . tt i rror estimation is used to test the accuracy of the previous
reaiment for the incompatible nodes occurring at transitiofg, step as well as to predict the size of the next time step.
between refined and unrefined neighboring elements. T

_ ) "&Similar to the error estimation in space, we use a higher
solution values at such nodes have to be interpolated us

h s’ sh funcii hich enf finuit er approximation in time, too. The piecewise linear evo-
€ parents shape functions, which en orces(fber_:on INUILY " ytion of the solution is approximated parabolically, and the
condition. These values depend on the solution values

th ts' nod d tf iables. Theref erence is used for error estimation. When the estimated
€ parents nodes and are not free varavles. 1Nerelore, HiSe etization error is small enough, the time step is accepted.
corresponding equations values are pre-eliminated from

. . ) therwise we reduce the size of the time step and compute

system matrix before solving the global linear system. Th{ﬁe solution again.

effort is needed in addition to the standard finite elementOnce a time step is accepted, the parabolic approximation

assembly. L . . in time is used for estimation of the size of the next time
The apph_catlon of the mass Iu.mplng technique [13] foétep. We assume that the evolution of the solution follows the

the integration of the time derivatives as well as for geneg; rapolation of the parabolic approximation. According to the

?htmr_\t/rec:_)mbm?non termj |ml§)|rovesd thj d_(;_onveilrgenge ratete trapolated discretization error, the next time step is chosen.
1€ lerative solver considerably and additionally reduces t&%ditionally, this parabolic extrapolation is used as an initial
discretization errors due to error cancellation effects [13].

condition for the solution of the next time step which reduces
L ) L the average number of nonlinear iterations per time step by
C. Estimation of Discretization Errors one.
Utilization of the grid adaptation algorithm requires a suit-
able error estimation for determining the regions of refinemeRt Grid Adaptation Strategy
and unrefinement, respectively. We use an error—estimatorO
which is originally mentioned in [14] and provides a simplt(aleC
and effective basis for adaptive refinement algorithms.
Although the overall integral of the weighted residuals

n starting a diffusion simulation, the initial grid is refined
ording to the initial solution, e.g., a doping profile com-
uted by an ion implantation simulator. First the nodal values
. . . f the initial grid are interpolated from the initial profile. Then
a solution of the weak form is zero, locally the residuu loop is formed where we estimate the discretization error

is nonzero. By locally smoothing the solution these IOC%nd adapt the grid locally. On new generated nodes we get the

_re5|duals are reduced, and therefore, the smoot_h approximaligf) ion yalues again by interpolation from the initial solution.
is (at least locally) more accurate than the original solu'uoncf,hiS loop terminates, when the desired accuracy is reached
which also holds for the gradient of the solution. This fac(;Ver the whole regio,n

is used for estlmatlon of the discretization error, Wh'Ch.'S Throughout the simulation, the grid criterion is checked after
computed from the difference between the original squth e solution of each time step and the grid becomes adapted
and the smoothed approximation. A proof for the stability g

thi timator is ai in 115 ccordingly. On local refinement new nodes are generated. The
||s error estima ?lr 'S given in [ ] ise i finite el solution values on these nodes are computed by interpolation
N our approach we USe a pIecewise linear finite eemeﬁ%m the solution at the parent elements. We use an arithmetic

approximation with piecewise constant gradients. We implﬁﬁ rpolation as an interpolation function

mer_1ted agrat_ﬂent smoo_thmg by means (.)f a Iegst-square fit 0 his strategy ensures that the discretization errors remain
a piecewise linear grad!eml?Q)lin to & piecewise constant iy the specified bounds during the simulation. Additional
gradient(VC)eons: by minimizing benefits stem from the fact that the profiles become smoother
during the diffusion process, and lower discretization errors
allow local grid coarsening, which reduces the number of grid

This allows the use of the same type of finite elements fgPdes- Thus, every time step is computed with a nearly optimal
gradient smoothing as for the finite element solution itself. 19id and a well-known discretization error.

obtain the piecewise linear gradient approximation, the mass- i i i

matrix of the finite element formulation has to be inverted;- Solution of the Nonlinear Equation Systems

Using the mass-lumping technique, this matrix degenerated-or solution of the nonlinear equation systems, we imple-
to a diagonal matrix and the effort of obtaining a highemented a damped Newton iteration scheme for the coupled

II= / [(VC)tin — (VO)const]* dV. (13)
v



LEITNER AND SELBERHERR: MIXED-ELEMENT DECOMPOSITION METHOD 569

Fig. 13. |Initial grid for the LOCOS-structure.

equations. The resulting linear equation systems are solvediit+ig. 13 according to the implanted profile, where the error

eratively by means of a BiCGStab-solver [16] with incompletémit has been set to 1% dose error.

