Proceedings of the IASTED International Conference
SOFTWARE ENGINEERING AND APPLICATIONS
November 6-9, 2000, Las Vegas, Nevada, USA

CONTROLLING TCAD APPLICATIONS WITH A DYNAMIC DATABASE

R. Klima, T. Grasser, T. Binder, and S. Selberherr

Institute for Microelectronics, TU Vienna,
Gusshausstrasse 27-29, A-1040 Vienna, Austria
Phone: +43/1/58801-36030, Fax: +43/1/58801-36099,

E-mail: Robert.Klima@iue.tuwien.ac.at

ABSTRACT

State-of-the-art TCAD applications like device and process
simulators require a huge number of parameters to control
the various simulation modes and models. Simple input
deck files which are just a sequence of static keywords
or the use of the command line are no longer sufficient.

Aim of the present work was to develop a standardized
Input Deck database and a standardized control and
description language which meets the requirements of con-
trolling state-of-the-art TCAD applications and simulation
environments. Thénput Deck database is implemented
as an object-oriented dynamic database which replaces a
prior static input language [2]. All information are read

Since the values and the usage of these parameters depend from input files written in a new programming language

on each other it is mandatory to utilize mathematical
expressions and hierarchical dependencies.
an approach which relies on an object-oriented dynamic
database to control the simulators. The database provides
keywords grouped in sections which can be nested and
inherited to build arbitrary hierarchies. For optimal control
over the simulation, the contents of the database can be
dynamically adapted using runtime information provided
by the simulators like update norms, iteration counters and
related information.

Keywords: Database systems, object-oriented mecha-
nisms, application control, simulation.

1 INTRODUCTION

TCAD applications like the device-simulatddINIMOS-

NT [1] require a wide range of information to perform

a simulation. This information controls, e.g., input and
output file handling, simulation modes, models, model
parameters, iteration schemes, quantities to compute, or
input and output curves to step through.

Generally speaking, a simulator needs a lot of information
depending on the problem to solve, on the device, or on
the decisions made. This information can be given by
providing sets of parameters which may also depend on
other parameters. Conventional simulators store all possi-
ble information either in a static input file or hard coded in
the simulator invisible to the user. This makes it difficult
for the user to modify this information or to describe new
dependencies. Mostly, the user may specify parameters
with values which override the simulator default settings.

103

We present

calledinput Deck programming languageRL).

Requirements for such dnput Deck are:

e Collection of keywords using equations to describe de-
pendencies.

e Storing default settings.

e An Input Deck should act as a database which can be
queried and easily modified by the simulator.

e When the value of a keyword is changed the values of
depending variables have to be recalculated simultane-
ously.

e Application specific functions should consistently en-
large the concept.

e Simple syntax of the programming language.

As examples we present the control mechanism of
MINIMOS-NT and of the three-dimensional device gener-
atorMKWAFER.

2 CONTROL LANGUAGE

Thelnput Deck database provides a toolkit which contains
a reader and a writer module to read and store all informa-
tions in files using its owrinput Deck programming lan-
guage [PL). The reader module has been implemented us-
ing the toolsGNU Flex [3] and GNU Bison [4]. The syn-

tax of thelPL is similar to that of theC++ programming
language [5, 6]. Several typical features of programming
languages are supported, among othiéfs, statements,
function definitions, etclPL is a description language con-
taining mathematical expressions.

IPL files are text files which are parsed from top dowei.
distinguishes between two kinds of so called base items:
variables and sections. Base items describe the entries to
the database. With these variables and sections arbitrary
database structures and hierarchies can be defined. Base
items must be defined before they can be referenced. This
enables type checking of items used in derived sections and
avoids circular references.

2.1 VARIABLES

A variable is a named container holding an expression. An
expression can be either a value, a list of values, a complex
formula or — consequently — a list of formulas respectively
(see Section 3.4).

Variables have different access types specified by modi-
fiers. First, variables visible to the application are called
keywords Variables with no modifier are read-only key-
words by default. The application may read them but writ-
ing is not permitted. Each write attempt causes an error
message to be printed. Thus, unintentional access to read-
only data can be recognized by the application developers.
Secondly, variables defined with te&t modifier are key-
words which may be read and written by the application.
Thereby, the application can alter variables in thput
Deck database to return runtime information. Thirdly, aux-
iliary variables specified by theux modifier are invisible

to the application. Auxiliary variables can be used for auxil-
iary calculations or to simplify complex formulas as shown
in the following example.

ext x = 32,

ext y = 4,

aux r = sgrt(x * x +y * vy
ex =x/r

ey =y lr

The variablesx, y, ex, andey denote keywords. The
variablesx andy describe the components of a vector
defined modifiable to the application. Note that variable
r is defined as an auxiliary variable which calculates the
length of the vector. It is used to calculate the normalized
vector componentex andey. The keywordsex andey

are read-only.

