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SUMMARY After a brief discussion of the demands in mesh-
ing for semiconductor process and device simulation, we present a
three-dimensional Delaunay refinement technique combined with
a modified advancing front algorithm.
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1. Introduction

We limit the discussion to fully unstructured tetrahe-
dral mesh generation. It has been widely understood
that cartesian based approaches sooner or later need
unstructured extensions or hybrid methods to cope
with the demands of Technology CAD in three di-
mensions [1]–[5]. Automatic unstructured hexahedral
meshing is far more complicated and might become of
interest for TCAD applications once it is fully solved.
Currently, provable tetrahedral mesh generation for a
well defined but unrestricted input still poses a chal-
lenge in three dimensions.

2. Meshing Demands in TCAD

We list four tasks and their main field of application:

• Meshing of comparatively simple (near 90◦ dihe-
dral angles between input facets) but huge struc-
tures composed of a large number of vias and lines.
Simulation of 3D Interconnects.

• Handling the minimum and possibly faulty infor-
mation on arbitrary complex structures provided
by topography simulation with eventually moving
structure boundaries [5]. Semiconductor process
simulation.

• Resolving highly non-linear quantities with a di-
rectional mesh density which is not only limited
to the three directions of the cartesian axises
(anisotropy). Semiconductor device simulation.

• Dealing with very small input angles and an ex-
tremely steep grading of the local feature size (in-
homogeneous). Semiconductor process and device
simulation.
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Full scale three-dimensional simulation has suffered
from the lack of available CAD tools for the various
established data formats in the field. In fact, such a
framework of tools is itself still a subject to research
and development [6].

Aside from existing means to couple and control
the simulators (e.g. job farming [7]), powerful geometry
processors are missing. Considerable person power is
consumed to detect inconsistencies in a tedious manner,
and to debug structures that the mesher should, but
does not mesh, e.g. [8]. Dimensional reduction by use
of the medial axis eliminates unnecessary input features
and simplifies the meshing [9]. However, the medial axis
is directly derived from the Voronoi Graph which itself
needs a robust Delaunay triangulation for computation.

3. Methodologies

The history of methodologies in two-dimensional pro-
cess and device simulation leads to the observation that
an unrestricted — with respect to input structures —
and provably terminating triangulation engine is re-
quired. In addition so called “protection layers” or sim-
ilar approaches to enforce a certain anisotropy along in-
version layers or otherwise highly non-linear interfaces
are required [2], [3], [10], [11]. All methods have come to
a stage where they more or less rely on a triangulation
engine , e.g. [12], to generate a valid tessellation of a set
of supporting grid lines and/or grid nodes supplied to-
gether with the boundary. Nevertheless, the following
questions arise:

• Are Delaunay methods necessary, and if, what
kind ?

• Which conclusions with regard to three dimensions
can one draw from observing the development in
two dimensions ?

3.1 Constrained- and Conforming-Delaunay Triangu-
lation

It is still a common believe that the sole purpose of the
Delaunay triangulation is the element quality (maxi-
mizing the minimum angle in a triangulation) and the
application of its dual Voronoi Graph to the Control
Volume Integration method (Box Integration method).
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However, most importantly it is a mathematically de-
fined triangulation which enables fast (because direct)
and provable triangulation algorithms as opposed to for
instance original advancing front methods [13] which
generally run much slower. They place the grid nodes
and the elements simultaneously to achieve boundary
aligned elements (boundary conforming mesh) and need
to employ elaborate schemes to test for mesh self-
intersections in order to produce a consistent tessella-
tion. An attempt to utilize the efficient and well defined
Delaunay triangulation as a “background” mesh for ad-
vancing front style mesh generation has been made by
[14].

When it comes to incorporating the boundary into
the Delaunay triangulation two different concepts exist.

Constrained Delaunay Triangulation, CDT
The insertion of additional points on the boundary
is not allowed. The initial Delaunay triangulation
of the input vertices will not be conform with all
input edges. To ensure their presence in the final
CDT local modifications are performed which re-
move Delaunay edges and replace them by un-split
input edges. The resulting Delaunay triangulation
is said to be constrained by the input boundary.
Elements near the boundary or interfaces do not
necessarily satisfy the Delaunay criterion (see be-
low).

Conforming Delaunay Triangulation, RDT †

The initial set of vertices is extended with addi-
tional “Steiner Points” [15]. (The name “Steiner
Point” does not indicate a specific location for
a new point, but rather refers to any refinement
point.) The Steiner Points are added in such a
way so that the triangulation of the extended set
of input vertices and refinement points contains the
boundary. All elements must satisfy the Delaunay
criterion.

