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Abstract 

We present a package based on finite elements for 
two- and three-dimensional analyses of interconnect 
structures. Two preprocessors allow a layer-based input 
of the simulation geometry and the specification of the 
boundary conditions. Additionally, a third preproces­
sor provide a fully unstructered three-dimensional grid 
generation. The tetrahedralization engine uses a mod­
ified advancing front Delaunay algorithm. The main 
module calculates beside the resistances, capacitances 
and inductances of interconnect structures the distribu­
tion of the electric potential, the temperature and the 
current density. It can be applied for optimization of in­
terconnect structures as well as for studies to verify the 
reliability of interconnects, as a transient-electric simu­
lation mode [1] is also available to calculate the capaci­
tive crosstalk and delay times. As application example 
a spiral inductor is analyzed. 

Keywords: inductance calculation, multiple integrals, 
finite element method 

1 Introduction 

With increasing packaging density and raising signal 
frequencies inductance effects in interconnect structures 
gain importance for the electrical behavior of circuits. 
The largest TCAD commercial vendors present a wide 
range of solutions for interconnect simulations. These 
tools (e.g. [2], [3]) have user-friendly and task-oriented 
interfaces, but still lack some of the features we have 
incorporated. Our package SAP (Smart Analysis Pro­
grams) offers the calculation of, e.g., partial self- and 
mutual-inductances [4] of interconnect structures. The 
inductance calculation is based on the computation of 
the magnetostatic field energy, whereby first the current 
distributions of the interconnect structures is calculated 
by means of the finite element method. 

2 Physical approach 

The influence of the skin effect is neglected, thus re­
sults are valid as long as the skin depth c5 = 1/ ~ 
is large compared to the diameters of the interconnect 
structures. µ denotes the magnetic permeability, I the 

416 

electrical conductivity and w the angular frequency. As 
example: c5 = 2.6 µm for copper at 1 GHz. 

The physical details on which our method is based 
and their numerically consequences are sketched in the 
following. Because of the universal validity of \7 · B = 0, 
we introduce the magnetic vector potential according to 
B = \7 x A. By choosing the Coulomb gauge \7 ·A = 0, 
we get 

A particular solution of (1) is 

A(r) = ..!!._ J J(r') dV' , 
471" lr-r'I 

V' 

(1) 

(2) 

where V' is the volume of all conductors. Instead of 
evaluating the magnetic vector potential in (2) and cal­
culating the energy of the magnetostatic field with 

W= ~! J(r)·A(r)dV, (3) 
v 

we compute the energy directly with the Neumann for­
mula [5]: 

W = ..!!._ J J J(r). J(r') dV'dV. (4) 
871" lr-r'I 

V V' 

Pursuing the energy concept leads to the 6-fold integral 

Lik = ..!!.__l_ / J Ji(r). Jk(r') dV'dV, (5) 
471" Iih Ir - r'I 

v. v~ 

where r, r' denotes locations and Vi respectively V£ the 
conductive segments, and Ii, h are the total currents 
through these segments. This equation is handled dif­
ferently, depending whether self-inductances (i = k) or 
mutual-inductances (i f. k) are calculated. Note, that 
(5) can be simplified by assuming a uniform current den­
sity in the conductors. This relates the inductances only 
to the geometry. However, this results in closed form 
expressions only for elementary shapes of geometries. 
Hence, for complex structures with tetrahedral elements 
the evaluation of the 6-fold integral has to be done nu­
merically. 



3 Implementation 

3.1 The Program Package SAP 

The program package SAP consists of 7 modules. 
Fig. 1 shows the main tools of the package SAP and 
displays the data-flow. The simulation is performed 
with the module STAP (Smart Thermal Analysis Pro­
grams [6]) which uses the finite element method to solve 
the Laplace equation for domains of conducting materi­
als. We obtain the potential distribution by solving the 
linear equation system with a preconditioned conjugate 
gradient solver. By applying Ohm's law to the deriva­
tive of the electrostatic potential the distribution of the 
electric current density is obtained. 

preprocessing and grid generation 

20 solid modeler and 
grid generator 

OBLIN~ 

fully unstructered 
JD grid generoror 

LAYGRID 

3D luyer based solid modeler 
and grid generator 

' • • . 
• 
! 
! 
I 
I 

':::::: :: ::::::-:-::::::::~:::::::::::::::::::::::::' 
I 
I 

' I 
I 
I 
I 
I 
I 
I 
I 

' 

