
Proceedings of the IASTED International Conference
Software Engineering and Applications
November 6-9, 2000 Las Vegas, Nevada

OBJECT-ORIENTED DESIGN PATTERNS FOR
PROCESS FLOW SIMULATIONS

T. Binder and S. Selberherr

Institute for Microelectronics, TU Vienna
Gusshausstr. 27–29, A-1040 Vienna, Austria

Phone +43-1-58801-36036, FAX +43-1-58801-36099
e-mail: Thomas.Binder@iue.tuwien.ac.at

ABSTRACT

Although simulators capable of dealing with the different
kinds of processes in the simulation of semiconductor
device fabrication are widely available, the combination of
several of them to a whole process flow is still a compli-
cated endeavor. This paper points out the difficulties arising
in data exchange between simulators and we present as a
solution theWAFER-STATE SERVER. Our WAFER-STATE

SERVER is implemented as an object-oriented software
package which allows the coupling of various tools of
different vendors. The package also contains support for
TechnologyCAD (TCAD) analysis tasks like optimization
of the electrical characteristics of a semiconductor device
or inverse modeling of doping profiles.

Keywords: Object-Oriented Analysis and Design, Semi-
conductor technology,TCAD environment, Process Flow

1 INTRODUCTION

In a modern TechnologyCAD (TCAD) simulation environ-
ment likeSIESTA or VISTA [1] data exchange between dif-
ferent simulators often remains an unsolved challenge. One
approach to attack this problem is to use a file format com-
mon to all tools involved in the process flow. ThePIF [2]
(profile interchange format) file format presents an imple-
mentation of such an approach. In aPIF file data are stored
as a set of lists. A powerfulAPI for C, FORTRAN andLISP

accounts for ease-of-use for various simulators and appli-
cations like file converters or meshing tools. It turned out
however, that the definition of the pure file format is not suf-
ficiently addressing all kinds of problems arising in a pro-
cess flow. In order to illustrate the difficulties the following
section will briefly discuss of what data a wafer-state de-
scription actually must consist of.

1.1 WAFER-STATE DESCRIPTION

Since a real-world wafer may consist of several million de-
vices (transistors, diodes, capacitors) per die only a small

number1 of them can be treated in a process or device sim-
ulation. As a consequence a suitable wafer-state description
need not contain any circuit or macro-model information as
it is used in circuit simulators likeSPICE [3]. Instead, the
information required consists of:

• geometry description
• properties (e.g., material type)
• distributed quantities (e.g., dopants)
• and grids on which the quantities are stored

Depending on the type of simulation carried out only a cer-
tain subset of the available data may be requested as input.
Given that, one can already imagine the problems arising:

First, there is the need to ensure a consistent input-wafer
for each individual simulator. This means that one needs
a strong definition of what a certain simulator must read
(input) what it must deliver as a result and also what (un-
handled) quantities from previous simulation results are in-
validated by the simulation and thus need to be removed.

Second, depending on the type of process simulation, it
must be possible for a simulator to operate only on a sub-
set of the whole data contained on a wafer. For instance,
for a topography tool like an etching simulator only the
geometry and material properties are of concern, whereas
data like impurity concentrations and meshes are usually
ignored. Problems arise once the etching simulation is fin-
ished and the tool is storing the results into a file. Since
the result of the tool consists only of a pure geometry, the
question of what happens to quantities stored on the (input)
wafer arises. Such problems can only be solved by merging
the newly generated geometry of the etch-step (Fig. 1(b))
with the original input-file (Fig. 1(a)), to create a new con-
sistent wafer-state (Fig. 1(c)). Note that the resulting geom-
etry must be re-gridded (new elements were inserted in this
example), and all distributed quantities need to be interpo-
lated onto the new points.

1In case of a process simulation it is only one device or maybe even
just a part of one device.