The stated criteria can be derived from the definition of
the Delaunay triangulation as the dual of the Voronoi
Graph.

Property 1 (Delaunay edge): Let D be a finite set of
points in a sub-domain Ωn of the n-dimensional space
Rn. Two points di and dj are connected by a Delaunay
edge e if and only if there exists a point x ∈ Ωn which
is equally close to di and dj and closer to di, dj than
to any other dk ∈ D. The point x is the circumcenter
of an n-dimensional sphere which passes through the
points di, dj and which contains no other points dk of
D.

eDelaunay(di, dj) ⇐⇒ ∃x

x ∈ Ωn ∧

‖x − di‖ = ‖x − dj‖ ∧

∀ k 
= i, j ‖x − di‖ < ‖x − dk‖

Property 2 (Delaunay triangle): Let D be a finite
set of points in a sub-domain Ωn of the n-dimensional
space Rn. Three non-collinear points di, dj and dk form
a Delaunay triangle t if and only if there exists a point
x ∈ Ωn which is equally close to di, dj and dk and closer
to di, dj , dk than to any other dm ∈ D. The point x
is the circumcenter of an n-dimensional sphere which
passes through the points di, dj , dk and which contains
no other points dm of D.

tDelaunay(di, dj , dk) ⇐⇒ ∃x

x ∈ Ωn ∧

‖x − di‖ = ‖x − dj‖ = ‖x − dk‖ ∧

∀ m 
= i, j, k ‖x − di‖ < ‖x − dm‖

It depends on the task at hand and on the used
discretization scheme which method, CDT or RDT, is
preferable. Control Volume Integration which is often
used in device simulation usually requires closed con-
trol volumes at the boundary and interfaces. If the
Voronoi boxes are used as the control volumes, the re-
quirement directly translates to the following criterion
for the boundary and interfaces.

Property 3 (smallest sphere): Let D be a finite set
of points in n-dimensional space Rn and let t be an
(n−1)-dimensional boundary simplex. t and its n linear
independent points dt,i define an infinite number of n-
dimensional spheres St,rc

where each sphere contains
the points dt,i on its perimeter. All points dk in D are
associated with a Voronoi box Vk. The smallest sphere
St,rmin contains no other points of D if the Voronoi box
Vm does not intersect t for all m with dm /∈ dt,i.

In two dimensions the smallest sphere criterion is
also sufficient to guarantee closed control volumes. In
three dimensions an empty smallest sphere (equatorial
sphere of a boundary triangle) might not guarantee a
closed control volume. It can be shown that an addi-
tionally applied smallest sphere criterion to the edges
of a boundary triangle is in conjunction stronger and
suffices.

Property 4 (smallest sphere, edges and triangle):
Let D be a finite set of points in three-dimensional
space R3 and let t be a boundary triangle defined by
three boundary edges et,i. Each et,i with its two lin-
ear independent points de,j defines a smallest three-
dimensional sphere Se,rmin where each sphere passes
through the points de,j . t defines a fourth smallest
sphere St,rmin (equatorial sphere) which passes through
the points dt,l of the triangle. All points dk in D are

†Although “CDT” is a common term in literature, we
are not aware of any abbreviation for the Conforming De-
launay triangulation. For the sake of brevity we will call it
the “RDT” as in Refining Delaunay Triangulation.
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associated with a Voronoi box Vk. No Voronoi box Vm

intersects t for all m with dm /∈ dt,l if and only if the
four spheres Se,rmin , St,rmin contain no other points of
D.

The proof essentially boils down to showing that
the volume covered by the four smallest spheres (one
triangle and three edges) “swallows” any sphere Sx,R

defined by a circumcenter x and radius R, where x is
located anywhere on the triangle and R is such that the
sphere Sx,R does not contain any of the three vertices
of the triangle.

The key message is that Property 3 is stronger than
the Delaunay criterion (Prop. 1 and Prop. 2). If no
Voronoi box associated with an internal grid node in-
tersects the boundary, the simplices forming the bound-
ary must be Delaunay simplices. In other words: If one
chooses — for the sake of efficiency — a Delaunay trian-
gulation to utilize its inherently given Voronoi boxes as
control volumes, and if the discretization scheme relies
on closed control volumes, the boundary elements must
be enforced to satisfy the stronger criteria. This can be
achieved by using RDT where refinement follows the
stronger rules given above.

On the other hand, if the discretization scheme
does not rely on Delaunay elements at the boundary
and interfaces, it might be desirable to avoid any re-
finement on the boundary. This is important for the
first of the following approaches to achieve a desired
anisotropy.

