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A Monte Carlo method for small signal analysis of the Boltzmann equation
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An approach for analysis of the small signal response of carriers in semiconductors is presented. The
response to an electric field impulse is explained in terms of a relaxation process governed by a
Boltzmann equation. New Monte Carlo algorithms for the direct simulation of the impulse response
are presented and existing algorithms are discussed in a unified wag00@ American Institute

of Physics[S0021-897@0)06109-0

I. INTRODUCTION II. EXISTING MONTE CARLO ALGORITHMS
. . A. Stationary field description
Knowledge of the small signal response of the carrier y P _
system is important to forecast the performance of modern ~The steady-state algorithms are based on the theory of
semiconductor devices. A differential response functiorcorrelation functiong. The linear response to an impulse in

gives the relationship between a small harmonic perturbatioH1e electric field is d|rectlly S|mu|ateq. The partlclle Frajecto—
E,e“, which is superimposed on a stationary figlg, and ries evolve under the action of a stationary electric field. Due
thle in(,JIuced changes in the medk) of a physical qL;antity to linearity the calculated response functions are independent

: o of the amplitude of the impulse.
A(k). The complex amplitud¢A); of the oscillation atop A single-particle algorithm is proposed in Ref. 3. The

the stationary value(A)s is linear in E;, (A)i(®)  field vectorsE, and E; are assumed to be collinear. A re-
=Ka(w)E;. Accordingly, the differential response function sponse function is represented by the difference of the before
Ka is the gradient of the respongé), with respect toE;.  and after scattering averages:
Of particular interest is the tensor of the differential mobility
Ky=u(w) of the velocity respons€v),(w)=u(w)E;. B,/ 1 (7

Linked by the Fourier transform, analyses in the time<A>i(t)=KA(t)E1=E(ﬁf Ak(t"—1)]
and the frequency domains provide equivalent information. s '

Furthermore, the responéa),(t) to a perturbatioriE,(t) of M

a general time dependence can be calculated from knowledge XALk(t")]dt" — W; ALkG+D] ]
of the impulse respons@);,(t). Thus finding the response

of the carrier system to an electric field impulse is the main (1)

task of small signal analysis. . . ..
9 y HereT denotes the total simulation timejs the mean free-

Monte Czrlo simulations have .been utilized for moreflight time, M is the number of the scattering everttss the
than 2 decadedo explore the small signal response. Various;a of theith scattering event ank(t') is the wave vector

algorithms have been proposed in the literature, which asy; timet’. For example, ifA=v. is the velocity component
sume either a stationary or a transient electric field. In thiﬁaarallel toE,, thenK a(t) = ue (tl) is the longitudinal differ-
work an approach is presented, which allows us to develo@ntial mobilit !

. . o y. Apparently, investigation of the zero-field
novel Monte Carlo algorithms, and which also assists in u”'caseEszo is not possible with Eq(1).

derstanding some of the existing algorithms. The impulse  For g general angle between the small signal and station-

response is interpreted as the result of a relaxation processgyry fields the response function can be obtained by a direct
The basic concepts of existing Monte Carlo algorithmssimulation of the distribution function gradient over a single-

are summarized in Sec. Il. In Sec. Il a new approach igarticle trajectory’.

introduced in the framework of the Boltzmann equatiBik) Another stationary-field algorithm is based on the simu-

linearized with respect to the field. The related Monte Carldation of many particle trajectories. The algorithm, which

algorithms are described in Sec. IV. In Sec. V simulation@llows independent orientations of the small signal and sta-

results for Si and GaAs are presented and discussed. Sorfi@nary fields, has been applied to the calculation of the dif-

peculiarities of the response of carriers in GaAs at low temjerenual mobility tensor. A set of 2N particles is followed

eratures are explained in terms of the developed model under the action of a stationary field until the steady state is
P P P " reached. The set is then divided into equal halves, referred to

asP (plus andM (minusg sets. The components of the wave
vectors of setP are shifted byAk, along thea axis and

dauthor to whom correspondence should be addressed; electronic maithose of SeM by —Ak,. _The time Is reset and the S'_mU|a'
kosina@iue.tuwien.ac.at tion is continued. The differential mobility function is ob-
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tained as the difference between fReandM ensemble av-  changed abruptly t&.+ Esepand the time is reset. The step

erages response functiofA) g t) is given by the time evolution of
—q the ensemble average &f One drawback of this approach

