
OBJECT-ORIENTED WAFER-STATE SERVICES

T. Binder and S. Selberherr
Institute for Microelectronics, TU Vienna

Gusshausstr. 27-29, A-1040 Vienna, Austria
Phone +43-1-58801-36036, FAX +43-1-58801-36099

e-mail: Thomas.Binder@iue.luwien.ac.at

KEYWORDS

TCAD, Simulators, Optimization, Intelligent simulation en­
vironments, Semiconductor technology

ABSTRACT

In a modern Technology CAD (TCAD) simulation environ­
ment data exchange between different simulators often re­
mains as unsolved challenge. One natural way of data inter­
change is lo use a file format common to all tools involved
in the process flow. This approach, however, lacks the func­
tionality often required between certain steps. First, there
is the need to ensure a consistent input-wafer for each indi­
vidual simulator. Second, depending on the type of process
simulation at hand, it must be possible for a certain simu­
lator to operate only on a sub-set of the data contained on
a wafer. For instance, for a topography tool like an etching
simulator only the geometry and material informations are
of concern, whereas data like impurity concentrations and
meshes are usually ignored. Problems arise when the etch­
ing tool is writing back its results into a file. Since it has no
knowledge of other data contained in the input wafer, there
is no way for the tool to write a valid wafer-state. This
problem can only be solved by merging the newly gener­
ated geometry of the etch-step (Fig. l(b)) with the original
input-file (Fig. l(a)), to create a new consistent wafer-state
(Fig. l(c)). The resulting geometry is automatically regrid­
ded (new elements were inserted in this example), and all
distributed quantities are transferred onto the new points.

WAFER-STATE SERVER

Our wafer-state server addresses this kind of problems and
presents a standardized application programming interface
(API) common to all simulators and tools. This API de­
fines a strong protocol the simulators must adhere to. Tools
must manipulate data in the wafer-state exclusively through
this protocol. The wafer-state server also contains grid­
ding and regridding capabilities. These are required for
repair steps as outlined in the above example and are in­
voked transparently. The strategy chosen for interpolation
allows different interpolation methods for each attribute
without any reflection in the APL The user simply re­
quests the value of an attribute at a certain point. The
wafer-state server chooses the appropriate (configured) in­
terpolation method for the attribute, and returns the in-

360

(a) Original Wafer -
contains several
distributed quantities

I~
(b) Geometry as returned

from the etch-tool (no
attribute information)

(c) Final result of the merge operation - contains
all attributes from the original wafer

Figure 1: Merge operation after an etch-step

terpolated value. Prior to interpolating, the grid-element
in which the point is contained has to be found (point
location). This task is achieved with a finite-quad-tree
and finite-oct-tree [Binder and Selberherr, 1999] based data
structure for two-dimensional and three-dimensional appli­
cations respectively. These tree based data-structures sup­
port the wafer-state server in (a) performing efficient point­
locations and (b) in identifying the grid elements in the re­
pair step for which an intersection calculation has to be car­
ried out.

Modularity

Due to the object-oriented approach (Fig. 2) the wafer-state
server allows for easy integration of new file formats and
meshing tools. It is worthwhile mentioning that the under­
lying file format and the (re-)gridding process are totally
hidden from the user. The API contains no functions to di­
rectly manipulate a file or a grid. Instead, the user instanti­
ates the READER and GRIDDER object of his choice. This
mechanism enables the developer of a simulator to easily
choose among all supported file formats and gridding algo­
rithms.

The use of several individual modules (READER,

GRID DER, .. .) as opposed to using only a single one
(WAFER) may seem complicated at first sight, however, it

Wafer State API

" " w (.)
(.)

<tl "' ~ E-- "' c
~~

c
wss 0 !l s ~ .g i:a:::: ·.= .s w"3 .s Cll ~ w"' DELINK

Q c ~ ~~ ~
Q " PIF <" w tE w w Q"

w ~ Q Q - s < Cll Q ~" ~ 0. < 0 0.
DFISE .5 w ~ ~ .5 TRIANGLE

~ 0

Figure 2: Basic block diagram of the wafer-state server

introduces two major advantages: On the one hand details
about the underlying file format and about the gridding
algorithms are very well hidden to the wafer-state server's
core functions. This ensures that reading support for
another file-format can be added later by implementing
a READER for this file-format. The same holds true for
supporting various WRITERS and GRIDDERS. In general,
any class that implements the interface to a certain module
qualifies as a wafer-state module. On the other hand,
settings specific to a certain implementation of a GRID DER

(e.g. quality constraints) can directly be accessed by the
simulator without the need for extra wafer-state functions.

