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A Monte Carlo method for small signal analysis of the Boltzmann equation
H. Kosina,a) M. Nedjalkov, and S. Selberherr
Institute for Microelectronics, TU-Vienna, Gusshausstrasse 27–29, A-1040 Vienna, Austria

~Received 27 October 1999; accepted for publication 31 January 2000!

An approach for analysis of the small signal response of carriers in semiconductors is presented. The
response to an electric field impulse is explained in terms of a relaxation process governed by a
Boltzmann equation. New Monte Carlo algorithms for the direct simulation of the impulse response
are presented and existing algorithms are discussed in a unified way. ©2000 American Institute
of Physics.@S0021-8979~00!06109-0#
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I. INTRODUCTION

Knowledge of the small signal response of the carr
system is important to forecast the performance of mod
semiconductor devices. A differential response funct
gives the relationship between a small harmonic perturba
E1eivt, which is superimposed on a stationary fieldEs , and
the induced changes in the mean^A& of a physical quantity
A(k). The complex amplitudêA&1 of the oscillation atop
the stationary value^A&s is linear in E1 , ^A&1(v)
5KA(v)E1 . Accordingly, the differential response functio
KA is the gradient of the response^A&1 with respect toE1 .
Of particular interest is the tensor of the differential mobil
Kv5m(v) of the velocity response:̂v&1(v)5m(v)E1 .

Linked by the Fourier transform, analyses in the tim
and the frequency domains provide equivalent informati
Furthermore, the response^A&1(t) to a perturbationE1(t) of
a general time dependence can be calculated from knowle
of the impulse responsêA& im(t). Thus finding the respons
of the carrier system to an electric field impulse is the m
task of small signal analysis.

Monte Carlo simulations have been utilized for mo
than 2 decades1 to explore the small signal response. Vario
algorithms have been proposed in the literature, which
sume either a stationary or a transient electric field. In t
work an approach is presented, which allows us to deve
novel Monte Carlo algorithms, and which also assists in
derstanding some of the existing algorithms. The impu
response is interpreted as the result of a relaxation proc

The basic concepts of existing Monte Carlo algorith
are summarized in Sec. II. In Sec. III a new approach
introduced in the framework of the Boltzmann equation~BE!
linearized with respect to the field. The related Monte Ca
algorithms are described in Sec. IV. In Sec. V simulati
results for Si and GaAs are presented and discussed. S
peculiarities of the response of carriers in GaAs at low te
peratures are explained in terms of the developed mode

a!Author to whom correspondence should be addressed; electronic
kosina@iue.tuwien.ac.at
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II. EXISTING MONTE CARLO ALGORITHMS

A. Stationary field description

The steady-state algorithms are based on the theor
correlation functions.2 The linear response to an impulse
the electric field is directly simulated. The particle traject
ries evolve under the action of a stationary electric field. D
to linearity the calculated response functions are indepen
of the amplitude of the impulse.

A single-particle algorithm is proposed in Ref. 3. Th
field vectorsE1 and Es are assumed to be collinear. A re
sponse function is represented by the difference of the be
and after scattering averages:

^A& i~ t !5KA~ t !E15
uE1u
uEsu

S 1

T2t Et

T

l@k~ t82t !#

3A@k~ t8!#dt82
1

tM (
i 51

M

A@k~ t i1t !# D .

~1!

HereT denotes the total simulation time,t is the mean free-
flight time, M is the number of the scattering events,t i is the
time of thei th scattering event andk(t8) is the wave vector
at timet8. For example, ifA5vE1

is the velocity componen
parallel toE1 , thenKA(t)5mE1

(t) is the longitudinal differ-
ential mobility. Apparently, investigation of the zero-fie
caseEs50 is not possible with Eq.~1!.