Mpa(t)= m[(vﬁ)p(t)—(vﬁ),\ﬂ(t)], (2) s that the BE solved is not linear with respect to the pertur-

@ bationEsp. If @ small perturbation is assumed, the statistical

whereu 4 is the velocity component along thaxis. uncertainty in the results will be very large. The situation is

even aggravated by the fact that the derivative of the stochas-

tically obtained step response needs to be taken.
Deterministic methods are not affected by the problem

In the transient algorithms the stationary field and theof statistical uncertainty. The method reported in Ref. 6

small signal field are applied sequentially in time. The carriersolves the linearized BE, E@5), for the case of a step-like
system is initially in a steady state. At time zero the smallperturbation.

signal field is superimposed, so that the total field becomes
time dependent.
The following derivation is based on the transient BE.
To retain this equation linear in the distribution function Iil. THE PHYSICAL MODEL

many-body effects such as carrier—carrier sc.attering and de- The main advantage of the Monte Carlo method is that it
generacy effects are neglected. The governing equation fQfj\ys s to incorporate very complex physical models of
the linear small signal response is obtained by substituting o miconductor transpoftlt is thus desirable to develop

E(t)=Es+E (t) Monte Carlo algorithms that can simulate the impulse re-
sponse directly. For this purpose E§) is reformulated as
an integral equation. A phase space trajectérft’) =k

f(k,t)="fq(k)+fi(k,t) (3) — (g/h) E(t—t") is introduced, which solves the equation

into the transient BE and keeping only first order perturba-Of motion given by Newton’s law. Initial time and initial

. . S value aret andk, respectively, so thaK(t)=Kk. Since the

tion terms. The small signal fiel, (t) is some general func- . ! oo

. ; . . . left hand side of Eq(5) represents a total time derivative the

tion of time. To zero order the stationary BE is obtained : . ; X
equation can be formally written as an ordinary first order

q

, , differential equation @/dt) f(t)=—N(t)f(t)+g(t). Here
%Es'st(k):Q[fs(k)]:f Stk k) fs(k)dk =X (K)fs(k).  the outscattering termf has been separated from the opera-
(4)  tor Q. The remainder of the right hand side of H§) is
included ing. The differential equation has the following
solution:

B. Transient field description

and

HereS(k’,k)dk denotes the scattering rate from a state with
wave vector k' to states in dk around k, \(k)
=[S(k,k’)dk’ is the total scattering rate, ang is the ¢ . t
charge of a particle. The distribution functiég is assumed f(t):f g(t))e ferWdGY +f(ty)e [, Ny, 7
to be normalized to unityf f(k)dk=1. to

The first order equation is linear in the perturbatien
and contains the solution of E¢4) on the right hand side

dfi(k,t) g _ q
o T Es Vi) =Qf1 (k)] = B (1) - Vig(k). ¢
5 fl(k,t):fo_dt'f dk’f,(k",t) Sk’ K(t")]

Provided that the norm df=f¢+f, is conservedSec. IlI), . ¢ q
the statistical average can be expressed as Xe_ft’)\[K(y)]dy—J ZEu(t')
0_

(AY()=(A)st(A)1(t)

where f(tg) is the initial condition at timety. This result
allows us to rewrite Eq(5) as an integral equation

X (VE[K (1) ]e FeM KMIdygyr ®)

=fA(k)fS(k)dk+f A(k)fq(k,t)dk. (6)
Here we assumed that the small signal fiEldt) is zero at

