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ABSTRACT 

In a modern Technology CAD (TCAD) simulation environ­
ment data exchange between different simulators often re­
mains as unsolved challenge. One natural way of data inter­
change is lo use a file format common to all tools involved 
in the process flow. This approach, however, lacks the func­
tionality often required between certain steps. First, there 
is the need to ensure a consistent input-wafer for each indi­
vidual simulator. Second, depending on the type of process 
simulation at hand, it must be possible for a certain simu­
lator to operate only on a sub-set of the data contained on 
a wafer. For instance, for a topography tool like an etching 
simulator only the geometry and material informations are 
of concern, whereas data like impurity concentrations and 
meshes are usually ignored. Problems arise when the etch­
ing tool is writing back its results into a file. Since it has no 
knowledge of other data contained in the input wafer, there 
is no way for the tool to write a valid wafer-state. This 
problem can only be solved by merging the newly gener­
ated geometry of the etch-step (Fig. l(b)) with the original 
input-file (Fig. l(a)), to create a new consistent wafer-state 
(Fig. l(c)). The resulting geometry is automatically regrid­
ded (new elements were inserted in this example), and all 
distributed quantities are transferred onto the new points. 

WAFER-STATE SERVER 

Our wafer-state server addresses this kind of problems and 
presents a standardized application programming interface 
(API) common to all simulators and tools. This API de­
fines a strong protocol the simulators must adhere to. Tools 
must manipulate data in the wafer-state exclusively through 
this protocol. The wafer-state server also contains grid­
ding and regridding capabilities. These are required for 
repair steps as outlined in the above example and are in­
voked transparently. The strategy chosen for interpolation 
allows different interpolation methods for each attribute 
without any reflection in the APL The user simply re­
quests the value of an attribute at a certain point. The 
wafer-state server chooses the appropriate (configured) in­
terpolation method for the attribute, and returns the in-
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(a) Original Wafer -
contains several 
distributed quantities 

I~ 
(b) Geometry as returned 

from the etch-tool (no 
attribute information) 

(c) Final result of the merge operation - contains 
all attributes from the original wafer 

Figure 1: Merge operation after an etch-step 

terpolated value. Prior to interpolating, the grid-element 
in which the point is contained has to be found (point 
location). This task is achieved with a finite-quad-tree 
and finite-oct-tree [Binder and Selberherr, 1999] based data 
structure for two-dimensional and three-dimensional appli­
cations respectively. These tree based data-structures sup­
port the wafer-state server in (a) performing efficient point­
locations and (b) in identifying the grid elements in the re­
pair step for which an intersection calculation has to be car­
ried out. 

Modularity 

Due to the object-oriented approach (Fig. 2) the wafer-state 
server allows for easy integration of new file formats and 
meshing tools. It is worthwhile mentioning that the under­
lying file format and the (re-)gridding process are totally 
hidden from the user. The API contains no functions to di­
rectly manipulate a file or a grid. Instead, the user instanti­
ates the READER and GRIDDER object of his choice. This 
mechanism enables the developer of a simulator to easily 
choose among all supported file formats and gridding algo­
rithms. 

The use of several individual modules (READER, 

GRID DER, .. . ) as opposed to using only a single one 
(WAFER) may seem complicated at first sight, however, it 
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Figure 2: Basic block diagram of the wafer-state server 

introduces two major advantages: On the one hand details 
about the underlying file format and about the gridding 
algorithms are very well hidden to the wafer-state server's 
core functions. This ensures that reading support for 
another file-format can be added later by implementing 
a READER for this file-format. The same holds true for 
supporting various WRITERS and GRIDDERS. In general, 
any class that implements the interface to a certain module 
qualifies as a wafer-state module. On the other hand, 
settings specific to a certain implementation of a GRID DER 

(e.g. quality constraints) can directly be accessed by the 
simulator without the need for extra wafer-state functions. 

Currently READERS for PIP [Fasching et al., 1991], 
DFISE [ISE, 1997] and the newly developed wss 
file formats as well as the GRIDDERS DELINK 

[Fleischmann and Selberherr, 1996] (three dimensional) 
and TRIANGLE [Shewchuk, 1996] (two dimensional) are 
implemented. 

Protocol between application and wafer-state 
server 

The first step in the protocol (Fig. 3) from an applications' 
point of view is to instantiate appropriate READER and 
GRIDDER objects. The choice of what READER to instanti­
ate depends on the file-format in which the data are stored. 
Next, the actual wafer object is instantiated by supplying 
the READER and GRIDDER objects as well as a CONFIG ob­
ject to the wafer class. The CONFIG object holds informa­
tion about the different kinds of supported attributes and 
about the process step which is to be carried out. 

At this point the data in the wafer-state server are ready for 
the application to be requested. 