For a general angle between the small signal and stat
ary fields the response function can be obtained by a di
simulation of the distribution function gradient over a sing
particle trajectory.4

Another stationary-field algorithm is based on the sim
lation of many particle trajectories. The algorithm, whic
allows independent orientations of the small signal and
tionary fields, has been applied to the calculation of the d
ferential mobility tensor.1 A set of 2N particles is followed
under the action of a stationary field until the steady stat
reached. The set is then divided into equal halves, referre
asP ~plus! andM ~minus! sets. The components of the wav
vectors of setP are shifted byDka along thea axis and
those of setM by 2Dka . The time is reset and the simula
tion is continued. The differential mobility function is ob
il:
8 © 2000 American Institute of Physics
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tained as the difference between theP andM ensemble av-
erages

mba~ t !5
2q

2\Dka
@^vb&P~ t !2^vb&M~ t !#, ~2!

wherevb is the velocity component along theb axis.

B. Transient field description

In the transient algorithms the stationary field and
small signal field are applied sequentially in time. The carr
system is initially in a steady state. At time zero the sm
signal field is superimposed, so that the total field becom
time dependent.

The following derivation is based on the transient B
To retain this equation linear in the distribution functio
many-body effects such as carrier–carrier scattering and
generacy effects are neglected. The governing equation
the linear small signal response is obtained by substituti

E~ t !5Es1E1~ t !

and

f ~k,t !5 f s~k!1 f 1~k,t ! ~3!

into the transient BE and keeping only first order pertur
tion terms. The small signal fieldE1(t) is some general func
tion of time. To zero order the stationary BE is obtained

q

\
Es•¹ f s~k!5Q@ f s~k!#5E S~k8,k! f s~k8!dk2l~k! f s~k!.

~4!

HereS(k8,k)dk denotes the scattering rate from a state w
wave vector k8 to states in dk around k, l(k)
5*S(k,k8)dk8 is the total scattering rate, andq is the
charge of a particle. The distribution functionf s is assumed
to be normalized to unity,* f s(k)dk51.

The first order equation is linear in the perturbationE1

and contains the solution of Eq.~4! on the right hand side

] f 1~k,t !

]t
1

q

\
Es•¹ f 1~k,t !5Q@ f 1~k,t !#2

q

\
E1~ t !•¹ f s~k!.

~5!

Provided that the norm off 5 f s1 f 1 is conserved~Sec. III!,
the statistical average can be expressed as

^A&~ t !5^A&s1^A&1~ t !

5E A~k! f s~k!dk1E A~k! f 1~k,t !dk. ~6!

In the literature the transient BE with an impulse add
to a stationary electric field has neither been solved by
common Monte Carlo method, presumably since the la
relies on the physical transparency of the model, nor by
terministic methods. Instead, it is common practice to c
sider a step-like perturbationE1(t)5Estepu(t). The impulse
responsêA& imp(t) is obtained by taking the time derivativ
of the step responsêA&step(t). To this physically transparen
case the ensemble Monte Carlo~EMC! method is applicable
An ensemble of particles is simulated until a steady stat
reached under the action ofEs . After that the field is
e
r
ll
s

.
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-

d
e
r

e-
-

is

changed abruptly toEs1Estepand the time is reset. The ste
response function̂A&step(t) is given by the time evolution of
the ensemble average ofA. One drawback of this approac
is that the BE solved is not linear with respect to the pert
bationEstep. If a small perturbation is assumed, the statisti
uncertainty in the results will be very large. The situation
even aggravated by the fact that the derivative of the stoc
tically obtained step response needs to be taken.5

Deterministic methods are not affected by the probl
of statistical uncertainty. The method reported in Ref.
solves the linearized BE, Eq.~5!, for the case of a step-like
perturbation.

III. THE PHYSICAL MODEL

The main advantage of the Monte Carlo method is tha
allows us to incorporate very complex physical models
semiconductor transport.7 It is thus desirable to develop
Monte Carlo algorithms that can simulate the impulse
sponse directly. For this purpose Eq.~5! is reformulated as
an integral equation. A phase space trajectoryK (t8)5k
2 (q/\) Es(t2t8) is introduced, which solves the equatio
of motion given by Newton’s law. Initial time and initia
value aret and k, respectively, so thatK (t)5k. Since the
left hand side of Eq.~5! represents a total time derivative th
equation can be formally written as an ordinary first ord
differential equation (d/dt) f (t)52l(t) f (t)1g(t). Here
the outscattering terml f has been separated from the ope
tor Q. The remainder of the right hand side of Eq.~5! is
included in g. The differential equation has the followin
solution:

f ~ t !5E
t0

t

g~ t8!e2*
t8
t

l(y)dydt81 f ~ t0!e2* t0

t l(y)dy, ~7!