Currently READERS for PIP [Fasching et al., 1991],
DFISE [ISE, 1997] and the newly developed wss
file formats as well as the GRIDDERS DELINK

[Fleischmann and Selberherr, 1996] (three dimensional)
and TRIANGLE [Shewchuk, 1996] (two dimensional) are
implemented.

Protocol between application and wafer-state
server

The first step in the protocol (Fig. 3) from an applications'
point of view is to instantiate appropriate READER and
GRIDDER objects. The choice of what READER to instanti­
ate depends on the file-format in which the data are stored.
Next, the actual wafer object is instantiated by supplying
the READER and GRIDDER objects as well as a CONFIG ob­
ject to the wafer class. The CONFIG object holds informa­
tion about the different kinds of supported attributes and
about the process step which is to be carried out.

At this point the data in the wafer-state server are ready for
the application to be requested.

In the next protocol step the simulator requests the geome­
try and thereon stored attributes. Geometries and attributes
are identified by names. These names are usually stored in
a so called input-deck which is read by the simulator inde­
pendently from the wafer definition. This input-deck con­
tains several settings for the simulator, among other details,
it identifies which regions are to be treated in the simula­
tion.

All relevant data have now been transferred to the simulator.
Once the simulator has finished its calculations the results

361

Application

Instantiate
Reader, Gridder

and Config objects

Instantiate
Wafer Object

Request Geometry
and Attributes

Perform
Simulation

Update
Wafer

Instantiate
Writer, dump

Wafer

Wafer-State
Server

Read Data
from File

Perform merging
Operation

invalidate
unhandled
Attributes

write Wafer to
File

Figure 3: Basic protocol between wafer-state server and
application

must be merged with the wafer-state. This so called update
operation is performed in several individual steps. Each
attribute (including the grid it is stored on) which has been
requested must now be stored back onto the wafer. The
wafer-state server then checks whether all attributes were
received. Next the attributes which are invalidated by this
process step are deleted.

Now the repairing mechanism is invoked by the wafer-state
server. The newly added geometry is clipped with the one
stored on the wafer-state. Grid points are taken over from
the old grid where possible. The regions are then meshed
using the supplied GRID DER. All attributes which were not
treated by the simulator and which are not configured to be
invalidated are interpolated onto the new geometries. At­
tributes which lie on no longer existing regions (e.g. a seg­
ment was altered by the simulator) are discarded.

After the repair operation the application instantiates the
appropriate WRITER object and invokes the dump method

of the wafer class to permanently store the simulation re­
sults on a file.

Definition of process steps

Each class of process step is configured in a database. The
necessity for such a classification is best illustrated in an
example. Take, for instance, a diffusion step: If the input
wafer contains any stress components, the diffusion simu­
lator either must take them into account (use them in the
simulation) and perform an update when writing back the
results, or the wafer-state server has to invalidate these com­
ponents right after the diffusion step. All attributes which
are modified either directly by the simulation or indirectly
(e.g. invalidated stress component) must be listed.

Diffus
(

};

Invalidate
(

inv =
exc

};

II* II; II quantities to invalidate.
II qu . to exclude from invalidation

read =
write =

"Boron, Arsenic";
11 Boron 1 Arsenic 11

;

topography = false;

Figure 4: Configuration of diffusion step

Fig. 4 shows a possible configuration of a diffusion step.
The keywords inv and exc specify quantities which are to
be invalidated and excluded from invalidation respectively.
The keyword read lists all attributes which must be treated
by the simulator (here: Boron, Arsenic). Similarly
write specifies all attributes which must be supplied in the
update operation. An asterisk(*) can be used with inv and
exc to denote all contained attributes, however, attributes
in the read and write statements will overrule this no­
tion. This means that in our example the quantities Boron
and Arsenic are not invalidated automatically. In case
the wafer contains other attributes (e.g. stress) they will be
removed upon update. The keyword topography is used
to indicate whether the simulator changes the topography
(true) in which case the wafer-state server must merge
the new geometry with the existing one.