In the next protocol step the simulator requests the geome­
try and thereon stored attributes. Geometries and attributes 
are identified by names. These names are usually stored in 
a so called input-deck which is read by the simulator inde­
pendently from the wafer definition. This input-deck con­
tains several settings for the simulator, among other details, 
it identifies which regions are to be treated in the simula­
tion. 

All relevant data have now been transferred to the simulator. 
Once the simulator has finished its calculations the results 

361 

Application 

Instantiate 
Reader, Gridder 

and Config objects 

Instantiate 
Wafer Object 

Request Geometry 
and Attributes 

Perform 
Simulation 

Update 
Wafer 

Instantiate 
Writer, dump 

Wafer 

Wafer-State 
Server 

Read Data 
from File 

Perform merging 
Operation 

invalidate 
unhandled 
Attributes 

write Wafer to 
File 

Figure 3: Basic protocol between wafer-state server and 
application 

must be merged with the wafer-state. This so called update 
operation is performed in several individual steps. Each 
attribute (including the grid it is stored on) which has been 
requested must now be stored back onto the wafer. The 
wafer-state server then checks whether all attributes were 
received. Next the attributes which are invalidated by this 
process step are deleted. 

Now the repairing mechanism is invoked by the wafer-state 
server. The newly added geometry is clipped with the one 
stored on the wafer-state. Grid points are taken over from 
the old grid where possible. The regions are then meshed 
using the supplied GRID DER. All attributes which were not 
treated by the simulator and which are not configured to be 
invalidated are interpolated onto the new geometries. At­
tributes which lie on no longer existing regions (e.g. a seg­
ment was altered by the simulator) are discarded. 

After the repair operation the application instantiates the 
appropriate WRITER object and invokes the dump method 



of the wafer class to permanently store the simulation re­
sults on a file. 

Definition of process steps 

Each class of process step is configured in a database. The 
necessity for such a classification is best illustrated in an 
example. Take, for instance, a diffusion step: If the input 
wafer contains any stress components, the diffusion simu­
lator either must take them into account (use them in the 
simulation) and perform an update when writing back the 
results, or the wafer-state server has to invalidate these com­
ponents right after the diffusion step. All attributes which 
are modified either directly by the simulation or indirectly 
(e.g. invalidated stress component) must be listed. 

Diffus 
( 

}; 

Invalidate 
( 

inv = 
exc 

}; 

II* II; II quantities to invalidate. 
II qu . to exclude from invalidation 

read = 
write = 

"Boron, Arsenic"; 
11 Boron 1 Arsenic 11

; 

topography = false; 

Figure 4: Configuration of diffusion step 

Fig. 4 shows a possible configuration of a diffusion step. 
The keywords inv and exc specify quantities which are to 
be invalidated and excluded from invalidation respectively. 
The keyword read lists all attributes which must be treated 
by the simulator (here: Boron, Arsenic). Similarly 
write specifies all attributes which must be supplied in the 
update operation. An asterisk(*) can be used with inv and 
exc to denote all contained attributes, however, attributes 
in the read and write statements will overrule this no­
tion. This means that in our example the quantities Boron 
and Arsenic are not invalidated automatically. In case 
the wafer contains other attributes (e.g. stress) they will be 
removed upon update. The keyword topography is used 
to indicate whether the simulator changes the topography 
(true) in which case the wafer-state server must merge 
the new geometry with the existing one. 

The types of the various attributes are also defined in the 
database. Fig. 5 depicts the configuration of attributes of 
type Concentrations. 

Concentrations 
( 

}; 

interpolation ;;;;: 11 log 11
; 

unit "llcm"3"; 
members 11 Donors 1 Acceptors, Boron, 

Phosphorus, Arsenic, Indium, 
Antimony, Nitrogen, Oxygen"i 

data type 11 Scalar 11
; 

Figure 5: Configuration of attribute type Concentrations 

The definition of an attribute class consists of the unit 
( cm-3 ) the data type (scalar, vector, tensor), the name 
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(Concentrations), a list of all possible instances (Arsenic, 
Phosphorus, Boron, donors, acceptors, ... ), and the method 
of interpolation ( linear, logarithmic). 

TCAD ANALYSIS 

Performing TCAD analysis tasks [Strasser, 1999] 
like optim1zation of VLSI semiconductor devices 
[Plasun et al., 1997, Plasun et al., 1998] or inverse model­
ing of doping profiles [Strasser et al., 1999] often results 
in an enormous number of individual simulation runs. 
Frameworks like SIESTA or VISTA [Strasser et al., 1997] 
take care of aspects like describing an experiment and 
queuing jobs on a cluster of workstations. Another aspect 
of TCAD analysis is how the input-data for the simulation 
runs are generated. Thus, the need for a tool to generate a 
wafer based on a textual description arises. 