(i) The triangulation engine is fed with grid lines to
construct protection layers. For some applications
it is crucial that these grid lines are not split which
destroys the desired anisotropy. Employing CDT
guarantees that, but one must be aware that the
Delaunay criterion for elements near those con-
straints is not necessarily fulfilled.

(ii) The triangulation engine is supplied with a set of
grid nodes only. Then, one must be aware that
the resulting connectivity after triangulation might
not match the expected grid lines.

(iii) One again supplies the triangulation engine with
grid lines but employs RDT. This will result in
higher refinement but enforces the grid lines and
the Delaunay property.

In three dimensions CDT does not exist a priori.
This follows directly from the existence of the so called
“Twisted Prism” or Schönhardt Polyhedron which can-
not be tetrahedralized without inserting additional ver-
tices [16] (Fig. 1). No matter which tetrahedron is cho-
sen, it must intersect the boundary. A condition under
which CDT exists for the constraining input facets is
given in [17]. The key question is how to insert those
vertices to satisfy the condition enabling CDT without
further refinement or to perform RDT with a guaran-
teed bound on refinement. Very interesting work for in-
put facets which form dihedral angles of no less than 90◦

Fig. 1 The Schönhardt polyhedron in relation to slivers and
co-spherical point sets.

can be found in [18] and with application to the control
volume integration in [19]. However it remains an out-
standing problem to optimize the refinement method
and to prove its bounds for arbitrary input angles. In
Sect. 4 we present a special refining scheme designed for
sharp angles often exhibited by semiconductor devices,
which, however, at present is still a heuristic technique.

3.2 Motivation

It is apparent that given a robust triangulation engine
one gains many ways in comprising powerful applica-
tion specific meshing schemes in three dimensions. The
extension of Delaunay methods to three dimensions is
not straightforward. Nevertheless, at present we are
not aware of competitive tessellation algorithms with
regard to complex input structures and performance to
serve as triangulation engine. Pure octree based solu-
tions combined with tetrahedral templates are hardly
used for todays TCAD applications. Considering the
variety of existing approaches in three dimensions one
can observe that recently most methods have evolved to
become hybrid methods and require some sort of tetra-
hedralization [1], [4], [20], [21]. Often this is achieved by
local transformations [22]. For moving boundary situ-
ations level set methods have gained great importance
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[4], [23], [24]. They require a mesh to define the mag-
nitude which describes the moving boundary. Also, an
Euler grid is often needed at some stage and must be
derived from the Lagrangian boundary representation
by means of a tetrahedralization algorithm.

The anisotropic Delaunay triangulation [25] is
worthwhile to mention. Through a linear transforma-
tion a circle can be transformed to an ellipse. Applying
the Delaunay triangulation in the transformed space
yields an anisotropic mesh. The difficulties lie in the
grading of the mesh. If the transformation is chang-
ing over the domain to adapt to a locally desired mesh
density, the anisotropic Delaunay triangulation looses
its excellent property to guarantee a valid tessellation.
Conformal mapping techniques might overcome their
computation difficulties, but it remains an open ques-
tion as to how efficiently they can be applied to three
dimensions.

The two stage concept of linking a fixed node set
(triangulation) and placing nodes independently seems
to be most stable and offers a high flexibility for mesh
generation. If no initial set of nodes is constructed (e.g.
in an advancing front style manner) or available (input
nodes), the internal nodes are generated by refining and
updating the tetrahedralization. This allows for high
quality meshes with controllable grading. An example
for the success of this approach in two dimensions can
be found in [12]. The advantage is that the mere placing
of nodes is easy, because one cannot generate inconsis-
tencies and no constraints have to be followed. Nodes
located exterior of the structures are permitted, as well
as on the boundary. It is the job of the triangulation
to yield the valid tessellation for any point set.

We distinguish two Delaunay mesh generation
methods.

Convex Hull and Segmentation
is commonly used where a Delaunay triangulation
algorithm is applied only to the point set and is fol-
lowed by a refinement to recover those input facets
not existent in the triangulation. A post segmen-
tation step is necessary to carve the desired mesh
out of the entire mesh of the convex hull.

Modified Advancing Front
has not been used widely, probably due to its origi-
nal difficulties with degenerate Delaunay cases [26].
In Sect. 5 we present our version which overcomes
these problems [27]. The advantage is that the
tetrahedralization of the convex hull is avoided,
hence also making the segmentation step unneces-
sary. The refinement of input facets to guarantee
their presence in the resulting Delaunay triangula-
tion precedes the actual tetrahedralization.