The types of the various attributes are also defined in the
database. Fig. 5 depicts the configuration of attributes of
type Concentrations.

Concentrations
(

};

interpolation ;;;;: 11 log 11
;

unit "llcm"3";
members 11 Donors 1 Acceptors, Boron,

Phosphorus, Arsenic, Indium,
Antimony, Nitrogen, Oxygen"i

data type 11 Scalar 11
;

Figure 5: Configuration of attribute type Concentrations

The definition of an attribute class consists of the unit
(cm-3) the data type (scalar, vector, tensor), the name

362

(Concentrations), a list of all possible instances (Arsenic,
Phosphorus, Boron, donors, acceptors, ...), and the method
of interpolation (linear, logarithmic).

TCAD ANALYSIS

Performing TCAD analysis tasks [Strasser, 1999]
like optim1zation of VLSI semiconductor devices
[Plasun et al., 1997, Plasun et al., 1998] or inverse model­
ing of doping profiles [Strasser et al., 1999] often results
in an enormous number of individual simulation runs.
Frameworks like SIESTA or VISTA [Strasser et al., 1997]
take care of aspects like describing an experiment and
queuing jobs on a cluster of workstations. Another aspect
of TCAD analysis is how the input-data for the simulation
runs are generated. Thus, the need for a tool to generate a
wafer based on a textual description arises.

Input Wafer Creation

The wafer-state services contain a tool (MKWAFER) to cre­
ate three-dimensional wafers suitable for a process or de­
vice simulation. This tool uses as input the input-deck lan­
guage as it is also used in our device simulator MJNIMOS­

NT [Simlinger et al., 1995, Binder et al., 1998], and in the
configuration of the process steps and attribute types within
the wafer-state server.

#include "cube3d . ipd"

Contact: -cube (Scaling (z 0.2; } }

Geometry
(

Bulk: -contact (Scaling { y = 5 . 0 ; } }
Silicon: -cube
{

Offset (z = 0.2; } Scaling { y = 5.0;

Drain: -contact
{

Scaling { y = 1.0; } Offset (z 1.2; }

Gate: -contact
{

Scaling { y = 3.0; } Offset (y = 1.0; z 1 . 2; l

Source: -contact

Scaling (y = 1.0; } Offset (y = 4 . 0; z 1 . 2; }

Figure 6: Simple device geometry description

Fig. 6 shows the input-deck description to generate the
schematic three-dimensional device structure depicted in
Fig. 7. Note that, for sake of clarity only a wire-frame of
the outline is displayed (no grid elements). For each section
intheinput-deckfile(Bulk, Silicon, Drain, ...)
a corresponding segment is created. After having pro­
cessed the last section of the input-deck the program com­
putes the boundary representation of the whole geome­
try. The computation is achieved by first transferring all

sets of coplanar faces into a two-dimensional representa­
tion. Second, a two-dimensional polygon clipping soft­
ware [Schutte, 1995] based on an algorithm of Kevin Weiler
[Weiler, 1980] is used to determine the intersections. Fi­
nally the resulting two-dimensional faces are transferred
back into three-dimensional space and added to the struc­
ture. The boundary representation is then passed on to
a gridder (DELINK [Fleischmann and Selberherr, 1996]) in
order to generate a mesh of the whole structure. The final
device is saved to a file using the wss WRITER.

Figure 7: Wire-frame of schematic three-dimensional
device

VISUALIZATION

Another important aspect addressed in the wafer-state
server is the visualization of attributes and geometries.
Due to the abstraction of the file access we only need to
support one certain file format (WSS). The chosen vi­
sualization environment is the Visualization Toolkit (VTK)
[Schroeder et al., 1999]. To keep the visualization platform
independent the JAVA programming language is used for
both parsing the wss file and for the actual visualization
(JAVA-VTK binding). The parser generator used (ANTLR
[Schaps, 1999]) to generate the parser code is capable of
producing JAVA and c++ parsers from the same language
description, which relieves us from maintaining a separate
JAVA and c++ version of the very same parser. The visual­
ization runs on Unix and Windows Platforms.