where f (t0) is the initial condition at timet0 . This result
allows us to rewrite Eq.~5! as an integral equation

f 1~k,t !5E
02

t

dt8E dk8 f 1~k8,t8!S@k8,K ~ t8!#

3e2*
t8
t

l[K (y)]dy2E
02

t q

\
E1~ t8!

3~¹ f s!@K ~ t8!#e2*
t8
t

l[K (y)]dydt8. ~8!

Here we assumed that the small signal fieldE1(t) is zero at
negative time, so that the initial conditionf 1@K (t0),t0#50
for t0,0. The difference between Eq.~8! and the integral
form of the BE~e.g., Refs. 8 and 9! lies in the free term, i.e.,
the last term on the right hand side of Eq.~8!. In the BE the
free termF is determined by the initial distributionf 0(k)
>0 of the ensemble

F~k!5 f 0@K ~0!#e2*0
t l[K (y)]dy. ~9!

We now consider Eq.~8! for the case of an impulseE1(t)
5d(t)Eim
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f im~k,t !5E
0

t

dt8E dk8 f im~k8,t8!S@k8,K ~ t8!#

3e2*
t8
t

l[K (y)]dy1G~K ~0!!e2*0
t l[K (y)]dy, ~10!

G~k!52
q

\
Eim•¹ f s~k!. ~11!

The free term of Eq.~10! is formally equivalent to Eq.~9!.
The only difference is thatG also takes on negative value
and can therefore not be interpreted as an initial distribut
However, without loss of generalityG can be expressed as
difference of two positive functions,G5G12G2, giving
rise to a decomposition of Eq.~10! into two integral equa-
tions

f im
6 ~k,t !5E

0

t

dt8E dk8 f im
6 ~k8,t8!S@k8,K ~ t8!#

3e2*
t8
t

l[K (y)]dy1G6~K ~0!!e2*0
t l[K (y)]dy. ~12!

Equation~12! represents two Boltzmann equations with t
initial conditions

f im
6 ~k,0!5G6~k!>0. ~13!

Equation~10! is obtained by subtracting the two equations
holds thatf im(k,t)5 f im

1 (k,t)2 f im
2 (k,t).

The impulse response distribution functionf im has the
following property. From Eq.~11! it results that*G(k)dk
50, such that the norms of the two functionsf im

6 are equal at
t50. The BE conserves the normalization during the evo
tion, provided that no generation or recombination proces
are included. Hence* f im(k,t)dk50 for all t. It follows that
* f (k,t)dk5* f s(k)dk51, which is the prerequisite for Eq
~6! to hold.

The two equations, Eq.~12!, are linear in the amplitude
Eim , and so is the small signal response^A& im(t). Due to
linearity, the response to a field with general time dep
dence can be obtained from the impulse response by co
lution.

In this way we can assign to the impulse response,
~5!, the following physical model. The impulse in the elect
field at t50 creates instantaneously an initial conditionG,
corresponding to two carrier ensemblesP andM , which are
initially distributed according toG1 and G2. The two en-
sembles, which contain the same numbers of partic
evolve in time under the action of the stationary field. T
impulse responsêA& im(t) is given by the difference of the
two ensemble mean values ofA

^A& im~ t !5^A&P~ t !2^A&M~ t !. ~14!

For long evolution times the two ensembles relax to the sa
steady state characterized by the distributionf s ,

f im
6 ~k,t→`!5C fs~k!, ~15!

where C5*G6(k)dk. Consequently, an impulse respon
vanishes for large time,^A& im(t→`)50. For practical appli-
cations the relaxation process has to be followed for so
characteristic timeT, which depends on the physical cond
n.

t

-
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-
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tions, the semiconductor, and the stationary field. It ha
typical values from a few ps to a few hundreds of ps,
shown in Sec. V.