Sl!:AP 

cupacironce extraction 
resis1w1cc extraction 

FEM solvers 

STA.P 

eJec11ical and thennal simulalor 
inductw1ce extraction 

' ' 

~---_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_TI-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-. 
' ' ' . i postprocessing and visualization 1 

1 FBMP©S'P/SV 

1 20130 visualization 
I 
I 
I o 

'··--·- ----··-- ----------------------------------- ------

Figure 1: The Smart Analysis Programs 

The layout of the interconnect structure can be im­
ported from CIF or GDSII files, or can be created inter-
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actively with a graphical layout editor [7]. The geometry 
can be defined either directly from the layout by specify­
ing layer thicknesses, or by a rigorous topography sim­
ulation [8], [9]. Furthermore, the program package in­
cludes three preprocessors, one for two-dimensional ap­
plications (CUTGRID [10]) the other for three-dimension­
al applications. The meshing strategy of DELINK [11] 
follows the concept of Delaunay methods. The prepro­
cessed surface description provides the initial front. The 
preprocessor LAYGRID [12] allows a layer-based input 
of the simulation geometry with boundary conditions 
of either Neumann or Dirichlet type specified on the 
borders of each simulation subdomain. We use tetra­
hedral grid elements with quadratic shape functions for 
our layer-based grid generation method. A global grid 
level refinement is also available as well as a possibility 
of refinement for an area of interest. 

Two postprocessors complete the program package, 
whereby the visualization tool SV is based on VTK [13]. 
The second postprocessor FEMPOST can be used to 
verify the grid quality, and for the visualization of se­
vere distributions (e.g. electric potential, temperature, 
current density). 

3.2 Mutual Inductances 

With the knowledge of the current density we can 
calculate the magnetostatic field energy to extract the 
partial inductances. Fig. 2 shows a simple test example 
and Table 1 the comparison of the results with values 
received by the formula of Grover [5] as well known ref­
erence . 

Figure 2: Potential distribution of two parallel conduc­
tors with circular cross section 

The mutual-inductance is calculated by rewriting the 
integrations as summations over each element of the con­
ductors i and k. With quadratic shape functions ten 
nodes per element are used for taking the average of the 
current density over the element. This is possible, be­
cause the term Ir - r'I is nearly constant if the element 





Vi respectively V/ denote the conductive segments of the 
ith electrical subsystem, ~' ry, ( are the local coordinates 
and detJ, detJ' are the transformation determinants, 
which are not a function of the local coordinates. The 
kernel of (6) is significant for the behavior of the inte­
gral equation, especially if the locations r, r' lay in the 
same tetrahedron it is challenging to compute the inte­
gral equation numerically. Thus two strategies are used: 
For the summations over all different tetrahedrons two 
formulae with certain integration points are used. Ac­
cording to [15] we utilize the integration formula of the 
form 

N J · · · J f (x1, · · · , Xn)dx1 · · · dxn= L Aif (Pi) (7) 
~ =1 

where Sn is an n-dimensional simplex. The Ai are con­
stants and the Pi = (Pil, Pi2, · · · , Pin) are points in an 
n-dimensional space. These points can be obtained from 
Table I [16] by permutation of the four coordinates 

1/1 = 0.0948 
1/2 = 1/1 

1/3 = 0.2412 
1/4 = 0.5690, 

e.g. Pi1 = (v1,v2,v3). The second formula applicable 
to this case is found in [15], formula IV, with the set 
of points (0,0,0; 1), resp. (1/3,1/3,1/3; 0). This nota­
tion denotes the set of points consisting of (0,0,0) and 
all permutations with 1. These two sets of points are 
weighted with two different, positive constants. For the 
interpolation of the current density inside each element 
the quadratic shape functions are used. 

For all summations over identical tetrahedrons an 
analytic integration in the third coordinate ( (, (') is 
done, before the two formulae of Stroud [14] for the 
unit triangle are utilized, namely formula Tn2-l, with 
the set (0.16,0.16; 0.66) and formula Tn3-6 with the set 
(0.109,0.232; 0.659), both of them weighted with posi­
tive constants. 

4 Conclusion 

We have presented an advanced method for com­
puting inductances, which was implemented into the 
package SAP. It allows simultaneous extraction of three­
dimensional effective parameters of VLSI circuits. 
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