In the literature the transient BE with an impulse addednegative time, so that the initial condition[K(tg),tq]=0
to a stationary electric field has neither been solved by théor t,<<0. The difference between E¢8) and the integral
common Monte Carlo method, presumably since the latteform of the BE(e.qg., Refs. 8 and)dies in the free term, i.e.,
relies on the physical transparency of the model, nor by dethe last term on the right hand side of E§). In the BE the
terministic methods. Instead, it is common practice to confree termF is determined by the initial distributiofig(k)
sider a step-like perturbatioB, (t) = Eg/(t). The impulse =0 of the ensemble
responseA)imp(t) is obtained by taking the time derivative t
of the step respong@\ ) {t). To this physically transparent F(k)=fo[K(0)]e JorMKMIdy, 9)
case the ensemble Monte Ca(EEMC) method is applicable.
An ensemble of particles is simulated until a steady state i8Ve now consider Eq(8) for the case of an impulsg,(t)
reached under the action dig. After that the field is = §8(t)Ej,
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t , L , ) tions, the semiconductor, and the stationary field. It has a
fim(kvt):JOdt fdk fim(K",t") K", K(t")] typical values from a few ps to a few hundreds of ps, as
shown in Sec. V.

x e~ S MKWy L G (K (0))e TAKMIaY (1)
IV. THE MONTE CARLO METHOD

q
G(K) =~ 7 Em Vis(k). (11) Due to the freedom in treating the te@and in choos-

ing a decompositiolc=G"—G~ one can devise a variety
The free term of Eq(10) is formally equivalent to Eq(9). of Monte Carlo algorithms. Once the initial conditios"
The only difference is tha® also takes on negative values, are provided, the relaxation process of the two subensembles
and can therefore not be interpreted as an initial distributioncan be simulated with the common EMC method.
However, without loss of generalitg can be expressed as a

. o . L A. The finite difference approximation
difference of two positive functionsG=G"—G~, giving PP

rise to a decomposition of E@10) into two integral equa- An obvious possibility is to approximatéf by a finite

tions difference quotient. The central difference quotient gives
. t . q fo(k+Akq)—fo(k—Aky)
fi;q(k,t)=fodt’f dk’ £ (k' 1)k K(t)] G(k)=— 2| Ep| 218K, : (16)

¢ ‘ The vectorsAk, andE;,, have to be collinear, whilg;,, and
xe TN+ G*(K(0))e /MKW (12) £ may have arbitrary directions. The two terms provide the
initial distribution functionsG= of the P andM ensembles.
The drawback of the method is that the solution depends on
Ak, . Choosing a small magnitude to stay in the linear region
f.i(k,00=G*(k)=0. (13 will result in very similar distributionsG* and hence in a

) _ _ _ ) large statistical uncertainty in the result due the subtraction
Equation(10) is obtained by subtracting the two equations. It of nearly equal averages.

holds thatf(k,t) = f.-(k,t) — fi- (K, 1).
The impulse response distribution functiép, has the 1. Algorithm 1
following property. From Eq(11) it results that/G(k)dk The first task of the simulation is to provide a sefbk
=0, such that the norms of the two functiofj are equal at  \4),es with the distributiorig(k). The EMC method can be
t=0. The BE conserves the normalization during the evoluygeq tg evolve an ensemblefparticles until a steady state
tlon,' provided that no generation or recombination processes reached. Then a displacement of the stitézsy Ak, (by
are included. Hencgfn(k,t)dk=0 for all t. It follows that  _ A ) gives the initial points for the trajectories of the
Jt(k,ydk=[f(k)dk=1, which is the prerequisite for EQ. (theM) ensembles at=0. The impulse response function of
(6) to hold. ) _ . _ a quantity A is given by Egq. (14), multiplied by
The two equations, Eq12), are linear in the amplitude —q|E;|/(2#] Ak,|). This algorithm corresponds essentially

Eim, and so is the small signal respong®)in(t). Due t0 4 the one proposed by Pricésee Sec. Nwith the extension
linearity, the response to a field with general time depeny5¢ arbitrary quantitied are treated.

dence can be obtained from the impulse response by convo-
lution.