IMPLEMENTATION

The chosen programming language for the implementation
of the wafer-state server is c++. This language facilitates
a full object-oriented design as realized in the wafer-state
servers' core components as well as an easy integration of
existing programs (DELINK, TRIANGLE, DFISE-READER)
thus ensuring good overall code reusability. During the im­
plementation of the wafer-state server care was taken to ad­
here to the ANSI c++ standard as close as possible.

363

CONCLUSION

We present a TCAD class library to support the simula­
tion of semiconductor fabrication processes. A solution to
the problem of data-exchange among various simulators is
given. The strong protocol all simulators must adhere to
allows for the simulation of a whole process flow.

Due to the abstraction of the file-format and the gridding
mechanisms an integration of tools of different vendors is
possible without having access to the source codes. The
wafer-state server presents the tool developer with a pow­
erful way of combining several independent modules. By
instantiating the appropriate module the programmer has
the flexibility of choosing among all available GRIDDERS,
READERS, and WRITERS.

Finally, the challenge of optimization and inverse modeling
is met by providing tools to create input-data for device and
process simulation and to visualize the simulated results.

OUTLOOK

The simulation of whole process flows is still a tedious
task in modern TCAD simulation environments. Usually
conversion tools have to be invoked in order to couple
simulators for different process steps. A conversion
from one data format to another usually introduces a
certain amount of error (e.g. due to interpolating data
onto a new grid). Therefore, wafer-state support for
the MONTE CARLO ION IMPLANTATION simulator
[Hassinger et al., 1999, Hassinger and Selberherr, 1999]
as well as for the ETCHING simulator [Pyka et al., 1998,
Pyka and Selberherr, 1998a, Pyka and Selberherr, 1998b]
is under development.

BIOGRAPHY

Thomas Binder was born in Bad Ischl, Austria, in 1969.
He studied electrical engineering and computer science at
the 'Technische Universitat Wien', where he received the
degree of 'Diplomingenieur' in December 1996. In March
1997 he joined the 'Institut fiir Mikroelektronik', where he
is currently working for his doctoral degree. In autumn
1998 he held a visiting research position at Sony, Atsugi,
Japan. His scientific interests include data modeling, al­
gorithms, software engineering and semiconductor technol­
ogy in general.

References

[Binder et al., 1998] Binder, T., Dragosits, K., Grasser,
T., Klima, R., Knaipp, M., Kosina, H., Mlekus, R.,
Palankovski, V., Rottinger, M., Schrom, G., Selberherr,

S., and Stockinger, M. (1998). MIN/MOS-NT User's
Guide. Institut fiir Mikroelektronik.

[Binder and Selberherr, 1999] Binder, T. and Selberherr, S.
(1999). A parallel finite oct-tree for multi-threaded in­
sert, delete, and search operations. In IASTED Int.
Conj Applied Modeling and Simulation, pages 613-616,
Cairns, Australia.

[Fasching et al., 1991] Fasching, F., Fischer, C., Selber­
herr, S., Stippel, H., Tuppa, W., and Read, H. (1991).
A PIF implementation for TCAD purposes. In Fichtner,
W. and Aemmer, D., editors, Simulation of Semiconduc­
tor Devices and Processes, volume 4, pages 477-482,
Konstanz. Hartung-Gorre.

[Fleischmann and Selberherr, 1996] Fleischmann, P. and
Selberherr, S. (1996). A new approach to fully unstruc­
tured three-dimensional Delaunay mesh generation with
improved element quality. In Simulation of Semicon­
ductor Processes and Devices, pages 129-130, Tokyo,
Japan. Business Center for Academic Societies Japan.

[Hahn and Lehmann, 1997] Hahn, W. and Lehmann, A.,
editors (1997). Proc. 9th European Simulation Sympo­
sium, Passau, Germany. Society for Computer Simula­
tion International.

[Hossinger and Selberherr, 1999] Hassinger, A. and Sel­
berherr, S. (1999). Accurate three-dimensional simula­
tion of damage caused by ion implantation. In Proc. 2nd
Int. Conj on Modeling and Simulation of Microsystems,
pages 363-366, San Juan, Puerto Rico, USA.