The data type of a variable is determined implicitly. Vari-
ables can hold values or mathematical formulas resulting
in values. A value can be a single value or a compound
of values. There are different data types for values: inte-
ger numbers, real numbers, complex numbers, real or com-
plex numbers with a unit (quantities), boolean values, and
strings. The only compound data type supported is an array
of values. Since an array of values is defined again to be a
value, an array of arrays is also a valid data type. Arrays are
useful for storing sets of data, e.g., a curve or coordinates
of points.

104

integer_value = 3;

real_value = 3.14;
complex_value = 3.4 + 55j;
guantity_value = 1.2 V;

string_value = "a short text"
boolean_value = true;

array_value =[2 3,5 7, 11]

2.2 SECTIONS

Sections are named containers holding an arbitrary number
of variables and other sections — so called subsections. Sub-
sections again can hold an arbitrary number of sections and
variables. This forms a tree with sections representing the
branches and variables and empty sections being the leaves.
The overall section holding all items defined by the user —
the so calledoot sectiondenoted by the tilde ") — repre-
sents the root of the tree. Since the root section is created
and opened before reading the first line of tR& file all
sections specified are subsections of the root section. A
section is defined by an identifier and the section body en-
closed in braces.

MySection {

myvariable 1;
MySubSection {

}
}

Similarly to variables, all sections are defined read-only
by default. Variables defined writable within such read-
only sections using thext modifier cause a warning to

be printed at parsetime. Sections defined with aloe
modifiers are invisible to the application, although, vari-
ables with any modifier are allowed inside. Such sections
are useful to build default sections. Sections defined with
theext modifier may again contain variables defined with
any modifiers. These sections are used to collect variables
defined with theext modifier.

3 DATABASE DESIGN

Thelnput Deck database acts differently compared to com-
mon databases [7, 8] as it has been developed to control
complex TCAD simulators. It combines the capabilities
of an object-oriented database using a complex inheritance
scheme and that of a calculation program by using formu-
las which may contain references to other variables. The
design of thidnput Deck database is discussed in this sec-
tion.

3.1 NAME MAPPING

References to other items form the crucial part ofltiput
Deck database. A critical understanding and implementa-

tion of these references is mandatory to guarantee optimal
performance. Thénput Deck database uses two different
kinds of references. First, a variable reference is the name
of a variable used in an expression (see Section 3.4).
Secondly, a section reference is the name of a section used
in aliases or for specifying base-sections when defining the
inheritance (see Section 3.2). In thHL references can be
specified either by the fullname or the relative name of the
item.

A fullname is a chain of all section names containing the
absolute path to the item starting with the tharacter for
the root section and ending with the name of the item itself.
A relative name is built up like a fullname but without using
the ©’. The "’ character can be used to denote the next
upper section in the hierarchy.

Outer {
one = 1;
Inner {
two = 2;
}
}

In this small example the sectio®uter contains the
keyword one and the subsectiomner which in turn
contains a single keywortvo . Within sectioninner the
keywordone can be referred to bjone , within section
Outer by one, within the root section byuter.one ,
and anywhere by its fullnameOuter.one . Within the
subsectiorinner the keywordiwo can be referred to by
two , within sectionOuter by Inner.two , within the
root section byOuter.Innner.two , and anywhere by

its fullname™.Outer.Inner.two

As references are normally used many times in expressions
and inheritance trees, virtually thousands of items have to
be created. Finding a corresponding item quickly from a
reference specified by its name is a challenging task. As
explained in Section 3.3 we use a dynamic approach of data
representation — the corresponding items are determined
at runtime. Therefore, references cannot be represented
internally by nodes holding simple pointers to the item.
Instead, the name specified must be used.