For the first method an incremental Delaunay algo-
rithm [28] is often used. Meshing the entire convex hull
costs performance especially for extremely non-convex
domains. In three dimensions it is not trivial to recover

missing input facets when the triangulation of the facets
is not unique (degenerate cases).

The second method which appears to originate
from [29] offers some advantages. It possesses the prin-
ciple of “locality”: Undesired parts of the domain are
never meshed or touched upon. This enables nice op-
portunities for real time visualization. The algorithm
can be parallelized [30]. It is equally well suited for
local mesh adaptations as the incremental algorithm.
To the best of our knowledge there seems to be only
one other fairly new reference which can handle degen-
erate cases by a variational approach [31]. The prob-
lem with applying perturbations to the location of the
points to avoid degenerate cases is that the tetrahe-
dralization yields a much higher number of slivers in a
strict sense: not any element of bad quality, but rather
an element formed by four nearly coplanar points on
a sphere. The relation of slivers with degenerate cases
can be seen in Fig. 1 and is further explained in [32].
A post-processing step to remove slivers becomes strin-
gent.

Note that any Delaunay method will have to
employ some refinement scheme in three dimensions
(RDT) if it aims to generate a tetrahedralization con-
taining the boundary.

4. Delaunay Surface Refinement

Given a set of constraining input facets (polygonal rep-
resentation) a triangular surface representation is de-
rived by splitting all polygons into triangles. The poly-
gons may be non-convex. The constraining input facets
do not have to form a closed surface. A refinement algo-
rithm is then applied resulting in a triangulation which
satisfies Properties 1, 2, and if desired Properties 3 and
4. An important operation is defined to reduce the
number of refinement points.

Definition 1 (flip-able triangle): Two triangles t1, t2
which are in conjunction convex and which share one
common edge ec are said to be flipped if they are re-
placed by two triangles t̃1, t̃2 forming the same outline
but sharing a different edge ẽc 
= ec. This operation
is extended to non-planar triangles: If t1, t2 sharing an
edge form a dihedral angle α = 180◦+ε where |ε| ≤ εacc

and εacc is a user controlled accuracy, and if the equa-
torial sphere of t1 contains a vertex of t2 which does
not belong to t1, the triangle t1 may be flipped as well
and will be called flip-able triangle.

We introduce the term flip saturation: A triangle
may not satisfy the empty smallest sphere criterion and
may not be flip-able. The triangle may become flip-
able after a certain number of flip operations applied
on other triangles (Fig. 2). This situation is said to be
“unsaturated.” It is desired to reach the state of flip
saturation before unnecessary refinement occurs. We
achieve this by employing the recursive triangle flip.
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Fig. 2 A triangle that is at first not flip-able and the case when
flip saturation has been reached.

Recursive Triangle Flip
Two triangles t1, t2 are flipped. The resulting tri-
angles t̃1 and t̃2 are each checked if they are flip-
able. If any of the two triangles t̃1, t̃2 is flip-able
with a triangle ti where i /∈ 1, 2 it will be flipped
as well. Repeat for the flipped triangle t̃i until no
further flip operations are possible.

This operation is performed once on each trian-
gle during a linear scan over all existing triangles. The
procedure during which no refinement is allowed is only
necessary at the start to ensure flip saturation. After-
wards, during refinement the flip saturation is main-
tained after insertion of a point by applying the recur-
sive flip locally on the affected triangle only.

We now define structural and flip-able edges.

Definition 2 (flip-able and structural edges): If two
triangles t1, t2 sharing an edge ec form a dihedral angle
α = 180◦ + γ where |γ| > εacc and εacc is a user con-
trolled accuracy, the edge ec is called a structural edge
or S-edge. If |γ| ≤ εacc the edge ec is called flip-able
edge. If a triangle t3 possesses an edge eopen with no
existent adjacent triangle, the edge eopen will be called
a structural edge as well.

Note that two triangles need not be flip-able if they
share a flip-able edge (e.g. coplanar triangles with a
non-convex outline).

All S-edges are detected and stored in a special
data structure for further processing. The empty small-
est sphere criterion will be enforced for S-edges by a
novel refinement scheme we have developed (Fig. 3).
The idea is to avoid refinement “feedback” where an
inserted point causes further point insertions for other
S-edges, which is especially important where incident
S-edges span angles of less than 90◦. The S-edges are
drawn in bold, the dashed circles illustrate the minimal
edge length up to which refinement is permitted, and
the solid circles symbolize empty sphere tests. There
are two possible types how a refinement point is derived
from a “disturbing point” (a point which infringes the
empty sphere criterion).