In this way we can assign to the impulse response, Ecg- Algorithm 2
(5), the following physical model. The impulse in the electric If a trajectory K(t) evolving in a stationary field is
field att=0 creates instantaneously an initial conditi®n  sampled at discrete times=jAt, the valuesk;=K(t;) will
corresponding to two carrier ensembRs®ndM, which are  be distributed withf. This result follows from the equiva-
initially distributed according t&G* andG~. The two en-  lence of the ensemble and time averages in the steady state.
sembles, which contain the same numbers of particlegn this way a single-particle Monte Carlo algorithm can be
evolve in time under the action of the stationary field. Theused to generate the initial states for an EMC algorithm. At
impulse responseA)in(t) is given by the difference of the timet; the evolution of the single-particle trajectory is inter-
two ensemble mean values Af rupted. The current state is then used to determine the
starting point of oné® trajectory ak+ Ak, and that of one

Equation(12) represents two Boltzmann equations with the
initial conditions

(MmO =(A)p()=(Am(1). (14 M trajectory atk—Ak;. The P andM trajectories are then
For long evolution times the two ensembles relax to the saméollowed for a timeT, and the contribution to the response
steady state characterized by the distributign function is recorded. After that the single particle trajectory

is continued for anotheAt, and the procedure is repeated.
fim(k,t—o)=Cfy(k), (15 The main steps are:

where C=[G*(k)dk. Consequently, an impulse response(1) Follow a main trajectory foAt and determine the stake
vanishes for large tim&A);,(t— ) =0. For practical appli- in the endpoint.

cations the relaxation process has to be followed for somé2) Start a trajectoryk *(t) from k+ Ak, and another tra-
characteristic timél, which depends on the physical condi- jectory K™ (t) from k—AKk;.
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(3) Follow both trajectories for tim&. At equidistant times 25 | |
t; addA[K " (t;)] to a histogramy;” andA[K ~(t;)] to a IaN
histogramy; .

(4) Continue with the first step untM k points have been
generated.

(5) Calculate the time discrete impulse response as,
(Aim(t) = (—AEm/2NAAKy) (1 —1;).

| —— 5kV/iecm
X ——-10kViem | |
i N 20 kV/iem

\ —-— 40kV/iem —|

-
(4]
E

(3]

diff. energy (10" eVem/Vs)
s/

B. The longitudinal perturbation

In the case that the stationary and the small signal field
vectors are collinear, the stationary BE, E4), can be used _5

to express the distribution function gradient as 0 1 2 3
time (ps)

E.
G(k)= g )\(k)fs(k)—j fo(k")S(k’,k)ydk" |, (17 FIG. 1. Impulse response of the differential energy.
S

vyhich gives another_ natural splitting into twq positive func- where(\)s= [ f(k)A(k)dk is introduced in the denomina-
tions. In the following we adopt the notation that termsors to ensure normalizatiof ) is the inverse of the mean
which are employed in the respective algorithm as a probfree-flight time, which can be seen immediately when evalu-

ability density are enclosed in curly brackets. ating the average by means of the before-scattering method.
_ The probability density\ fs/{\)s represents the normalized
1. Algorithm 3 distribution function of the before-scattering states. Conse-
From Eq.(17) we choose the initial distributions as ~ duently, the product of the two densities in Egl) repre-
£ sents the normalized distribution function of the after-
GHK)= ="\ (K f(k ' 18 scattering states. Compared with Algonth3 a more
(k) Es (){fso} (18 compact algorithm can be formulated.

E

o im S(k,k") (1) Follow a main trajectory for one free flight, store the
G (k ):E_sf {fs(k)} N(K) A(k)dk. (19 before-scattering state ik,, and realize a scattering
event fromk, to k, .