As shown in Section 3.2 finding but also referring to an
item causes the inheritance algorithm to successively gen-
erate a sequence of possible item fullnames which are tested
for their existence. Storing all path names as strings would
slow down the inheritance algorithm. Therefore, we have
implemented a different and much faster approach for stor-
ing names: Names are split into subnames which are sec-
tion names or variable names respectively. Each subname
is assigned a unique ID number. THeé has always 1D0,

the " " has ID 1. So each name is internally represented by
a series of IDs—1 indicating the end of a chain. E.g., if

105

the subname®uter , Inner , one, andtwo of the exam-
ple above are represented by the IDs3, 4, 5 yields the
following name — ID chain pairs result:

Reference ID chain
~.Outer.Inner.two 0,2,3,5 —1
Inner.two 3,5, —1
“.one 1,4, -1

Compared to references implemented as strings this ap-
proach speeds up the inheritance algorithm by a factor of
two for our typical applications.

3.2 INHERITANCE SCHEME

The Input Deck database uses a powerful inheritance

mechanism to pass existing definitions to sections. As in-
heritance is only allowed for sections, this mechanism is
well suited to pass a complex tree of subsections, com-
mands and keywords to a new section building a default
structure which can be specialized later on. In the example
below we inherit the whole structure of sectiéy section

B:

A {

}
B : A;

When items are locally modified several investigations take
place. Thdnput Deck toolkit provides a flexible checking
mechanism while reading and parsing the input or when a
new item is created at runtime. All entries of a base section
are assumed to be spelled correctly. A derived section may
only override entries of its base section. Name and type
of the entries must match exactly or an error message is
printed. Thereby type and spell checking of known entries
is enabled. Additional entries can be added explicitly by
a preceding '+'. The checking mechanism can be disabled
for a whole section by enclosing the section name in angle
brackets. This is usefull when many or only new items are
added to a derived section.

vehicle {
wheels = ..
steering = ..
seat = ..

}

car : vehicle { /I full checking
wheels = .., [/l OK
stering = ...; Il error
+engine = .., Il OK

}

<trailer> : vehicle { // no checking

loading_space = ...; [// OK

Figure 1: Implicit inheritance scheme

Sometimes it is useful to combine attributes of two sections
to form a single section. Thimput Deck database allows
for multiple inheritance from any number of base sections.
The base sections must be given in a list in descending or-
der. This means that items in the first base section override
items with the same name in the second base section.

amphibian : vehicle, ship {

}

Another powerful feature is what we call conditional inheri-
tance. If the inheritance depends on several conditions mul-
tiple inheritance can be used to combine the base sections
whereas each base section can be given a single condition.
When a condition evaluates to true the corresponding base
section is passed on to the inherited section. If no condition
is given true is assumed. All evaluations are done at parse
time to allow checking.

transport : car ? (load < loadmax),

truck ? (load >= loadmax) {

}

In this special case the conditions are disjunct.
aliases the section transport can be defined as

Using

ct = if (load < loadmax, car, truck);
transport : ct

}

The inheritance mechanism of theput Deck database
allows for inheritance of every section, subsection and so
on. Such an inheritance scheme has to be well defined or
ambiguities will emerge.

106

Figure 2: Explicit inheritance scheme

The example below seems straight forward. Secton
within sectionA inherits from sectiorR. Modifications in
sectionR immediately take place in sectid®too since a
dynamic approach of data representation is used (see Sec-
tion 3.3). SectiorA with all its entities and their properties
are passed on to sectiBnThus, sectiom also has two sub-
sectionsR andS. Any modification performed in sectidR
within sectionA will even influence the contents of section

B.

A {
R {

}

Ambiguity arises between sectighwithin A and section

S within B. This is illustrated in Fig. 1 and Fig. 2. We call
the two cases implicit and explicit inheritance respectively.
With implicit inheritance the inheritance information of all
subsections is passed on to the successor. Whereas with
explicit inheritance only the inheritance given explicitly
by the user is followed. In the first case sect®nvithin
sectionB is inherited from sectiorR within sectionB —

the inheritance scheme is defined within sectdrand

was passed to sectioB. In the second case sectidh
within sectionB does not contain any explicit inheritance
information. But because sectid@is inherited from sec-
tion Athat sectior§ is inherited from sectio$ of sectionA.

Modifications to the subsectid® in sectionA will there-
fore influence the subsectidd of sectionB only in the
case of explicit inheritance. We have implemented the
explicit inheritance scheme for the following reason:
Imagine sectionA stands for the world, sectioR is
an ape, and sectio8, which is derived from sectioR

is a human. If we derive sectioB from sectionA to
create another world its sectidR is again an ape and
sectionS again a human. This is not the case with im-
plicit inheritance. SectioR of the new world would be an
ape again but sectidhsomething else derived from an ape.