Type P Insertion An orthogonal projection of the
disturbing point onto the S-edge is used.

Type R Insertion The disturbing point is rotated
onto the S-edge. The rotation axis passes through

Fig. 3 Refinement types for structural edges.

Fig. 4 Refining structural edges for the trivial case of a planar
polygon.

the point at which the two S-edges are incident.

If more than one disturbing point exists, a best can-
didate is selected by comparing the relative distance
and choosing the closest. The simple cases are P I and
R I. In P II, R II, and R IV the minimal edge length
is limited and the inserted point receives an offset. If
the ratio between the length of the two S-edges is close
to one, the most complex situation case R III evolves.
An offset as in case R IV would not produce a good
result and the sphere test depicted by the left solid cir-
cle in case R IV could fail due to the inserted point.
An overall improved situation results from an intended
first order feedback where actually two points will be
inserted in two consecutive steps R III + R I. The cir-
cle for the sphere test which causes the insertion in the
first place is omitted in all sketches. Once the location
of the new point has been determined and prior to its
insertion, sphere tests are performed for some of the
new edges to avoid feedback (solid circles).

Note that the algorithm was designed for three di-
mensions in spite of the two-dimensional sketches. Fig-
ure 4 shows the result for the trivial case of a planar
polygon. The S-edges (outline) satisfy the empty small-
est sphere criterion after refinement.

The triangles are processed after the S-edges. If
desirable, the refinement can be reduced by omitting
the empty smallest sphere criterion for triangles (Prop-
erty 3). The weaker Delaunay Property 2 cannot be
checked easily, because the number of spheres to test
can theoretically be infinite: A single sphere of unspec-
ified size is required to be empty. Hence, the in-sphere
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test would have to be repeated for different sizes until
an empty sphere has been found. We implemented an
equivalent criterion which needs at most two in-sphere
tests. It uses a metric λ described in Sect. 5.

Property 5 (double sphere): Let D be a finite set of
points in three-dimensional space R3 and let t be a
boundary triangle with a non-empty smallest sphere
Smin. The point dk,λmin is contained in Smin and mini-
mizes a metric λ = �HMk ·�n. The triangle t is a Delau-
nay triangle if and only if the sphere Sdouble defined by
t and dk,λmin contains no other point in D.

A key idea for refinement with provable bounds
originates in [33] and can be found in [15], [34]–[36].
The circumcenter of the triangle becomes the location
of the new point to be inserted. Hence, the triangle
which will actually be split can be a different triangle
than the “bad” triangle which causes the refinement.
The bad triangle will not survive, because the new point
at the circumcenter violates its sphere criterion. This
maintains a good spacing between all points and is the
key to the proven bound.

We have extended this method for non-planar sur-
faces. The location of the new point is derived by or-
thogonal projection of the circumcenter onto the sur-
face. It is thereby checked if the refinement point re-
ally violates the sphere criterion for the bad triangle.
A point location is necessary to find the triangle con-
taining the projection. For the sake of efficiency the
projection is not orthogonal to the unknown triangle
which we search for. Instead it is orthogonal to the
bad triangle. Hence, the search can be concluded in
the two-dimensional plane spanned by the bad triangle
onto which neighboring triangles will be projected.

Locate Triangle
Starting with a triangle t = tbad a point Hproj in
the vicinity is searched for (H usually is the cir-
cumcenter of tbad, hence H ≡ Hproj). Determine
one edge e of t which faces Hproj and is a flip-able
edge (Def. 2). Follow edge e by finding the ad-
jacent triangle tadj . Repeat for t = tadj until the
projection of triangle t contains Hproj or an S-edge
has been encountered.

This algorithm can efficiently search for arbitrary
points H (not just circumcenters) as long as the point
is known to be in the vicinity. If the triangle is not
extremely obtuse, Hproj will be contained in the tri-
angle itself or in an adjacent triangle. Then, no iter-
ations or only a few will be required. If an S-edge is
encountered the triangle will not be refined. Instead
the S-edge will be refined as described above. This
is important for several reasons: Insertion of Hproj is
usually followed by triangle flip operations which elim-
inate the bad triangle. Hence, the edge to follow must
be flip-able. Also, projecting the circumcenter does not
make sense for surface areas with sharp dihedral angles.

Fig. 5 Modified advancing front algorithm.

Originally, this type of refinement was only applied to
Delaunay triangles with an empty circumsphere to im-
prove quality angle criteria. When the sphere is not
empty, points might be inserted extremely close to each
other. However, in our case we refine non-Delaunay tri-
angles to enforce their Delaunay property. This can be
done successfully, provided the state of flip saturation
is maintained at all times.