159

(a) Original Wafer -
contains several
distributed quantities

(b) Geometry as returned
from the etch-tool (no
attribute information)

(c) Final result of the merge operation - contains
all attributes from the original wafer

Figure 1: Merge operation after an etch-step

1.2 TRANSPARENT INTERPOLATION

Interpolating values of distributed quantities onto newly
generated grid points leads to the need for an automated
mechanism. This is especially important since there are
different attribute value types (scalar, vector). In order to
keep the introduced interpolation error as small as possi-
ble different interpolation methods must be applied to the
various attribute types. Some attributes (e.g., doping con-
centrations) require a logarithmic interpolation (the values
are logarithmized before a linear interpolation takes place),
others (e.g., stress components) need to be interpolated lin-
early.

2 WAFER-STATE SERVER

Our WAFER-STATE SERVERaddresses this kind of prob-
lems and presents a standardized application programming
interface (API) common to all simulators and tools. This
API defines a strong protocol the simulators must adhere
to. Tools must manipulate data in the wafer-state exclu-
sively through this protocol. TheWAFER-STATE SERVER

also contains gridding and re-gridding capabilities. These
are required for repair steps as outlined in the above ex-
ample and are invoked transparently. The strategy cho-
sen for interpolation allows different interpolation meth-
ods for each attribute without any reflection in theAPI.
The user simply requests the value of an attribute at a cer-
tain point. TheWAFER-STATE SERVERchooses the appro-
priate (configured) interpolation method for the attribute,
and returns the interpolated value. Prior to interpolating,
the grid-element in which the point is contained has to be
found (point-location). This task is achieved with a binary
tree, a finite-quad-tree and a finite-oct-tree [4] based data-
structure for one-dimensional, two-dimensional and three-
dimensional applications, respectively. These tree based
data-structures support theWAFER-STATE SERVER in (a)

performing efficient point-locations and (b) in identifying
the grid elements in the repair step for which intersections
with the geometry have to be computed.

2.1 MODULARITY

The WAFER-STATE SERVERis organized as a set of inde-
pendent modules each dedicated to a certain task. These
modules are a direct reflection of the problems discussed in
the previous section. These modules are:

• READER module
TheREADER module takes care of reading data from
a certain file-format or database.

• WRITER module
This module takes care of writing data to a certain
file-format or database.

• GRIDDER module
Handles all gridding problems. This is needed for
repair steps.

• FINITE-OCT-TREE module
This module represents the internal data-structure of
the WAFER-STATE SERVER. It is used for point-
location and to determine the grid elements which
need to be repaired after a topography change.

Since the modules are realized as independent libraries, it is
possible to use only some of them in a certain application.
It is for example feasible to use theREADER andWRITER

modules to implement a file converter. There is no need to
link an application against all of these modules or against
the wholeWAFER-STATE SERVERin case the provided ser-
vices are not needed.

Each module is used by theWAFER-STATE SERVERvia an
interface class. Fig. 2 gives an overview of all used interface
classes.

READER WRITER GRIDDER

WAFER

OCT

Figure 2: Overview of class interfaces used from
WAFER class

Note that the use of abstract interfaces rather than concrete
classes keeps the implementation details away from the
WAFER-STATE SERVER’s core classes in a typical object-
oriented way. This design allows future extension of some

160

of the capabilities like, e.g., supported file-formats, grid-
ding algorithms or even of the internal data-structures the
elements are stored on.

2.2 Interfaces

The use of several individual modules (READER,
GRIDDER, . . .) as opposed to using only a single one
(WAFER) may seem complicated at first sight, however,
it introduces two major advantages: On the one hand
details about the underlying file format and about the
gridding algorithms are well hidden to theWAFER-STATE

SERVER’s core functions. As already mentioned above this
ensures that reading support for another file-format can be
added later by implementing aREADER module for this
file-format. The same holds true for supporting various
WRITER and GRIDDER modules. In general, any class
that implements the interface to a certain module qualifies
as a wafer-state module. On the other hand, settings
specific to a certain implementation of aGRIDDER module
(e.g., quality constraints) can directly be accessed by the
simulator without the need for extra wafer-state functions.