To demonstrate the inheritance algorithm we modify this
example by adding the itefoo to sectiorRwithin section

A. The inheritance scheme is defined, no inherited section
is locally modified:

A {
R {
foo = 1;
}
S ' R;
}
B : A;

Since thdnput Deck database uses the explicit inheritance
scheme, finding or referring to the keywdrd.S.foo

causes the inheritance algorithm to generate the follow-
ing fullnames finally resulting in the existing keyword
“.A.R.foo

~.B.S.foo
~.A.S.foo
~.A.R.foo

The implicitinheritance scheme would generate the follow-
ing sequence shown below. So, if both iteh#.S.foo
and™.B.R.foo exist thelnput Deck inheritance scheme
would find™.A.S.foo

".B.S.foo
“.B.R.foo
“.A.R.foo

3.3 DATA REPRESENTATION

For internal data representation of inheritance two ap-
proaches are viable: First, all data structures are copied to
represent the structure of the base section and its derived
section. New entries are appended, modified entries
overwrite existing ones. At any time each entry has its
corresponding data representation. We call this the static

107

approach. Secondly, no data is copied, only the inheritance
is registered. New and modifying entries are appended.
Only the specified entries are stored. We call this the
dynamic approach.

The advantage of the first approach is its simple data
storage. Finding an arbitrary entry is very easy and
fast. On the other hand, the same information has to be
stored several times as items are inherited by derived
sections, thus consuming memory. In addition this concept
proves to be very complicated when a base section gets
changed. For instance, when an entry in the base section
is deleted it has to be deleted in all sections inherited from
it but only if it has not been locally modified. So after
each modification the database has to check the consis-
tency of its data. Thus, an inherited section has to know
allits parents and each section must know all its successors.

The advantage of the second approach is its self consis-
tency. Modifications of an item are automatically visible in
the derived sections too. For instance, if an entry is deleted
in a base section no work has to be done on its succeeding
sections since it had the same representation as the deleted
one. The disadvantage is that finding an entry is more com-
plicated and more time consuming since an item inherited
by a derived section is stored in one of its base sections.
For thelnput Deck database we have chosen the second
approach because it is more flexible.

3.4 EXPRESSION TREES

Any data that is read in is stored in nodes. Since all types
of nodes are represented by the same data structure they
can be handled similarly. Nodes can be classified in five
groups. The first group consists of variables, sections, and
aliases which can be queried directly by the application.
Other nodes are used to store information on the input
files as they are read, e.g. nodesifmlude commands

or just comments. References are nodes used within
expressions to refer to variables. Function nodes can
be operators, built-in functions, functions defined by the
application or the user. Finally, value nodes hold constant
values or results from calculations.

An expression is stored as a forest which is a special kind
of a tree [9, 10]. Each operator and each function stores
a tree holding a list of operands. For instance, a sum is
represented by a single " operator node and one node for
each summand stored in a list. Fig. 3 shows the expression
tree thelnput Deck database will use to store the equation

1 (1+T)
z=—"-In
2 1—r

For evaluating expression trees theput Deck evalu-
ation module is used which is part of tHeput Deck
database. It is important to note, that this module uses

)

variable
z
operator
value value function
1 2 I'n
nv,

operator
*

operator operator
+ +

value reference
1 r
nv,
value reference
1 r

Figure 3: Example of an expression tree

an object-oriented approach when evaluating expressions.
Thus, operators and functions are overloaded for different
argument data types. Since the data type is determined
at runtime the corresponding operator is also chosen at
runtime. For instance, adding two variabkesandb will
deliver an integer if botta andb are integers, and a string

if at least one of the variables is a string. If no operator
exists for the operand data types created at runtime an error
message is reported to the application.

Several arithmetic and logic operands are implemented in
the evaluation module. The precedence of all operators is
as usual and explained in [5]. The operandsand ‘/ " are
handled in a special way. Their function is taken over by
the operands+’ and *’ where the corresponding nodes
are marked as inverse (see Fig. 3).

The advantage of this kind of tree compared to, e.g.,
regular binary trees [9, 10] is that all operators of the same
kind which have the same precedence are represented
only by one node. As a consequence, simplification of
stored expressions is easy and the total number of nodes is
small. These simplifications are important for performance
reasons.

When the forest shown in Fig. 3 is evaluated by the
evaluation module temporary values are created. For
instance, before the logarithm is calculated the expressions
1+ r and1 — r are evaluated. The results are stored in
temporary values which are used to perform the division.