Gauss-elimination for preconditioning [17]. For a particular First we show the simulation of a technologically relevant

time step the initial condition for the Newton iteration schemannealing step at 87& for a time of 20 min in inert ambi-

is obtained by quadratic extrapolation of the solution of thent. As physical model we used a concentration-dependent

previous time steps (cf. Section IV-D). diffusion model with no point defects included. To save
On computation of the Jacobian matrix for an incompatibleomputational resources, the annealing step has been simulated

element (cf. Section IV-B), we pre-eliminate the dependefiist for the silicon region by assuming a zero-flux boundary

variables of the incompatible nodes before we add this matggndition between silicon and oxide. The computational grid

to the global stiffness matrix. for the silicon region consists of 22549 elements and 11898

free nodes at the beginning of the simulation (Fig. 15). As

V. ANNEALING OF A MOSFET S>URCHDRAIN IMPLANT diffusion advances the profile moves deeper, and therefore at

The formation of source and drain is an intrinsically 3-ghe diffusion front additional refinement becomes necessary.
problem in minimum size transistor design, which raises tHdis results in grids consisting of up to 23721 elements and
need for full 3-D simulation. 12743 nodes. The simulation finished after six time steps

For our example we simulated the ion implantation and tt@d totally 18 Newton-iterations with a final grid consisting
following annealing step for the lightly doped drain (LDD)of 23553 elements and 12672 nodes (Fig. 16) and the used
LDD-implant in a conventional LOCOS-structure. Fig. 13omputational resources were 23-MB memory and 9-min
shows a corner of the considered example. CPU-time on an HP9000-735 workstation.

The Boron implantation has been computed by the MonteFor this simulation the diffusion length is small and the
Carlo ion implantation module [18] of the VISTA frameworkprofile does not change its shape substantially. Therefore, less
[19] for an energy of 20 keV, a dose of 30'> cm~2, and a grid adaptation is required. To give a demonstration of the
tilt angle of 7. The wafer is oriented i100) direction and is capabilities of the automatic grid adaptation, we performed
covered by a screening oxide of 30-nm thickness. The surfacesimulation for the same structure and initial profile but
distribution of the implanted boron profile is shown in Fig. 14with 105¢C and 30 min as annealing conditions. In this
The grid consists of 73739 elements and 36 163 nodes. It ltase substantial diffusion occurs and more grid adaptation
been generated by adaptive refinement of the initial grid showras necessary. The largest grid consisted of 24 030 elements
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Fig. 14. Surface concentration of the boron profile after ion implantation.
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Fig. 15. Grid for simulation region after initial adaptation to implanted boron profile.

and 12892 nodes due to additional refinement at the mdhie used computational resources were 25-MB memory and
ing diffusion front. The further diffusion reduced the profile30-min CPU-time.

gradients and the grid could be reduced to 18485 elementshis example shows one major benefit of fully adaptive
and 10437 nodes at the end of the simulation after 33 timedding: there is no need for the user to take care about the
steps and totally 71 Newton-iterations (Fig. 17). In this caggid density except to specify the desired accuracy.
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Fig. 16. Boron profile in the silicon block after annealing at 825 20.
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Fig. 17. Boron profile in the silicon block after annealing at 1060 30.

VI. CONCLUSION optimal grids for a certain discretization error limit. The
coupling of the error estimation and local grid adaptation
A method for automatic adaptation of 3-D grids has beefispenses the user from the difficult and time-consuming task
presented which allows to locally refine and coarsen thé checking the grid density.
computational grid. We have shown that the method pre-The computational effort for checking the discretization
serves the quality of the initial grid elements as well asrror depends linearly on the number of grid elements, and
local anisotropies and that boundaries and interfaces of tive effort for grid adaptation depends linearly on the number
computational domain are respected. of adapted elements. Thus, the presented methods and algo-
The adaptation is based on an efficient estimation of disthms combine computational efficiency and robustness of the
cretization errors and therefore automatically produces neasiynulation.
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