Currently READER modules forPIF, DFISE [5] and the
newly developedWSSfile formats as well as support mod-
ules for theGRIDDER DELINK [6] (three dimensional) and
TRIANGLE [7] (two dimensional) are implemented. Note
that theREADER andWRITER interfaces are not restricted
to file based data access. It is also conceivable to implement
READER/WRITER modules that directly connect to a certain
database engine.

READER Interface

Fig. 3 shows classes with their attributes and methods of the
READER interface. All depicted classes are interface classes
and are derived and implemented by a concrete class of the
given file-format.

In order to read the file identified by aREADER theWAFER-
STATE SERVERfirst invokes thenext segment method.
This will either return an instance of an implementation of
a RDSEGinterface or indicateend-of-file in case no
more segments are available.

The methodsnext attr andnext grid of theRDSEG
interface allow iteration over all attributes and grids of a
segment respectively. Note that grids are allowed both at
segment and attribute level. These methods return an im-
plementation of aRDGRID or RDATTR interface class,
respectively. Againend-of-file indicates the last grid
or attribute of this segment was reached.

Finally, to iterate over all grid elements of a grid, the
methodnext el of the RDGRID or RDATTR interface
is invoked. Note that the implementation of thenext el

READER
+config: CONFIG
+next_segment(): RD_SEG
+name(): String
+dim(): int

RD_SEG

+next_attr(): RD_ATTR
+next_grid(): RD_GRID
+name(): String

RD_ATTR

+next_el(): GRID_EL
+name(): String
+grid(): String

RD_GRID

+next_el(): GRID_EL
+name(): String

GRID_EL
+nr: int
+points[4]: POINT

GRID_EL
+nr: int
+points[4]: POINT

Figure 3: Attributes and methods ofREADER interface

method must take care to instantiate the points of the grid
element as well as thereon stored quantities.

The READER interface contains a so calledCONFIGob-
ject. This object holds information about which interpo-
lation method must be applied to a certain attribute, about
what fundamental data-type (scalar, vector) an attribute has
and also what attributes at all are supported. This object
is needed to properly instantiate the points of aGRID EL
object.

WRITER Interface

In Fig. 4 the classes comprising theWRITER interface are
shown. In a similar manner to theREADER several inter-
faces are used to transfer data to a certain file.

First, the WAFER-STATE SERVER invokes the method
write points to indicate that a list of all points is
following. The method returns an implementation of
a WRPOINTS interface class. By using the method
next point all points are transferred to theWRITER

module.

Next the segments and thereon stored data are created.
For this purpose the methodwrite segments is called
to retrieve an implementation of aWRSEGMENTSclass.
This object is henceforth used to transfer grids and at-
tributes to the file. The methodnext segment of the
WRSEGMENTSobject introduces a new segment. It re-
turns an object of typeWRSEG. This object is used to de-

161

WRITER
+config: CONFIG
+write_points(): WR_POINTS
+write_segments(): WR_SEGMENTS

WR_SEG

+next_grid(): WR_GRID
+write_attributes(): WR_ATTRIBUTES

WR_GRID

+next_el(el:): void

WR_POINTS

+next_point(): void

WR_SEGMENTS

+next_segment(): WR_SEG

WR_ATTRIBUTES

+next_grid(): WR_GRID
+next_attr(): WR_ATTR

WR_ATTR

+next_val(): void

WR_GRID

+next_el(el:): void

Figure 4: Attributes and methods ofWRITER interface

fine (a) stand-alone grids (grids that are not used to store
attributes on) and (b) distributed quantities. The stand-
alone grids are written using thenext grid method. At-
tributes are stored via theWRATTRIBUTESobject by sev-
eral invocations of methodsnext grid andnext attr .
Note that several attributes can share one grid. The method
next attr receives the name of a prior defined grid as
one of its arguments. This means that a grid compris-
ing a distributed quantity has to be defined before the
definition of the quantity referring to this grid. Each
call to next grid or next attr returns an object of
type WRGRID and WRATTR respectively. The methods
next el andnext val must be used to add a grid ele-
ment or a value of an attribute.