108

To avoid memory allocations during calculation operator
nodes, function nodes, and reference nodes contain space
to hold a temporary value. Thus, no memory is allocated
during evaluation and, therefore, evaluation of expressions
is fast.

During evaluation the evaluation module marks nodes

which do not depend on external variables or time depen-
dent functions as constant since they will not change. For
all subsequent calculations of a node marked constant sim-
ply its value is returned. Thus, constant expressions are
evaluated only once.

3.5 FUNCTIONS

The Input Deck function module which is part of the
Input Deck database manages all functions which can be
used inlPL. Functions can be used within expressions. A
function is called during evaluation of an expression by the
evaluation module. Functions always have a return value
which can be of any data type. The function module stores
the name of a function, the number of regular parameters,
the number and names of optional parameters, and the
kind of the function. There are three different kinds of
functions, depending on where they are defined.

Several built-in functions are implemented which are ei-
ther mathematical or supplementary functions, respectively.
Mathematical functions are defined for complex numbers
in general. Many-valued mathematical functions are imple-
mented, too. Supplementary functions are conversion func-
tions including some special functions. Conversion func-
tions are used to convert the result of an expression to a
given value type. Not all combinations are possible, e.g.
converting a text to a boolean is not possible. Special func-
tions can be used, e.g., to extract the unit of an expressions
value, to extract the real or imaginary part of a complex
number, or to get the value of an environment variable, or
the name of a given item. Thi) statement can be used
for conditional evaluations whereas only tifieor theelse
expression gets evaluated depending on whether the condi-
tion evaluates to true or false which is important for perfor-
mance reasons.

a = asin(z);

b =if (x >,
string(realpart(a)),
string(imagpart(b)));

In this short example, we calculate the inverse sine .of
The variablez may be a complex number. ¥ is greater
thany we convert the real part otherwise the imaginary
part of the result to a string.

Application specific functions are another powerful feature
of the Input Deck function module. The application can
register an arbitrary number of functions which are coded

in C in the application. Application specific functions
overwrite built-in functions. Because functions have to
be registered before they are used all functions have to
be registered before tHeL files are loaded. When these
functions are used in expressions, the evaluation module
calls the corresponding function of the application.

User-defined functions can be easily definethPih. There-
fore, the functionality of the programming language can be
enlarged and customized. User-defined functions overwrite
built-in and application specific functions and are defined
similarly to variables. The function name is followed by an
argument list enclosed in parentheses, e.g.,

my_sqrt(x, y) =
fabs(if (x > vy,
X *sqrt(l +y *y/ (X * X)),
y *sari(l + x * x [(y *y)));

4 APPLICATION INTERFACE

The Input Deck database offers an extensive application
interface API). The application can open as many different
databases within thimput Deck database it needs simul-
taneously and use them in parallel. Moreover disjuRtt
files may be merged.

The application may query or modify variables and
sections. They can be found by their name or by using
iterators. Finding an item by its name presupposes that
the application knows the exafitlinameof the item. By
defining a working section relative names can be given
omitting the current section name. Using this method the
application can easily query certain items or check for their
existence.

Additionally, iterators can be used to step through a section,
up- and downwards, or through the whole input deck. Only
non-auxiliary items can be found. An iterator must be
initialized with a specific item to start from. The user can
use as many iterators as necessary defining simple filters to
match either sections or variables or both.

When an item is found, several operations can be per-
formed depending on its type and the privilege of the ap-
plication. There are two levels of privileges in thgut
Deck database: The application privilege, which is the de-
fault, allows the application only to perform uncritical oper-
ations like finding items or evaluating and setting keywords.
The editor privilege enables an external editor to perform
more crucial operations, like renaming, moving, removing
of items or modifying properties, inheritance and so on, to
edit the wholelPL database. Th&PI exists for the pro-
gramming languages, C++, andLISP.

109

#include "ipd++.hh"
Ipd ipd(inputipd”);

for (IpdVarlterator vit(ipd.begin("".Defaults"));
vit 1= ipd.end();
++vit) {
cout << vitname() << " = " <<
cout << endl;

double (*vit);

}

Figure 4: Dump all variables of section.Defaults

Filo Edit Hindou

B

() Extern
on clase
1) Hodels "
1) Quantities i50al
1) Iterate vical
() Snectaltiadels OFL
1) SegnentTefaults
thns
1) SteppingContral Phy

Figure 5: GUI

In the example shown in Fig. 4 we use tle-+ inter-
face of thelnput Deck API. First the file “input.ipd” is
opened. Using the iterateit all variables of the section
~.Defaults are read one after the other. The name of
each variable and its value casted woaible are dumped

to standard output.