It is worthwhile to mention that the applied prop-
erties and sphere tests during triangle refinement are
extended with min-angle or max-area criteria to in-
crease quality and refinement.

5. Modified Advancing Front Algorithm

Figure 5 shows the flow diagram of the modified ad-
vancing front algorithm. From the generated surface
triangulation Delaunay triangles are extracted to form
an oriented initial front. These triangles can be imag-
ined as seeds which are inserted into a queue to “grow”
tetrahedra. At the start, the algorithm needs a non-
empty queue. It does not require the queue to hold all
surface triangles. One triangle per enclosed segment is
sufficient. The surface triangulation has two purposes:

1. It provides the initial front for the advancing front
algorithm to start with. One triangle per segment
is enough, because a single triangle forms a front
as well.

2. It provides a border for the advancing front algo-
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Fig. 6 The triangle to which the next tetrahedron is attached
is grey.

rithm which cannot be passed.

The triangles of the initial front and all later gener-
ated triangles of the advancing front have a well de-
fined orientation depending on the order of their ver-
tices. They “face” the half-space to which their nor-
mal vector points. Given a seed triangle (taken from
the queue) a tetrahedron is attached which contains a
fourth point that has a positive distance to the trian-
gle relative to the normal vector. In other words, the
tetrahedron will only be attached to that side of the
triangle which faces the half-space to which the normal
vector points. In this way, one can distinguish a “front
side” and a “back side” of each triangle.

Repeatedly attaching tetrahedra to the front sides
of the triangles of the queue, removing them from the
queue when they have been processed, and inserting
newly generated triangles into the queue leads to a
growth process of tetrahedra (Fig. 6). Note, that the
triangles of the queue form the advancing front at all
times. It advances when a new tetrahedron (attached
to a triangle which is removed from the queue) results
in new triangles which are inserted into the queue. Gen-
erally, a created tetrahedron can produce any number
between 0 and 3 new triangles. At the start of the
tetrahedralization process with the given seed triangles
each created tetrahedron will more likely produce 3 new
triangles and the queue will increase rapidly. Later on,
the advancing front will merge with itself or parts of
the surface triangulation. A tetrahedron consists of n
new triangles, (3 − n) previously generated triangles,
and the triangle to which it is attached. The (3 − n)
previously generated triangles must have been previ-
ously inserted into the queue or belong to the initial
surface triangulation. They are part of the advancing
front. When they are encountered during the creation
of a new tetrahedron, they are removed from the queue
and the advancing front is stopped. The front cannot
pass through the boundary or itself [32]. In such cases
the creation of the tetrahedron results in a decrease of
the size of the queue. When the queue is empty and all
its triangles have merged with each other, the tetrahe-
dralization process is finished.

In the described manner a segment of the input
domain is “filled” with tetrahedra, if there exists at
least one seed triangle which has a normal vector that
points into the volume of the segment.

Given the fixed grid node distribution and an ori-
ented triangle only one grid node will complement the

Table 1 Running time on an HP 9000-735/100.

quantity of . . . CPU time
points tetrahedra triangles (in sec)

103 535 1098 0.2
503 3016 6112 1.4
703 4323 8739 2.1
1003 6268 12635 3.3
1503 9494 19107 5.1
2003 12713 25557 6.8

2503 16076 32300 8.8
3003 19394 38967 11.1
4003 25969 52140 15.6
5003 32691 65605 19.7

10003 65927 132160 46.5
20003 132854 266133 92.0
30003 199613 399756 145.0
40003 266899 534405 207.0

triangle to form a valid Delaunay tetrahedron to be
attached to the triangle’s front side. A local region is
defined by a sphere with circumcenter M containing the
circumcircle of the triangle with circumcenter H and a
normal distance λ. The unit length normal vector of
the triangle is �n.

λ := �HM · �n

Each point Pi in the local region defines a sphere with
circumcenter Mi and λi. The point Pj with minimal
λj,min will be chosen and hence the attached tetrahe-
dron must satisfy the Delaunay property.

The running time of the algorithm depends heav-
ily on the point location method. The sphere defining
the search region always fits into a cube parallel to the
bounding box. Therefore, we implemented a fast point
bucket octree which provides a search function for such
rectangular regions. The octree search and the mini-
mizing of λ (λ-criterion) introduces the logarithm into
the overall time complexity O(n log n) where n is the
number of tetrahedra. The performance for random
point clouds is given in Table 1.

Degenerate cases where a compound of points Pc,i

has identical λc result from non-unique Delaunay tri-
angulations. A specially enhanced algorithm which we
have developed copes with such cases and is described
in [27].