Both terms contairfg asa pr_obabi_lity den§ity. Statdxsca_n_ (2) Start a trajectonk * (t) from k,, and another trajectory
be generated from this density as in Algorithm 2. In addition, K~ (t) from k,.

o 9% A A o
in G~ the density\ ~*S appears, which is the conditional (3) Fojlow both trajectories for tim@. At equidistant times
probability density for an after-scattering statée provided t; addA[K * (t,)] to a histogramv* andA[K ~(t,)] to a
that the initial statek has been selected. Note that normal- . ' ' '

Jet Hie i T N histogramy; .

ization is ensured, sinceA (k) "S(k,k")dk’=1 forallk. (4 continue with the first step untM k points have been
The above expressions suggest the following algorithm: generated.

(1) Follow a main trajectory foAt. Determine the statein (5 Calculate the time discr+ete _impulse response  as
the endpoint and the weight(k). (A)im(t) = (Eim{\)s/NEg) (v — vy ).

(2) Realize a scattering event froknto k. ) i .
(3) Start a trajectoryK ' (t) from k and another trajectory The mean free-flight time must be additionally calculated

K~ (t) from k’. during the simulation. Algorithm 4 shows in a transparent
(4) Follow both trajectories for tim@. At equidistant times
t; add A(K)A[K'(t)] to a histogram v;” and 6
M(K)ALK ™ (t;)] to a histogramy; . | |
(5) Continue with the first step untN k points have been _ fok:c;’:m ]
generated. o A 20 kViem [
(6) Calculate the time discrete impulse response as«% —-— 40kV/cm
(A)im(ti) = (Ein/NEy) (Vi+_Vi_)- ,v_:o ‘,\\
2 2
. z |\
2. Algorithm 4 § \“‘\\
We reformulate the initial distributions as follows: g 0 \u..__;,;.—»—
©
E; Nk)fg(k)
G (k)= §<)\>S[ﬁ : (20 -
s s 0 1 2 3
E; N(K) Fo(K)) [ S(kk! time (ps)
G—<k'>=—'”‘<x>sf WIS g (2 o
Es (N N(Kk) FIG. 2. Impulse response of the differential velocity.
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FIG. 3. Real part of the differential velocity spectra. FIG. 5. Impulse response of the normalized differential energy and velocity.

way the evolution of thé® andM ensembles, as well as the Analytical band models are adopted for both Si and
generation of the initial states for those ensembles. GaAs, accounting for isotropic and nonparabolic conduction
The algorithm suggested in Ref. 3, leading to Et),  band valleys. For Si six equivaleKtvalleys and for GaAs a
appears to be a single particle equivalent to the describeidiree-valley model are included. The phonon scattering rates
algorithms. A trajectoryK ~, which starts from an after- used can be found, for example, in Ref. 7. Overlap integrals
scattering state in Algorithm 4, can immediately be mappedire neglected, and acoustic deformation potential scattering
onto the main trajectory and need not be calculated indeperis assumed elastic.
dently. This change gives the second term on the right hand Figures 1 and 2 show the time response of the differen-
side of Eq.(1). The time integral in Eq(1) represents a time tial electron energy(e);,/JE;, and the longitudinal differ-
average that is equivalent to tReensemble average used in ential velocityd(v )i, /JE;, for Si at different field strengths.
Algorithm 3. The present derivation shows that in practicalAs expected from the discussion of the mofdale Eq(14)],
simulations the averaging interval 1) in Eq. (1) should the response characteristics tend to zero when the two en-
be replaced by a constant valli&, which is large enough to sembles approach the steady state. The characteristic time
capture the whole relaxation processTIf is larger than a associated with the relaxation process depicted in Fig. 2,
few times the related relaxation time there will no more in-namely the momentum relaxation time, clearly decreases
formation to be gained and the statistical uncertainty of thevith increasing field. This effect is anticipated since the elec-

result will even increase. tron mobility w=er,,/m* is known to show such a field
reduction. Generally, within a few picoseconds the steady
V. RESULTS state is reached by the two ensembles.