IV. THE MONTE CARLO METHOD

Due to the freedom in treating the termG and in choos-
ing a decompositionG5G12G2 one can devise a variet
of Monte Carlo algorithms. Once the initial conditionsG6

are provided, the relaxation process of the two subensem
can be simulated with the common EMC method.

A. The finite difference approximation

An obvious possibility is to approximate¹ f s by a finite
difference quotient. The central difference quotient gives

G~k!.2
q

\
uEimuS f s~k1Dk1!2 f s~k2Dk1!

2uDk1u D . ~16!

The vectorsDk1 andEim have to be collinear, whileEim and
Es may have arbitrary directions. The two terms provide t
initial distribution functionsG6 of the P andM ensembles.
The drawback of the method is that the solution depends
Dk1 . Choosing a small magnitude to stay in the linear reg
will result in very similar distributionsG6 and hence in a
large statistical uncertainty in the result due the subtrac
of nearly equal averages.

1. Algorithm 1

The first task of the simulation is to provide a set ofN k
values with the distributionf s(k). The EMC method can be
used to evolve an ensemble ofN particles until a steady stat
is reached. Then a displacement of the statesk by Dk1 ~by
2Dk1! gives the initial points for the trajectories of theP
~theM ! ensembles att50. The impulse response function o
a quantity A is given by Eq. ~14!, multiplied by
2quEimu/(2\uDk1u). This algorithm corresponds essential
to the one proposed by Price1 ~see Sec. II! with the extension
that arbitrary quantitiesA are treated.

2. Algorithm 2

If a trajectory K (t) evolving in a stationary field is
sampled at discrete timest j5 j Dt, the valuesk j5K (t j ) will
be distributed withf s . This result follows from the equiva
lence of the ensemble and time averages in the steady s
In this way a single-particle Monte Carlo algorithm can
used to generate the initial states for an EMC algorithm.
time t j the evolution of the single-particle trajectory is inte
rupted. The current statek is then used to determine th
starting point of oneP trajectory ask1Dk1 and that of one
M trajectory atk2Dk1 . The P andM trajectories are then
followed for a timeT, and the contribution to the respons
function is recorded. After that the single particle trajecto
is continued for anotherDt, and the procedure is repeate
The main steps are:

~1! Follow a main trajectory forDt and determine the statek
in the endpoint.

~2! Start a trajectoryK1(t) from k1Dk1 and another tra-
jectory K2(t) from k2Dk1 .
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~3! Follow both trajectories for timeT. At equidistant times
t i addA@K1(t i)# to a histogramn i

1 andA@K2(t i)# to a
histogramn i

2 .
~4! Continue with the first step untilN k points have been

generated.
~5! Calculate the time discrete impulse response

^A& im(t i)5 (2qEim/2N\Dk1) (n i
12n i

2).

B. The longitudinal perturbation

In the case that the stationary and the small signal fi
vectors are collinear, the stationary BE, Eq.~4!, can be used
to express the distribution function gradient as

G~k!5
Eim

Es
S l~k! f s~k!2E f s~k8!S~k8,k!dk8 D , ~17!

which gives another natural splitting into two positive fun
tions. In the following we adopt the notation that term
which are employed in the respective algorithm as a pr
ability density are enclosed in curly brackets.

1. Algorithm 3

From Eq.~17! we choose the initial distributions as

G1~k!5
Eim

Es
l~k!$ f s~k!%, ~18!

G2~k8!5
Eim

Es
E $ f s~k!%H S~k,k8!

l~k! J l~k!dk. ~19!

Both terms containf s as a probability density. Statesk can
be generated from this density as in Algorithm 2. In additio
in G2 the densityl21S appears, which is the conditiona
probability density for an after-scattering statek8 provided
that the initial statek has been selected. Note that norm
ization is ensured, since*l(k)21S(k,k8)dk851 for all k.

The above expressions suggest the following algorith

~1! Follow a main trajectory forDt. Determine the statek in
the endpoint and the weightl(k).