GRIDDER Interface

In Fig. 5 the classes comprising theGRIDDER interface are
shown. A gridding mechanism is invoked by first defining
the topography, second starting the actual gridding algo-
rithm and, finally collecting the generated elements.

GRIDDER

+add_point(): void
+add_boundary(): void
+add_segment(): void
+start(): void
+next(): GRI_GRID_EL

GRI_GRID_EL
+nr: int
+points[4]: POINT
+seg: int

Figure 5: Attributes and methods ofGRIDDER interface

The first step in the topography definition is to define all
points of the geometry. The methodadd point of the

GRIDDERinterface class must be invoked once for every
point. Next, all elements forming the boundaries of the seg-
ments must be defined with theadd boundary method.
Now the elements comprising the segments are defined us-
ing add segment .

Once the topography has been defined the methodstart
triggers the actual meshing process.

The elements are now ready to be collected. Method
next el is used to iterate over all generated elements. The
method returnsfalse after having delivered the last ele-
ment.

It is worthwhile mentioning that the above interface is used
to access two-dimensional as well as three-dimensional
gridder modules.

2.3 PROTOCOL BETWEEN APPLICA-
TION AND WAFER-STATE SERVER

The first step in the protocol (Fig. 6) from an applica-
tion’s point of view is to instantiate appropriateREADER

andGRIDDER objects. The choice of whatREADER mod-
ule to instantiate depends on the file-format in which the
data are stored. Next, the actual wafer object is instantiated
by supplying theREADER andGRIDDER objects as well as
a CONFIG object to the wafer class.

At this point the data in theWAFER-STATE SERVER are
ready for the application to be requested.

In the next protocol step the simulator requests the geome-
try and thereon stored attributes. Geometries and attributes
are identified by names. These names are usually stored
in a so called input-deck file (or they are passed on the
commandline) which is read by the simulator independently
from the wafer definition. This input-deck contains several
settings for the simulator, among other details, it identifies
which regions are to be treated in the simulation.

All relevant data have now been transferred to the simu-
lator. Once the simulator has finished its calculations the
results must be merged with the wafer-state. This so called
update operation is performed in several individual steps.
Each attribute which is configured as simulator output (c.f.
Section 2.4) must now be stored back onto the wafer. The
WAFER-STATE SERVERchecks whether all attributes were
received. Next the attributes which are invalidated by this
process step are deleted.

Now the repairing mechanism is invoked. The newly added
geometry is clipped with the one stored on the wafer-state.
Grid points are taken over from the old grid where possible.
The regions are then meshed using the suppliedGRIDDER

module. All attributes which were not treated by the sim-
ulator and which are not configured to be invalidated are

162

Instantiate Reader,
Gridder and

Config Objects

Instantiate Wafer
Object

Read Data
from File

Perform merging
operation

Request Geometry
and Attributes

Update Wafer

Perform
Simulation

Remove unhandled
Attributes

Instantiate Writer,
dump Wafer

Application Wafer State
Server

write Wafer
to File

Figure 6: Basic protocol between wafer-state server and
application

interpolated onto the new geometries. Attributes which lie
on no longer existing regions (e.g., a segment was altered
by the simulator) are discarded.

After the repair operation the application instantiates the
appropriateWRITER object and invokes the dump method
of the wafer class to permanently store the simulation re-
sults on a file or database.