6. Application Examples

Dependable mesh generation and robustness under fi-
nite precision arithmetics is a must for practical ap-
plications. Often, floating point filters are integrated
to control round off errors [1], [37]. Such filters usually
have a great effect on the runtime of an algorithm. Ex-
act arithmetics cannot be achieved easily for Delaunay
methods which require in-sphere tests and the calcula-
tion of square roots. A different approach to ensure a
robust and consistent implementation of the modified
advancing front algorithm is described in [27].
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Fig. 7 Layered mesh with 71986 elements.

6.1 Capacitance Extraction Using SAP

The finite element package SAP (Smart Analysis Pro-
gram, [38]) can be used for electro-thermal intercon-
nect simulation. It contains a layer-based preproces-
sor to generate three-dimensional meshes from cross-
sections. This limited approach forces a uniform ele-
ment size along one coordinate axis. The lateral mesh
density must be identical for all cross-sections [5]. Fig-
ure 7 shows a typical mesh generated from a solid model
based on layers.

6.2 Topography Simulation Linked to AMIGOS

The structures evolving after etching and deposition
steps are more complex than can be handled with meth-
ods such as the layer-based method mentioned above.
The output of a topography simulator is often highly
refined to match the required resolution for the ma-
nipulation of the structure. After applying the surface
Delaunay adaptation the modified advancing front al-
gorithm produces a mesh for AMIGOS [39].

One application is the high pressure CVD of Tung-
sten used for a Ti/TiN/W plug fill process. The geom-
etry results from an initial low pressure deposition of
a TiN barrier layer into the via. This PVD process is
determined by ballistic transport of the sputtered Ti
particles. The finite element model used for the fol-
lowing high pressure CVD process is calculated on the
mesh and assumes that W is reduced from WF6 us-
ing H2 and forming HF as by-product. The three gas
species diffuse in the feature and the reduction takes
place at the bottom and the side walls of the feature.
Depending on the diffusion coefficients and the reaction
rates a steady state of the gas distribution is reached
leading to a depletion of WF6 in the feature and to a
characteristic non uniformity in the deposition rates.

Figure 8 shows the mesh of a cylindrical via and
the WF6 concentration. A cross-section of the mesh is

Fig. 8 Cylindrical via, mesh with 7324 elements.

Fig. 9 Cross-section of cylindrical via, mesh with uniform grid
nodes (7324 elements).

depicted in Fig. 9. A different mesh with a highly re-
fined region near the boundary and in the interior of the
via was generated by constructing a non-uniform grid
node distribution derived from the boundary vertices
(Fig. 10). The same model was calculated on a dama-
scene structure and the resulting WF6 concentration is
shown in Fig. 11.

6.3 NMOS Transistor

The presented example in 0.18µm technology includes
a thin oxide layer of 30 nm (Fig. 12). Devices with high
ratios between local feature sizes pose a challenge to
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Fig. 10 Cross-section of cylindrical via, mesh with
non-uniform grid nodes (75720 elements).

Fig. 11 Iso surfaces of the WF6 concentration in a damascene
structure, mesh with 18148 elements.

Fig. 12 NMOS Transistor with a thin oxide layer.

Fig. 13 Boron implantation profile and mesh with 134374
elements.

most existing methods. The difficulty lies in the grad-
ing of the mesh density. Isotropic grading results in a
mesh with an extreme number of elements especially
in three dimensions. Simplified meshing concepts like
cartesian-, octree-, or layer-based methods are able to
produce acceptable anisotropic grading as long as the
e.g. thin layer is planar and parallel to the coordi-
nate system. Their limitations with respect to complex
structures are recently overcome with employing fully
unstructured methods. The device depicted in Fig. 13
was meshed using the modified advancing front algo-
rithm.

7. Conclusion

We briefly discussed common methodologies for mesh
generation in TCAD. The importance of the Delaunay
triangulation as a fast and well defined method to tes-
sellate the domain was explained. We mentioned im-
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portant properties related to Delaunay methods. Some
advantages of the modified advancing front algorithm in
comparison to the standard Watson algorithm [28] were
given. We also presented a novel three-dimensional De-
launay refinement technique which is important for all
boundary consistent Delaunay triangulation methods.

Future work will have to improve the handling of
non-planar thin layers and of arbitrary anisotropic den-
sity requirements with fully unstructured mesh gener-
ation techniques.
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[13] R. Löhner and P. Parilch, “Three-dimensional grid gen-
eration by the advancing front method,” Int. J. Nu-
mer. Meths. Fluids., vol.8, pp.1135–1149, 1988.