~2! Realize a scattering event fromk to k8.
~3! Start a trajectoryK1(t) from k and another trajectory

K2(t) from k8.
~4! Follow both trajectories for timeT. At equidistant times

t i add l(k)A@K1(t i)# to a histogram n i
1 and

l(k)A@K2(t i)# to a histogramn i
2 .

~5! Continue with the first step untilN k points have been
generated.

~6! Calculate the time discrete impulse response
^A& im(t i)5 (Eim /NEs) (n i

12n i
2).

2. Algorithm 4

We reformulate the initial distributions as follows:

G1~k!5
Eim

Es
^l&sH l~k! f s~k!

^l&s
J , ~20!

G2~k8!5
Eim

Es
^l&sE H l~k! f s~k!

^l&s
J H S~k,k8!

l~k! J dk, ~21!
s

ld

-

,

-

:

s

where^l&s5* f s(k)l(k)dk is introduced in the denomina
tors to ensure normalization.^l&s is the inverse of the mean
free-flight time, which can be seen immediately when eva
ating the average by means of the before-scattering met
The probability densityl f s /^l&s represents the normalize
distribution function of the before-scattering states. Con
quently, the product of the two densities in Eq.~21! repre-
sents the normalized distribution function of the afte
scattering states. Compared with Algorithm 3 a more
compact algorithm can be formulated.

~1! Follow a main trajectory for one free flight, store th
before-scattering state inkb , and realize a scattering
event fromkb to ka .

~2! Start a trajectoryK1(t) from kb and another trajectory
K2(t) from ka .

~3! Follow both trajectories for timeT. At equidistant times
t i addA@K1(t i)# to a histogramn i

1 andA@K2(t i)# to a
histogramn i

2 .
~4! Continue with the first step untilN k points have been

generated.
~5! Calculate the time discrete impulse response

^A& im(t i)5(Eim^l&s /NEs) (n i
12n i

2).

The mean free-flight time must be additionally calculat
during the simulation. Algorithm 4 shows in a transpare

FIG. 1. Impulse response of the differential energy.

FIG. 2. Impulse response of the differential velocity.



e

ib
-
e
e

an

in
ca

in
th

ng
n-
t

i

nd
ion

tes
rals
ring

en-

.

en-
time
. 2,
ses
ec-

dy

the
e
ry
nd-

ons
e

city.

4312 J. Appl. Phys., Vol. 87, No. 9, 1 May 2000 Kosina, Nedjalkov, and Selberherr
way the evolution of theP andM ensembles, as well as th
generation of the initial states for those ensembles.

The algorithm suggested in Ref. 3, leading to Eq.~1!,
appears to be a single particle equivalent to the descr
algorithms. A trajectoryK2, which starts from an after
scattering state in Algorithm 4, can immediately be mapp
onto the main trajectory and need not be calculated indep
dently. This change gives the second term on the right h
side of Eq.~1!. The time integral in Eq.~1! represents a time
average that is equivalent to theP ensemble average used
Algorithm 3. The present derivation shows that in practi
simulations the averaging interval (T2t) in Eq. ~1! should
be replaced by a constant valueT8, which is large enough to
capture the whole relaxation process. IfT8 is larger than a
few times the related relaxation time there will no more
formation to be gained and the statistical uncertainty of
result will even increase.

V. RESULTS

The following simulation results are obtained by usi
Algorithm 4. Typical conditions for electrons in Si are co
sidered as well as a special carrier dynamics feature,
transit time resonance~TTR! effect4,10 for electrons in GaAs.
While Si is simulated at 300 K, for GaAs the temperature
reduced to 10 K to make the TTR effect clearly visible.

FIG. 3. Real part of the differential velocity spectra.

FIG. 4. Imaginary part of the differential velocity spectra.
ed

d
n-
d

l

-
e

he

s

Analytical band models are adopted for both Si a
GaAs, accounting for isotropic and nonparabolic conduct
band valleys. For Si six equivalentX valleys and for GaAs a
three-valley model are included. The phonon scattering ra
used can be found, for example, in Ref. 7. Overlap integ
are neglected, and acoustic deformation potential scatte
is assumed elastic.