2.4 DEFINITION OF PROCESS STEPS

Each class of process step is configured in a database. The
necessity for such a classification is best illustrated in an
example. Take, for instance, a diffusion step: If the input
wafer contains any stress components, the diffusion simu-

Diffus
{

Invalidate
{

inv = "Stress"; // quantities to invalidate.
exc = ""; // qu. to exclude from invalidation

};

read = "Boron, Arsenic";
write = "Boron, Arsenic";

topography = false;
};

Figure 7: Configuration of a simple diffusion step

lator either must take them into account (use them in the
simulation) and update them when writing back the results,
or the WAFER-STATE SERVERhas to remove these com-
ponents right after the diffusion step. All attributes which
are modified either directly by the simulation or indirectly
(e.g., invalidated stress component) must be listed in the
database.

Fig. 7 shows a possible configuration of a simple diffusion
step. The keywordsinv andexc specify quantities which
are to be invalidated and excluded from invalidation respec-
tively. The keywordread lists all attributes which must be
treated by the simulator (here:Boron, Arsenic). Sim-
ilarly write specifies all attributes which must be supplied
in the update operation. An asterisk (*) can be used with
inv andexc to denote all contained attributes, however,
attributes in theread andwrite statements will overrule
this notion. In this example the attribute namedStress
will be removed upon update.

The keywordtopography is used to indicate whether the
simulator changes the topography (true) in which case the
WAFER-STATE SERVERmust merge the new geometry with
the existing one.

The types of the various attributes are also defined in the
database. Fig. 8 depicts the configuration for attributes of
typeConcentrations .

Concentrations
{

interpolation = "log";
unit = "1/cmˆ3";
members = "Donors, Acceptors, Boron,

Phosphorus, Arsenic, Indium,
Antimony, Nitrogen, Oxygen";

datatype = "Scalar";
};

Figure 8: Configuration of attribute type Concentrations

The definition of an attribute class consists of the unit
(cm−3) the data-type (scalar, vector, tensor), the name
(Concentrations), a list of all possible instances (Arsenic,
Phosphorus, Boron, donors, acceptors, . . .), and the inter-
polation method (linear, logarithmic).

163

ATT_CFG
+interpolation: IueString
+unit: IueString
+datatype: IueString

CONFIG

+[](name:IueString): ATT_CFG

Figure 9: CONFIG object passed toREADER andWRITER

modules

The attribute type definitions are read into aCONFIGclass
(Fig. 9). An instance of such a class is passed to the
READER andWRITER objects. TheREADER module needs
the configuration to (a) identify a certain attribute by name
and (b) to be able to properly instantiate the points of the
grid elements. Since these points hold the actual attribute
values theREADER module is the only place where an in-
stantiation can take place. TheWRITER module uses the
configuration to store attribute type information which is
not explicitly contained in theWAFER-STATE SERVERdata-
structures (interpolation method, data-type) onto the file.

The actual configuration of a certain attribute is obtained
via operator[] of theCONFIGclass. The operator re-
turns anATT CFGobject of the named attribute or delivers
an error if a configuration for an attribute with the given
name does not exist.

3 TCAD ANALYSIS

PerformingTCAD analysis tasks [8] like optimization of
VLSI semiconductor devices [9, 10] or inverse modeling of
doping profiles [11] often results in an enormous number
of individual simulation runs. Frameworks likeSIESTA or
VISTA take care of aspects like describing an experiment
and queuing jobs on a cluster of workstations. Another as-
pect ofTCAD analysis is how the input-data for the simula-
tion runs are generated. Thus, the need for a tool to generate
a wafer based on a textual description arises.

INPUT WAFER CREATION

The wafer-state services contain a tool (MKWAFER) to cre-
ate three-dimensional wafers suitable for a process or de-
vice simulation. This tool uses a file as input which con-
tains commands written in the input-deck language as it is
also used in our device simulatorMINIMOS-NT [12, 13],
and in the configuration of the process steps and attribute
types within theWAFER-STATE SERVER. Fig. 10 and
Fig. 11 show the input-deck description to generate the
three-dimensional heterostructure bipolar transistor device
depicted in Fig. 12 and Fig. 13.