5 INPUT DECK EDITOR

To visualize the section hierarchies and the inheritance de-
pendencies thimput Deck database is equipped with bm

put Deck editor with a graphical user interface (see Fig. 5).
The section hierarchy is shown at the left side of the
window. When a section is opened its subsections get
visible in the hierarchy. The contents of the current section
are shown at the right side of the window. All items can be
created, overwritten, moved, renamed, or deleted. Locally
modified variables are highlighted to distinguish them from
inherited ones.

The editor does not access tL files directly. It manip-
ulates thelnput Deck database. All control and commu-
nication with the database are made usingARé with the
editor privilege set (see Section 4). This gives the editor full
control over thdnput Deck database.

6 APPLICATION: MINIMOS-NT

MINIMOS-NT [1] is a complex general purpose device and
circuit simulator. The simulator can cope with arbitrary de-
vice structures and geometries, including heterostructures.
MINIMOS-NT supplies a variety of physical models,
abstracted material handling and a model server [11]
managing user-defined physical models. Tingut Deck
database is used to control the simulator in many different
ways:

The material database (MD) provides the parameter values
for the physical models which are handled by a separate
module of the simulator, the model server [11]. The MD
is implemented as a section which contains subsections for
each material. To administrate common material properties,
real materials like Si and SiO2 are inherited from abstract
materials like semiconductors and insulators which handle
the common properties and define the available models and
their parameters. For each model class (e.g., permittivity or
band edge energies) there is a keyword to select the model
instance and a corresponding subsection with the parame-
ters for each model instance. The default database defines
the default models and the default values. Each geomet-
ric region of a device contains a MD of its own which is
inherited from the global MD. This architecture has the fol-
lowing advantages:

e It is easier maintainable compared to hardcoded de-
fault values.

e The customer can easily create a personal, e.g. cali-
brated, version of the MD for his own technology or
several versions for different technologies.

¢ In conjunction with the model server, this concept al-
lows for straight forward extension of the MD. When
a new model is added to the model server (either in
C++ or in a special interpreter language), it follows
the very same rules as for predefined internal models.
Each customer can have a library of proprietary mod-
els with a proprietary MD. This proprietary MD is in-
herited from the global MD and substitutes it as the
default MD. This minimizes the adaption effort for a
new release of the simulator.

e As the simulator deals only with abstract material
classes (e.g., semiconductors and insulators) new ma-
terials can easily be added without changing the source
code of the simulator. This is very important consid-
ering the many materials and alloys which are used in
state-of-the-art process technologies.

As can be seen, many similar versions of the MD can
exist at the same time, one for each geometric region and
material. This would be hardly possible in an efficient
way using the static approach (Section 3.3) For the device
description the device geometry and the doping profiles are

110

stored in a separate file. This separate file contains only
information available from process simulators. All other
simulation-relevant information (bias voltages, models
used) are handled by the input deck with a separate section
for each device. Thus using the inheritance feature device
libraries can easily be realized and maintained.

In mixed-mode simulations a circuit consists of several
devices. Aim of theCircuit section is to connect the
devices to form a certain circuit. Therefore, for each device
in the circuit a corresponding device section must exist.
This device section is the same for single-mode and mixed-
mode simulation except some additional information
which is only needed in the mixed-mode case. Compact
models as used iBPICE[12] are also available. They are
realized with a device section similar to the device section
of distributed devices. This allows for easy switching
between the simpler compact models and their much more
complex distributed representation.

All sorts of general information like input files, output files,
logging information is also controlled by the input deck.
Due to the many features it is very convenient to write a
general input deck which is customized by auxiliary key-
words to control similar simulations. A typical case is
the evaluation of new models: instead of modifying some
parameters like filenames and modelnames throughout the
whole input deck manually (which often creates confusion
and inconsistencies), these parameters are controlled by
auxiliary keywords as shown in the following example.