[Hassinger et al., 1999] Hassinger, A., Selberherr, S.,
Kimura, M., Nomachi, I., and Kusanagi, S. (1999).
Three-dimensional Monte-Carlo ion implantation sim­
ulation for molecular ions. In Electrochemical Society
Proceedings, volume 99-2, pages 18-25.

[ISE, 1997] ISE (1997). /SE TCAD Manuals vol. 6, re­
lease 4. ISE Integrated Systems Engineering.

[Plasun et al., 1997] Plasun, R., Pichler, C., Simlinger, T.,
and Selberherr, S. (1997). Optimization tasks in technol­
ogy CAD. In [Hahn and Lehmann, 1997], pages 445-
449.

[Plasun et al., 1998] Plasun, R., Stockinger, M., Strasser,
R., and Selberherr, S. (1998). Simulation based op­
timization environment and it's application to semi­
conductor devices. In IASTED Int. Conj on Applied
Modelling and Simulation, pages 313-316, Honolulu,
Hawaii, USA.

[Pyka et al., 1998] Pyka, W., Martins, R., and Selberherr,
S. (1998). Efficient algorithms for three-dimensional
etching and deposition simulation. In Meyer, K. D.
and Biesemans, S., editors, Simulation of Semiconductor
Processes and Devices, pages 16-19. Springer, Leuven,
Belgium.

364

[Pyka and Selberherr, l 998a] Pyka, W. and Selberherr, S.
(1998a). Three-dimensional simulation of bulge forma­
tion in contact hole metalization. In Proc. International
Conference on Modeling and Simulation of Microsys­
tems Semiconductors, Sensors and Actuators, pages 65-
69, Santa Clara, CA, USA.

[Pyka and Selberherr, 1998b] Pyka, W. and Selberherr, S.
(1998b). Three-dimensional simulation of TiN mag­
netron sputter deposition. In Touboul, A., Danto, Y.,
Klein, J.-P., and Gri.inbacher, H., editors, 28th European
Solid-State Device Research Conference, pages 324-
327, Bordeaux, France. Editions Frontieres.

[Schaps, 1999] Schaps, G. L. (1999). Compiler construc­
tion with antlr and java. Dr. Dobb's Journal.
http://www.ddj .com/articles/199 9/9903/9903h/ 9 903h.htm,

http: / /www.antlr.org.

[Schroeder et al., 1999] Schroeder, W., Martin, K., and
Lorensen, B. (1999). An Object-Oriented Approach To
3D Graphics. Prentice Hall.

[Schutte, 1995] Schutte, K. (1995). An edge labeling ap­
proach to concave polygon clipping. Submitted to ACM.
http: / /www .ph . tn.tudelft.nl/People / klamer/clip.ps.gz .

[Shewchuk, 1996] Shewchuk, J. R. (1996). Triangle: En­
gineering a 2D quality mesh generator and Delaunay tri­
angulator. In First Workshop on Applied Computational
Geometry, pages 124-133. Association for Computing
Machinery.

[Simlinger et al., 1995] Simlinger, T., Kosina, H., Rot­
tinger, M., and Selberherr, S. (1995). MINIMOS-NT: A
generic simulator for complex semiconductor devices. In
de Graaff, H. and van Kranenburg, H., editors, 25th Eu­
ropean Solid State Device Research Conference, pages
83-86, Gif-sur-Yvette Cedex, France. Editions Fron­
tieres.

[Strasser, 1999] Strasser, R. (1999) . Rigorous TCAD In­
vestigations on Semiconductor Fabrication Technology.
Dissertation, Technische Universitat Wien.

[Strasser et al., 1997] Strasser, R., Pichler, C., and Selber­
herr, S. (1997). VISTA - a framework for technology
CAD purposes. In [Hahn and Lehmann, 1997], pages
450-454.

[Strasser et al., 1999] Strasser, R., Plasun, R., and Selber­
herr, S. (1999). Practical inverse modeling with SIESTA.
In Simulation of Semiconductor Processes and Devices,
pages 91-94, Kyoto, Japan.

[Weiler, 1980] Weiler, K. (1980). Polygon comparision us­
ing a graph representation. In Computer Graphics, 14,
pages 10-18. SIGGRAPH 80.