For each section in the input-deck file (Bulk, Base,
Emitter, Contacts,...) a corresponding segment

Cube
{

// coordinates are X/Y/Z
points =
[[0.0, 0.0, 0.0], [1.0, 0.0, 0.0], [1.0, 1.0, 0.0],

[0.0, 1.0, 0.0], [0.0, 0.0, 1.0], [1.0, 0.0, 1.0],
[1.0, 1.0, 1.0], [0.0, 1.0, 1.0]

];

// positive orientation of faces identifies the inner
// region of the cube
solid =
[[0, 1, 2, 3], // bottom face

[4, 7, 6, 5], // top face
[5, 6, 2, 1], // front face
[4, 0, 3, 7], // back face
[4, 5, 1, 0], // left face
[7, 3, 2, 6] // right face

];

Scaling { x = 1.0; y = 1.0; z = 1.0; };
Offset { x = 0.0; y = 0.0; z = 0.0; };

};

Figure 10: Description of a three-dimensional cube

is created. After having processed the last section of the
input-deck the program computes the boundary representa-
tion of the whole geometry. The computation is achieved
by first transferring all sets of coplanar faces into a two-
dimensional representation. Second, a two-dimensional
polygon clipping software [14] based on an algorithm of
Kevin Weiler [15] is used to determine the intersections.
Finally the resulting two-dimensional faces are transferred
back into three-dimensional space and added to the struc-
ture. The boundary representation is then passed on to a
gridder module (DELINK [6]) in order to generate a mesh
of the whole structure. The final device is saved to a file
using theWSS WRITERmodule.

4 VISUALIZATION

Another important aspect addressed in theWAFER-STATE

SERVER is the visualization of attributes and geometries.
Due to the abstraction of the file access we only need to
support one certain file format (WSS). The chosen visual-
ization environment is theVisualization Toolkit(VTK) [16].
To keep the visualization platform independent theJAVA

programming language is used for both parsing theWSS

file and for the actual visualization (JAVA-VTK binding).
The parser generator used (ANTLR [17]) to generate the
parser code is capable of producingJAVA andC++ parsers
from the same language description, which relieves us from
maintaining a separateJAVA and C++ version of the very
same parser. The visualization runs on Unix and Windows
platforms.

5 IMPLEMENTATION

The chosen programming language for the implementation
of theWAFER-STATE SERVERis C++. This language facil-
itates a full object-oriented design as realized in the wafer-
state servers’ core components as well as an easy inte-

164

#include "cube3d.ipd"

Geometry
{

Bulk: ˜Cube { Scaling { x = 4.0; y = 3.0; } };
CollectorContact1: ˜Cube
{ Scaling { x = 3.0; y = 0.4; z = 0.3; }

Offset { x = 0.5; y = 2.0; z = 1.0; }
};
CollectorContact2: ˜Cube
{ Scaling { x = 0.4; y = 2.0; z = 0.3; }

Offset { x = 0.5; z = 1.0; }
};

Base1: ˜Cube
{ Scaling { x = 2.0; y = 1.5; z = 0.3; }

Offset { x = 1.5; z = 1.0; }
};
Base2: ˜Cube
{ Scaling { x = 2.0; y = 1.5; z = 0.3; }

Offset { x = 1.5; z = 1.3; }
};
BaseContact: ˜Cube
{ Scaling { x = 0.8; y = 0.2; z = 0.3; }

Offset { x = 2.5; z = 1.6; }
};

Emitter1: ˜Cube
{ Scaling { x = 1.2; y = 0.3; z = 0.3; }

Offset { x = 2.0; y = 1.0; z = 1.6; }
};
Emitter2: ˜Cube
{ Scaling { x = 0.3; y = 1.0; z = 0.3; }

Offset { x = 2.0; z = 1.6; }
};
EmitterContact1: ˜Cube
{ Scaling { x = 1.2; y = 0.3; z = 0.3; }