/I aux device = "deviceA";
aux device = "deviceB";

/I aux model = "modelA";
aux model = "modelB";

Device : DeviceDefaults

Output { file = “device + "_out_" + "model); }

Phys

/I Local version of the material database
SegmentDefaults

{

}
}

impactlonizationHD = “model;

}

Figure 6: A shortMINIMOS-NT IPL file

As there are many possibilities and levels of accuracy to de-
scribe the transport of carriers in semiconductors a general
description mechanism is of crucial importance. A typi-
cal way of solving a complex equation set is to base its
solution on the solution of a simpler one. Thus different
equations have to be assembled at each stage of the solu-
tion process. As these equations are normally highly non-
linear, they have to be solved iteratively (Newton-scheme)
until a distinct error criterion is fulfilled. This solution pro-
cess may fail which has also to be detected. Some steps

of this iteration scheme may be left out under certain cir-
cumstances. To take any of the decision stated above it is
necessary to have information about the current status of the
simulation, like update norms and iteration counters. This
information is provided by the simulator who stores it in a
special section of the input deck database which in turn can
be used to build the desired expressions.

7 APPLICATION: MKWAFER

The programMKWAFER is a recently developed tool
to create three-dimensional input-data suitable for device
(MINIMOS-NT) or process simulators liklICIMPL [13]

or ETCH3D [14]. This tool is part of the wafer-state suit
[15].

Cube {
/I coordinates are X/Y/Z
points = [[0.0, 0.0, 0.0], [1.0, 0.0, 0.0],
[1.0, 1.0, 0.0], [0.0, 1.0, 0.0],
[0.0, 0.0, 1.0], [1.0, 0.0, 1.0],
[1.0, 1.0, 1.0], [0.0, 1.0, 1.0]

/I positive orientation of faces identifies
/I the inner region of the cube

solid = [[0, 1, 2, 3], // bottom face
[4, 7, 6, 5], /] top face
[5, 6, 2, 1], /I front face
[4, 0, 3, 7], /| back face
[4, 5, 1, O], /I left face
[7, 3, 2, 6] /I right face
I
Scaling { x = 10; y = 1.0; z = 1.0; };
Offset { x = 0.0; y = 0.0; z = 0.0; }

Figure 7: Include file cube3d.ipd

In Fig. 7 the definition of a simple cubical geometry section
namedCube is shown. It contains a list of all points as
well as a list of the faces. The paramet&waling and
Offset allow for the combination of several cubes as
geometric primitives to form a certain geometry. This
section serves as a base class to all sections defined in the
IPL file shown in Fig. 8.

#include "cube3d.ipd"
Geometry
E1: "Cube {
Scaling { x = 80.0; y = 20.0; z = 10.0;}
Offset { x = 35.0; y = 60.0; z = 20.0;}
}
E2: E1 { Offset { y = 120.0; } }
E3: "Cube {
Scaling { x = 20.0; y = 40.0; z = 10.0;}
Offset { x = 95.0; y = 80.0; z = 20.0;}
}
}

Figure 8: Simple device geometry description

111

Fig. 8 gives the complete definition of the c-shaped emit-
ter contact at the top of the device shown in Fig. 9. The
program scans the top-level sectiGeometry . For each
sub-sectionE1, E2, E3) contained in this section a sepa-
rate segment is created. Note that, to account for a short
input description, inheritance is used to pass the points and
faces ofCube to each sub-section only overriding the val-
ues for the scaling and the offset.

Figure 9: A schematic three-dimensional HBT device

As a last step the resulting geometry is gridded using the
meshing tooDELINK [16]. Fig. 9 shows a plot of the final
geometry as it is created BYKWAFER.

This tool is primarily intended as a three-dimensional de-
vice generator to aid in performing general optimization
[17], inverse modeling tasks [18], or model parameter ex-
traction [19] as they are carried out by TCAD frameworks
like SIESTA or VISTA [20].

8 CONCLUSION

We have presented a new input deck concept using an
object-oriented database which is well suited to control
TCAD applications. Sets of parameters can be specified
and mathematical expressions can be used. Default values
can be changed easily since all parameters are accessible to
the user in simple text files. The controlling langudBé

is easy to learn since it is similar @++ but not so complex.

All data inquired by the application are stored in keywords.
Keywords are grouped in sections which can be nested to
build any desired kind of tree. Using inheritance any num-
ber of hierarchical trees can be passed to another section
building a new hierarchy. Due to this powerful feature this
mechanism is well suited to provide hierarchically ordered
sets of defaults.

The Input Deck database provides a well defined flexible
dynamic inheritance mechanism. Multiple and conditional
inheritance is supported. Since inheritance is performed at
runtime changes to the internal structures simultaneously
take place in the derived sections.