Figures 1 and 2 show the time response of the differ
tial electron energy]^e& im /]Eim and the longitudinal differ-
ential velocity]^v& im /]Eim for Si at different field strengths
As expected from the discussion of the model@see Eq.~14!#,
the response characteristics tend to zero when the two
sembles approach the steady state. The characteristic
associated with the relaxation process depicted in Fig
namely the momentum relaxation time, clearly decrea
with increasing field. This effect is anticipated since the el
tron mobility m5etm /m* is known to show such a field
reduction. Generally, within a few picoseconds the stea
state is reached by the two ensembles.

Figures 3 and 4 show the frequency dependence of
differential velocity obtained by a Fourier transform of th
impulse response. The low frequency limits of the imagina
parts tend to zero, while the real parts tend to the correspo
ing differential mobility values]^v&s /]Es .

For electrons in GaAs the assumed physical conditi
areT510 K andEs5120 V/cm. In this case all electrons ar

FIG. 5. Impulse response of the normalized differential energy and velo

FIG. 6. Step response of the differential velocity.
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in the G valley. In Fig. 5 the differential velocity and differ
ential energy are presented normalized to the respective
tial values. The impulse response characteristics reve
damped oscillation. The pattern is pronounced also in
step response functions in Figs. 6 and 7, obtained by t
integration of the corresponding impulse response functio
The pattern appears to be independent of the concrete p
cal quantity, which leads to the conclusion that a peculia
of the carrier dynamics is responsible for the behavior. T
chosen physical conditions determine a peculiar behavio
the electrons already in the steady state. Since acoustic
non scattering is low~below one scattering for 100 ps!, the
electrons are accelerated by the field until they reach e
gies above the polar-optical phonon energy~0.036 eV!.
Above this energy the scattering rate for phonon emiss
increases rapidly, so that the electrons penetrating the
non threshold are intensively scattered back to energies c
to zero.

The effect can most conveniently be discussed in
energy domain. The field impulse instantaneously create
perturbation, represented by ensemblesP andM with initial
distributionsG1 and G2, respectively. Figure 8 shows th
distributions as two peaks, located close toE50 and above
the phonon threshold. TheM ensemble is accelerated by th

FIG. 7. Step response of the differential energy.

FIG. 8. Energy distribution of theP and M ensembles att50 and t
58 ps.
i-
a
e
e
s.
si-
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e
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e
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field toward the phonon threshold. TheP ensemble is inten-
sively transferred within less than 2 ps back to low energ
and is then accelerated by the electric field.

Figures 9 and 10 show the individual evolution of th
two ensembles. The initial peaks broaden toward the ste
state, which is reached at about 80 ps.

The M ensemble undergoes an evolution similar to th
of the P ensemble, however with some delay. This is de
onstrated in Fig. 8 where the two distribution functions a
shown att58 ps. The time delay in the evolution is respo
sible for the oscillation in̂ A& im(t). If the two distributions
were equivalent at a certain time, they would oscillate s
chronously for later times and no oscillation in^A& im(t)
would show up

For the condition considered each electron undergoe
permanent cycle in the energy domain. The TTR effect
curs since the two ensembles collectively follow this sing
particle behavior during a certain transition time.

VI. CONCLUSION

A linearized form of the transient BE is used to inves
gate the small signal response of carriers in semiconduc
Assuming an impulse-like perturbation in the electric fie

FIG. 9. Evolution of the distribution function of theP ensemble.

FIG. 10. Evolution of the distribution function of theM ensemble.
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the linearized equation is split into two common BEs, whi
are solved by the EMC method. In this way the impu
response is understood in terms of the concurrent time e
lution of two carrier ensembles. Using different methods
provide the initial distributions of the two ensembles leads
a variety of Monte Carlo algorithms. Both existing and ne
Monte Carlo algorithms are obtained in a unified way, an
transparent, physical interpretation of the algorithms is p
vided.
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