Offset { x = 2.0; y = 1.0; z = 1.9; }
};
EmitterContact2: ˜Cube
{ Scaling { x = 0.3; y = 1.0; z = 0.3; }

Offset { x = 2.0; z = 1.9; }
};

epsilon = 1e-5;
};

Figure 11: Description of a three-dimensional HBT device

gration of existing programs (DELINK , TRIANGLE, DFISE-
READER) thus ensuring good overall code re-usability. Dur-
ing the implementation of the wafer-state server care was
taken to adhere to theANSI C++ standard as close as possi-
ble. TheWAFER-STATE SERVERis running on all platforms
that offer anANSI C++ compiler. The code does not rely on
any operating system dependent features.

6 CONCLUSION

We present aTCAD class library to support the simulation
of semiconductor fabrication process flows. A solution to
the problem of data exchange among various simulators is
given. The presentedREADER, WRITER andGRIDDER in-
terfaces allow for future incorporation of new file formats
and gridding algorithms. Furthermore, the strong protocol
all simulators must adhere to encourages the simulation of
whole process flows. TheWAFER-STATE SERVERoffers the
tool developer a powerful way of combining several inde-
pendent modules. By appropriately instantiating the pro-
grammer has the flexibility of choosing among all available

Figure 12: Three-dimensional HBT device

Figure 13: Mesh of the three-dimensional HBT device

implementations ofGRIDDER, READER, andWRITER mod-
ules.

Due to the abstraction of the file-format and the gridding
mechanisms an integration of tools of different vendors is
possible without having access to the source codes. This is
of particular interest to theTCAD analyst who would like to
freely chose among all available simulators and tools.

Finally, the challenge of optimization and inverse modeling
tasks is met by providing tools to create input-data for de-
vice and process simulation and to visualize the simulated
results.

7 OUTLOOK

The simulation of whole process flows is still a tedious task
in modernTCAD simulation environments. Usually conver-
sion tools have to be invoked in order to couple simulators
for different process steps. A conversion from one data for-
mat to another usually introduces a certain amount of error
(e.g., due to interpolating data onto a new grid). Therefore,
wafer-state support for the MONTE CARLO ION IMPLAN-
TATION simulator [18, 19] as well as for the ETCHING sim-
ulator [20, 21] is under development.

165

References

[1] R. Strasser, Ch. Pichler, and S. Selberherr, “VISTA -
a framework for technology CAD purposes,” In Hahn
and Lehmann [22], pp. 450–454.

[2] F. Fasching, C. Fischer, S. Selberherr, H. Stippel,
W. Tuppa, and H. Read, “A PIF implementation for
TCAD purposes,” inSimulation of Semiconductor
Devices and Processes, W. Fichtner and D. Aemmer,
Eds., Konstanz, 1991, vol. 4, pp. 477–482, Hartung-
Gorre.

[3] G. Massobrio and P. Antognetti,Semiconductor De-
vice Modeling with Spice, McGraw-Hill, New York,
second edition, 1993.

[4] T. Binder and S. Selberherr, “A parallel finite oct-
tree for multi-threaded insert, delete, and search oper-
ations,” in Intl. Conf. Applied Modeling and Simula-
tion, Cairns, Australia, Sept. 1999, pp. 613–616.

[5] ISE, ISE TCAD Manuals vol. 6, release 4, ISE Inte-
grated Systems Engineering, 1997.

[6] P. Fleischmann and S. Selberherr, “A new approach to
fully unstructured three-dimensional delaunay mesh
generation with improved element quality,” inSimula-
tion of Semiconductor Processes and Devices, Tokyo,
Japan, 1996, pp. 129–130, Business Center for Aca-
demic Societies Japan.

[7] J. R. Shewchuk, “Triangle: Engineering a 2D quality
mesh generator and delaunay triangulator,” inFirst
Workshop on Applied Computational Geometry. As-
sociation for Computing Machinery, 1996, pp. 124–
133.