[14] P.J. Frey, H. Borouchaki, and P.L.George, “Delaunay
Tetrahedralization using an advancing-front approach,”
Proc. 5th International Meshing Roundtable, Sandia Na-
tional Labs, pp.31–43, Pittsburgh, 1996.

[15] M. Bern and D. Eppstein, “Mesh generation and optimal
triangulation,” in Computing in Euclidean Geometry, eds.
F.K. Hwang and D.-Z. Du, pp.201–204, World Scientific,
1992.
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en dimension N,” RAIRO Analyse Numérique, vol.16, no.3,
pp.211–242, 1982.

[30] P. Cignoni, C. Montani, R. Perego, and R. Scopigno, “Par-
allel 3D Delaunay triangulation,” in EUROGRAPHICS,
vol.12, eds. R.J. Hubbold and R. Juan, p.C-129, Eurograph-
ics Association, Blackwell Publishers, 1993.



FLEISCHMANN et al: MESH GENERATION FOR APPLICATION IN TCAD
947

[31] P. Krysl and M. Ortiz, “Generation of tetrahedral finite el-
ement meshes: Variational Delaunay approach,” Proc. 7th
International Meshing Roundtable, Sandia National Labs,
Dearborn, pp.272–284, 1998.

[32] P. Fleischmann and S. Selberherr, “Fully unstructured
Delaunay mesh generation using a modified advancing
front approach for applications in technology CAD,” IEEE
Trans.Semiconductor Technology Modeling & Simulation,
http://www.ieee.org/journal/tcad/accepted/, 1997.

[33] L.P. Chew, “Guaranteed-quality triangular meshes,” Tech.
Rep. TR-89-983, Cornell University, 1989.

[34] L.P. Chew, “Guaranteed-quality Delaunay meshing in 3D,”
Proc. 13th Annual Symposium on Computational Geome-
try, ACM, pp.391–393, 1997.

[35] J. Ruppert, “A Delaunay refinement algorithm for qual-
ity 2-dimensional mesh generation,” Journal of Algorithms,
vol.18, pp.548–585, 1995.

[36] P. Fleischmann and S. Selberherr, “A new approach to fully
unstructured three-dimensional Delaunay mesh generation
with improved element quality,” Proc. Simulation of Semi-
conductor Processes and Devices, pp.129–130, 1996.

[37] J.R. Shewchuk, “Adaptive precision floating-point arith-
metic and fast robust geometric predicates,” Discrete &
Computational Geometry, vol.18, no.3, pp.305–363, 1997.

[38] R. Sabelka, R. Martins, and S. Selberherr, “Accurate
layout-based interconnect analysis,” in Simulation of Semi-
conductor Processes and Devices, eds. K. De Meyer and
S. Biesemans pp.336–339, Springer, Wien, New York, 1998.

[39] M. Radi, E. Leitner, E. Hollensteiner, and S. Selberherr,
“AMIGOS: Analytical model interface & general object-
oriented solver,” Proc. Simulation of Semiconductor Pro-
cesses and Devices, pp.331–334, 1997.

Peter Fleischmann was born in
Kabul, Afghanistan, in 1969. He stud-
ied electrical engineering at the Technical
University of Vienna, where he received
the degree of ‘Diplomingenieur’ in 1994.
He joined the ‘Institut für Mikroelek-
tronik’ in December 1994. In December
1997 he was with NEC in Sagamihara,
Japan. He is currently working for his
doctoral degree. His research interests
include mesh generation as well as algo-

rithms and data structures in computational geometry.

Wolfgang Pyka was born in Inns-
bruck, Austria, in 1970. He studied ma-
terial science at the ‘Montanuniversität
Leoben’, where he received the degree of
‘Diplomingenieur’ in June 1996. In De-
cember 1996 he joined the ‘Institut für
Mikroelektronik’, where he is currently
working for his doctoral degree. His work
is focused on simulation and modeling of
etching and deposition processes and on
algorithms for topographic simulations.

Siegfried Selberherr was born in
Klosterneuburg, Austria, in 1955. He re-
ceived the degree of ‘Diplomingenieur’ in
electrical engineering and the doctoral de-
gree in technical sciences from the Tech-
nical University of Vienna in 1978 and
1981, respectively. Since that time he has
been with the Technical University of Vi-
enna as professor. Dr. Selberherr has been
holding the ‘venia docendi’ on ‘Computer-
Aided Design’ since 1984. He has been the

head of the ‘Institut für Mikroelektronik’ since 1988. His current
topics are modeling and simulation of problems for microelec-
tronics engineering.