Input Wafer Creation 

The wafer-state services contain a tool (MKWAFER) to cre­
ate three-dimensional wafers suitable for a process or de­
vice simulation. This tool uses as input the input-deck lan­
guage as it is also used in our device simulator MJNIMOS­

NT [Simlinger et al., 1995, Binder et al., 1998], and in the 
configuration of the process steps and attribute types within 
the wafer-state server. 

#include "cube3d . ipd" 

Contact: -cube ( Scaling ( z 0.2; } } 

Geometry 
( 

Bulk: -contact ( Scaling { y = 5 . 0 ; } } 
Silicon: -cube 
{ 

Offset ( z = 0.2; } Scaling { y = 5.0; 

Drain: -contact 
{ 

Scaling { y = 1.0; } Offset ( z 1.2; } 

Gate: -contact 
{ 

Scaling { y = 3.0; } Offset ( y = 1.0; z 1 . 2; l 

Source: -contact 

Scaling ( y = 1.0; } Offset ( y = 4 . 0; z 1 . 2; } 

Figure 6: Simple device geometry description 

Fig. 6 shows the input-deck description to generate the 
schematic three-dimensional device structure depicted in 
Fig. 7. Note that, for sake of clarity only a wire-frame of 
the outline is displayed (no grid elements). For each section 
intheinput-deckfile(Bulk, Silicon, Drain, ... ) 
a corresponding segment is created. After having pro­
cessed the last section of the input-deck the program com­
putes the boundary representation of the whole geome­
try. The computation is achieved by first transferring all 



sets of coplanar faces into a two-dimensional representa­
tion. Second, a two-dimensional polygon clipping soft­
ware [Schutte, 1995] based on an algorithm of Kevin Weiler 
[Weiler, 1980] is used to determine the intersections. Fi­
nally the resulting two-dimensional faces are transferred 
back into three-dimensional space and added to the struc­
ture. The boundary representation is then passed on to 
a gridder (DELINK [Fleischmann and Selberherr, 1996]) in 
order to generate a mesh of the whole structure. The final 
device is saved to a file using the wss WRITER. 

Figure 7: Wire-frame of schematic three-dimensional 
device 

VISUALIZATION 

Another important aspect addressed in the wafer-state 
server is the visualization of attributes and geometries. 
Due to the abstraction of the file access we only need to 
support one certain file format (WSS). The chosen vi­
sualization environment is the Visualization Toolkit (VTK) 
[Schroeder et al., 1999]. To keep the visualization platform 
independent the JAVA programming language is used for 
both parsing the wss file and for the actual visualization 
(JAVA-VTK binding). The parser generator used (ANTLR 
[Schaps, 1999]) to generate the parser code is capable of 
producing JAVA and c++ parsers from the same language 
description, which relieves us from maintaining a separate 
JAVA and c++ version of the very same parser. The visual­
ization runs on Unix and Windows Platforms. 

IMPLEMENTATION 

The chosen programming language for the implementation 
of the wafer-state server is c++. This language facilitates 
a full object-oriented design as realized in the wafer-state 
servers' core components as well as an easy integration of 
existing programs (DELINK, TRIANGLE, DFISE-READER) 
thus ensuring good overall code reusability. During the im­
plementation of the wafer-state server care was taken to ad­
here to the ANSI c++ standard as close as possible. 
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CONCLUSION 

We present a TCAD class library to support the simula­
tion of semiconductor fabrication processes. A solution to 
the problem of data-exchange among various simulators is 
given. The strong protocol all simulators must adhere to 
allows for the simulation of a whole process flow. 

Due to the abstraction of the file-format and the gridding 
mechanisms an integration of tools of different vendors is 
possible without having access to the source codes. The 
wafer-state server presents the tool developer with a pow­
erful way of combining several independent modules. By 
instantiating the appropriate module the programmer has 
the flexibility of choosing among all available GRIDDERS, 
READERS, and WRITERS. 

Finally, the challenge of optimization and inverse modeling 
is met by providing tools to create input-data for device and 
process simulation and to visualize the simulated results. 

OUTLOOK 

The simulation of whole process flows is still a tedious 
task in modern TCAD simulation environments. Usually 
conversion tools have to be invoked in order to couple 
simulators for different process steps. A conversion 
from one data format to another usually introduces a 
certain amount of error (e.g. due to interpolating data 
onto a new grid). Therefore, wafer-state support for 
the MONTE CARLO ION IMPLANTATION simulator 
[Hassinger et al., 1999, Hassinger and Selberherr, 1999] 
as well as for the ETCHING simulator [Pyka et al., 1998, 
Pyka and Selberherr, 1998a, Pyka and Selberherr, 1998b] 
is under development. 
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