[8] R. Strasser,Rigorous TCAD Investigations on Semi-
conductor Fabrication Technology, Dissertation,
Technische Universität Wien, 1999.

[9] R. Plasun, Ch. Pichler, T. Simlinger, and S. Selberherr,
“Optimization tasks in technology CAD,” In Hahn
and Lehmann [22], pp. 445–449.

[10] R. Plasun, M. Stockinger, R. Strasser, and S. Sel-
berherr, “Simulation based optimization environment
and its application to semiconductor devices,” inIntl.
Conf. on Applied Modelling and Simulation, Hon-
olulu, Hawaii, USA, Aug. 1998, pp. 313–316.

[11] R. Strasser, R. Plasun, and S. Selberherr, “Practical in-
verse modeling with SIESTA,” inSimulation of Semi-
conductor Processes and Devices, Kyoto, Japan, Sept.
1999, pp. 91–94.

[12] T. Simlinger, H. Kosina, M. Rottinger, and S. Selber-
herr, “MINIMOS-NT: A generic simulator for com-
plex semiconductor devices,” in25th European Solid
State Device Research Conference, H.C. de Graaff

and H. van Kranenburg, Eds., Gif-sur-Yvette Cedex,
France, 1995, pp. 83–86, Editions Frontieres.

[13] T. Binder, K. Dragosits, T. Grasser, R. Klima,
M. Knaipp, H. Kosina, R. Mlekus, V. Palankovski,
M. Rottinger, G. Schrom, S. Selberherr, and
M. Stockinger, MINIMOS-NT User’s Guide, Insti-
tut für Mikroelektronik, 1998.

[14] Klamer Schutte, “An edge labeling approach to
concave polygon clipping,”Submitted to ACM, 1995,
http://www.ph.tn.tudelft.nl/People/klamer/clip.ps.gz .

[15] Kevin Weiler, “Polygon comparision using a graph
representation,” inComputer Graphics, 14. SIG-
GRAPH 80, 1980, pp. 10–18.

[16] Will Schroeder, Ken Martin, and Bill Lorensen,An
Object-Oriented Approach To 3D Graphics, Prentice
Hall, 1999.

[17] Gary L. Schaps, “Compiler construction with antlr
and java,”Dr. Dobb’s Journal, 1999,
http://www.ddj.com/articles/1999/9903/9903h/9903h.htm,

http://www.antlr.org .

[18] A. Hössinger, S. Selberherr, M. Kimura, I. Nomachi,
and S. Kusanagi, “Three-dimensional Monte-Carlo
ion implantation simulation for molecular ions,” in
Electrochemical Society Proceedings, 1999, vol. 99-
2, pp. 18–25.

[19] A. Hössinger and S. Selberherr, “Accurate three-
dimensional simulation of damage caused by ion im-
plantation,” inProc. 2nd Intl. Conf. on Modeling and
Simulation of Microsystems, San Juan, Puerto Rico,
USA, Apr. 1999, pp. 363–366.

[20] W. Pyka, R. Martins, and S. Selberherr, “Efficient
algorithms for three-dimensional etching and depo-
sition simulation,” inSimulation of Semiconductor
Processes and Devices, K. De Meyer and S. Biese-
mans, Eds., Leuven, Belgium, Sept. 1998, pp. 16–19,
Springer.

[21] W. Pyka and S. Selberherr, “Three-dimensional sim-
ulation of TiN magnetron sputter deposition,” in28th
European Solid-State Device Research Conference,
A. Touboul, Y. Danto, J.-P. Klein, and H. Grünbacher,
Eds., Bordeaux, France, 1998, pp. 324–327, Editions
Frontieres.

[22] W. Hahn and A. Lehmann, Eds.,Proc. 9th European
Simulation Symposium, Passau, Germany, Oct. 1997.
Society for Computer Simulation International.

166