Applications can be controlled by three different kinds of
information received from thinput Deck database. First,
keywords can be queried or tested for their existence. Key-
words can be found either by their name or by using itera-
tors. Secondly, the order of items specified by the user in
the IPL input files is preserved. Using iterators each item
can be queried in turn. By changing the order the user can
influence the order the items are read by the application.
Thirdly, an application can add application specific func-
tions. Once a keyword is queried by the application the ex-
pression contained is evaluated. If the expression contains
an application specific function, it is called by the evalua-
tion module.

References

[1] T. Binder, K. Dragosits, T. Grasser, R. Klima,
M. Knaipp, H. Kosina, R. Mlekus, V. Palankovski,
M. Rottinger, G. Schrom, S. Selberherr, and
M. Stockinger. MINIMOS-NT User’s Guide Institut
fur Mikroelektronik, 1998.

[2] B. Reinisch. Eine universelle Eingabeverwaltung

fur die Steuerung von Simulatoren. Diplomarbeit,

Inst.f.Mikroelektronik, Technische Univerait Wien,

1997.

[3] V. Paxson. GNU Flex Manual, Version 2.5.3Free
Software Foundation, Cambridge, Mass., May 1996.

[4] C. Donnelly and R. StallmanGNU Bison Manual,
Version 1.25 Free Software Foundation, Cambridge,
Mass., May 1996.

(5]

B. Stroustrup. C++ Programming Language
Addison-Wesley, 1997.

[6] G. Satir and D. Brown. C++ The Core Language
O’Reilly & Associates, 1995.

[7] J.D. Ullman. Database SystemsComputer Science
Press, 1982.

[8] B.R. Rao.Object-Oriented DatabaseMcGraw-Hill,

1994.

[9] D.E.Knuth.The Art of Computer Programming: Fun-
damental Algorithmsvolume 1. Addison-Wesley,

Reading, Massachusetts, 3rd edition, 1997.

[10] R. Sedgewick. Algorithms in C Addison-Wesley,

1990.
112

(11]

[12]

(13]

(14]

[15]

(16]

(17]

(18]

(19]

(20]

R. Mlekus and S. Selberherr. Object-Oriented Algo-
rithm and Model Management. Intl. Conf. on Ap-
plied Modelling and Simulatigmppages 437—441, Hon-
olulu, Hawaii, USA, August 1998.

P. Antognetti and G. Massobridgemiconductor De-
vice Modeling with SPICEMcGraw-Hill, 1988.

A. Hossinger and S. Selberherr. Accurate Three-
Dimensional Simulation of Damage Caused by lon
Implantation. InProc. 2nd Intl. Conf. on Modeling
and Simulation of Microsystemgages 363-366, San
Juan, Puerto Rico, USA, April 1999.

W. Pyka, R. Martins, and S. Selberherr. Efficient Al-
gorithms for Three-Dimensional Etching and Deposi-
tion Simulation. In K. De Meyer and S. Biesemans,
editors, Simulation of Semiconductor Processes and
Devices pages 16-19. Springer, Leuven, Belgium,
September 1998.

T. Binder and S. Selberherr. Object-Oriented Wafer-
State Services. Id4th European Simulation Mul-
ticonference pages 360-364, Ghent, Belgium, May
2000.

P. Fleischmann and S. Selberherr. A New Approach
to Fully Unstructured Three-dimensional Delaunay
Mesh Generation with Improved Element Quality. In
Simulation of Semiconductor Processes and Deyices
pages 129-130, Tokyo, Japan, 1996. Business Center
for Academic Societies Japan.

R. Plasun, M. Stockinger, R. Strasser, and S. Selber-
herr. Simulation Based Optimization Environment
and Its Application to Semiconductor Devices Ittl.
Conf. on Applied Modelling and Simulatiopages
313-316, Honolulu, Hawaii, USA, August 1998.

R. Strasser, R. Plasun, and S. Selberherr. Practical In-
verse Modeling with SIESTA. IiSimulation of Semi-
conductor Processes and Devicpages 91-94, Ky-
oto, Japan, September 1999.

V. Palankovski, R. Strasser, H. Kosina, and S. Sel-
berherr. A Systematic Approach for Model Extrac-
tion for Device Simulation Application. Iimtl. Conf.
Applied Modeling and Simulatiornpages 463—466,
Cairns, Australia, September 1999.

R. Strasser, Ch. Pichler, and S. Selberherr. VISTA
- A Framework for Technology CAD Purposes. In
W. Hahn and A. Lehmann, editor§th European
Simulation Symposiunpages 450-454, Passau, Ger-
many, October 1997. Society for Computer Simu-
lation International.

