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1 Introduction 

As a consequence of continuous scaling of MOS 
devices and the resulting high transverse electric 
fields at the interface, a reliable device simulation 
tool has to account for the quantized states in the 
channel. From a methodological point of view it 
seems favorable for the simulation of complete de­
vices to consider the quantization effects by one­
dimensional cuts perpendicular to the interface [l], 
or to introduce a quantum mechanical correction 
in classical device simulation. In this view we 
compare the results from an advanced solver for 
Schr6dinger's equation to a commonly used cor­
rection for the classical electron density. 

2 Formulation 

2.1 Schroedinger Equation 

For the description of the quantum mechanical 
charge in a two-dimensional electron gas it is com­
mon practice to separate the wave function '11(r) 
into a plane wave parallel to the interface and an 
envelope function 'If; ( z). Following the effective 
mass approach and including the nonparabolicity 
correction in the bulk dispersion relation we have 
to solve the one-dimensional Schrooinger equa­
tion. 

(± + v) 'lf;(z) - E'lf;(z) (1) 

The Operator V is defined by the confining poten­
tial, T is the operator of the kinetic energy and K 
is the wave vector of the plane wave parallel to the 
interface. 

i'+±a± = ;,,2 (K2 - ~_!:__~) (2) 
2 mu azmz az 

An analytical treatment of the operator T has to 
be performed in the eigenfunction space of the op­
erator 

~ K 2 a 1 a 
G=----- (3) 

m11 azmz az · 

If the material parameters mz and m11 are assumed 
to be independent of position and we neglect the 
penetration of the wave function in the oxide, a 
good basis for this calculations can be found in 
form of a sinus series expansion of the wave func­
tions. Nevertheless the method described in this 
paper is not restricted to this assumptions and can 
even be expanded to heterostructures. 

As a consequence the spectral representation a 
of the envelope function 'If; ( z) for a specific value 
of the magnitude K of the in-plane wave vector is 
then obtained as the solution of the matrix eigen­
value problem (T + V) a = En a, where T and V 
stand for matrices comprising the matrix elements 
of the operator for the kinetic and potential energy. 
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2.2 In-plane Dispersion Relation 

For any calculation involving the density of states 
an analytic in-plane dispersion relation is very use­
ful. Similar to the method used in [2] perturbation 
theory is used to derive an explicit expression for 
the wave function and the eigenenergies for each 
subband in terms of K. The operator of the kinetic 
energy is expanded in a Taylor series in K 2

, and 
only the terms 

To 

T1 = 1 T' (-1 8
2 

) 
mu mz 8z2 

l 

T2 = 1 T" (-1 8
2

) 
2m~ mz 8z2 (4) 

are retained to obtain a parameter set consisting of 
eigenenergy En, nonparabolicity O'.n and mass mn 
for each subband. Hence, we define the in-plane 
dispersion relation En for the n-th subband implic­
itly as 

1 

-Tf,nn (
To '°' JTi.,mnl

2 
) 2,nn + ~ E,0 _ E,0 

m:;i!:n n m 

(6) 

Beside the perturbation theory of second order, the 
above coefficients are calculated without further 
approximations and the given in-plane dispersion 
relation can be considered as a consistent inclusion 
of nonparabolicity for the transport simulation of a 
quasi two-dimensional electron gas. 

2.3 Self Consistent Iteration 

The potential is calculated by means of a finite dif­
ference discretization of Poisson's equation 

d d 
dz E dz <P(z) = e (p(z) - n(z) + C(z)) . (7) 

To solve equation (7) a Newton iteration is used 
and we therefore need an estimation for the deriva­
tive of the electron concentration with respect to 
the potential. In general the electron concentration 
can be expressed as 

n(z) = L 11/in(z, K)l 2 /(En) (8) 
n 

f(En) = 

Following the method given in [3] the derivative of 
the electron concentration with respect to the po­
tential energy can be found. After some calcula­
tion, where the deviation of on resulting from a 
potential change oV is calculated by perturbation 
theory, we finally get 

"""' 2 8f on= -e ~ l?fn(z, K)I BE oV 
n n 

(9) 

This result gives a surprisingly simple formula for 
the derivative of the squared wave function with re­
spect to the potential energy and removes the non­
local effect introduced by Schr&linger's equation. 

For the calculation of the electron concentra­
tion the energy domain is split into two parts at 
Etim which is chosen after the calculation of the 
eigenenergy levels. Only electrons with energies 
below this energy were treated in a quantum me­
chanical fashion. This procedure is useful to simu­
late electron accumulation that forms in the source 
and drain region of a MOS device. Figure 1 shows 
the contributions of both parts to the total electron 
concentration. 

3 Results 

For the calculation of realistic CV characteristics 
of MOSFETs the model was extended to cover a 
polygate in the simulation. Figure 2 and 3 show 
the resulting CV-Curves obtained for different cal­
culations of the electron concentration with and 
without polygate. In each case we used the clas­
sical equilibrium concentration for Fenni Dirac 
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Figure 1: Classical and quantum mechanical (QM) 
contribution to the electron concentration in an 
accumulation layer 

statistics (classical), a commonly used correction 
as proposed by Hansch in [4] (corrected) and the 
quantum mechanical method (QM). The doping of 
the polygate is 5 · 1019 cm-3 , the chosen t 0 x = 
2.5 nm and the channel doping 5 -1017 cm-3 . For 
both cases the corrected classical model results in 
a threshold voltage shift of approximately 50 m V 
compared to 70 m V in the quantum mechanical 
case. In Figure 4 and 5 we plot the relative error 
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Figure 2: CV-curves for metal gate 
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for the electron concentration that is found between 
the corrected classical formula and the quantum 
mechanical calculation. The error is plotted for 
different applied gate-bulk voltages and an oxide 
thickness of 2.5 nm. The doping of the retrograde 
well for the metal gate (Figure 4) changes from 
1017 crri-3 to 4 · 1017 cm-3 at a depth of 15 nm, 
whereas for the polygate (Figure 5) the two dop­
ing concentrations were chosen as 2 · 1017 cm-3 

and 6 · 1017 cm-3. For different doping levels and 
profiles we always find a situation similar to the 
given figures. The electron concentration is over­
estimated by up to 30 % to 70 % in the range of 
the first subband. For larger values of z the classi­
cal correction seems to miss the contribution of the 
higher subbands. In this region the error can reach 
some -300 %, which is quite larger than the typ­
ical error of less than 80 % found for larger oxide 
thickness and lower channel doping. Nevertheless 
in this region the electron concentration decreases 
rapidly and the effect on relevant physical quanti­
ties is thus quite small. 

4 Conclusion 

The presented SchrOdinger Poisson solver can be 
used to calculate both accumulation and inversion 
in a MOSFET device. Both stability and con-
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Figure 3: CV-curves for polygate 
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Figure 4: Difference in electron concentration for 
metal gate and retrograde well 

vergence speed have been improved by calculating 
the derivative of the electron concentration with re­
spect to the potential from the wave functions. 

The Hansch correction of the classical electron 
concentration has been compared to the self con­
sistent quantum mechanical calculation and was 
found to be also useful for the next generation of 
MOSFET devices. 
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