Figures 3 and 4 show the frequency dependence of the
The following simulation results are obtained by usingdifferential velocity obtained by a Fourier transform of the
Algorithm 4. Typical conditions for electrons in Si are con- impulse response. The low frequency limits of the imaginary
sidered as well as a special carrier dynamics feature, thgarts tend to zero, while the real parts tend to the correspond-
transit time resonand@ TR) effect"*°for electrons in GaAs.  ing differential mobility values)(v)/JEs.
While Si is simulated at 300 K, for GaAs the temperature is For electrons in GaAs the assumed physical conditions
reduced to 10 K to make the TTR effect clearly visible.  areT=10K andE;=120V/cm. In this case all electrons are

400 | 17000
| | —— 5kViem VAN
- ——- 10 kV/cm 2 15000 A
2 || — 20 kV/ecm A g /
5 200 —-— 40 kV/cm / ,'.:”/ % 13000
£ [/ 3 \ \
2 17 =]
s //.:-"/ g 11000 /\
°>’ /5'/." ;5). \ / \ /
£ 0 ————— A @ 9000 S
S T~ ""'u-.,_______//'
E T~ ““":7-/ g \ /
S g 7000 .
-200
10° 10" 10" 10” 5000 5 20 40 60 80
frequency (5'1) time (ps)

FIG. 4. Imaginary part of the differential velocity spectra. FIG. 6. Step response of the differential velocity.
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0 10755 5
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5 0 20 20 80 80 . 50 go 76550 energy (eV)
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FIG. 7. Step response of the differential energy. FIG. 9. Evolution of the distribution function of the ensemble.

in theI" valley. In Fig. 5 the differential velocity and differ- o
ential energy are presented normalized to the respective infi€ld toward the phonon threshold. TReensemble is inten-
tial values. The impulse response characteristics reveal $vely transferred within less than 2 ps back to low energies
damped oscillation. The pattern is pronounced also in th@nd is then accelerated by the electric field.
step response functions in Figs. 6 and 7, obtained by time ~Figures 9 and 10 show the individual evolution of the
integration of the corresponding impulse response functiondW0 ensembles. The initial peaks broaden toward the steady
The pattern appears to be independent of the concrete physitate, which is reached at about 80 ps.
cal quantity, which leads to the conclusion that a peculiarity ~ The M ensemble undergoes an evolution similar to that
of the carrier dynamics is responsible for the behavior. Th@f the P ensemble, however with some delay. This is dem-
chosen physical conditions determine a peculiar behavior gfnstrated in Fig. 8 where the two distribution functions are
the electrons already in the steady state. Since acoustic ph8foWn att=8 ps. The time delay in the evolution is respon-
non scattering is lowbelow one scattering for 100 pghe  Sible for the oscillation iA)in(t). If the two distributions
electrons are accelerated by the field until they reach enefVere equivalent at a certain time, they would oscillate syn-
gies above the polar-optical phonon ener@036 e\j.  chronously for later times and no oscillation ) im(t)
Above this energy the scattering rate for phonon emissiofvould show up _
increases rapidly, so that the electrons penetrating the pho- For the condition considered each electron undergoes a
non threshold are intensively scattered back to energies clof@¢rmanent cycle in the energy domain. The TTR effect oc-
to zero. curs since the two ensembles collectively follow this single
The effect can most conveniently be discussed in thearticle behavior during a certain transition time.
energy domain. The field impulse instantaneously creates a
perturbation, represented by ensemieandM with initial
distributionsG* and G, respectively. Figure 8 shows the
distributions as two peaks, located closeete 0 and above
the phonon threshold. Thd ensemble is accelerated by the

VI. CONCLUSION

A linearized form of the transient BE is used to investi-
gate the small signal response of carriers in semiconductors.
Assuming an impulse-like perturbation in the electric field

1.5
Ops

3
=
= 1.0
K]
]
c
2
= P
o
B 05|
B ‘ 8ps 8ps 0.05
R R P 0.04

0.0 —

0 0.01 0.02 0.03 0.04 0.05
energy (eV) energy (eV)

time (ps)
FIG. 8. Energy distribution of thé® and M ensembles at=0 andt
=8 ps. FIG. 10. Evolution of the distribution function of thd ensemble.
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