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Hydrodynamic and Energy-Transport Models
for Semiconductor Device Simulation

T. Grasser, H. Kosina, and S. Selberherr

Abstract— Hydrodynamic and energy-transport models
have emerged as powerful means for gaining additional in-
sight into the complex non-local behavior encountered in
state-of-the-art semiconductor devices. However, several
different formulations have been proposed which vary con-
siderably in complexity. Furthermore, the handling of these
equations is far more complicated than that of the robust
and well studied drift-diffusion equations. We give a de-
tailed review of the most important papers published on
this subject and try to shed some additional light on the
critical issues associated with these transport models.

I. INTRODUCTION

S THE SIZE of state-of-the-art devices is continually

reduced, non-local behavior becomes a critical issue
in the simulation of these structures. The well established
drift-diffusion (DD) model [1] which is still predominantly
used by engineers around the world cannot cover these ef-
fects as the electron gas is assumed to be in thermal equilib-
rium with the lattice temperature. In the DD approach the
local energy can be estimated via the homogeneous energy
flux equation (e.g., (53) with V - (nS) and 9; set to zero).
However, for rapidly increasing electric fields the energy
lags behind the electric field because it takes the carriers
some time to pick up energy from the field. A consequence
of the lag is that the maximum energy can be much smaller
than the one predicted by the homogeneous energy flux
equation. Furthermore, this lag gives rise to an overshoot
in the carrier velocity because the mobility depends to first
order on the energy and not on the electric field. As the
mobility p has not yet been reduced by the increased en-
ergy but the electric field is already large, an overshoot
in the velocity v = pE is observed until the carrier en-
ergy comes into equilibrium with the electric field again.
Thus, DD simulations predict the same velocity profile as
for slowly varying fields which can dramatically underesti-
mate the carrier velocities. Similar to the mobility, many
other physical processes are more accurately described by a
local energy model rather than a local electric field model.
Therefore the assumption of a fixed energy-field relation
can cause unphysical results when used to predict, for ex-
ample impact ionization. To overcome these limitations of
the DD model, extensions have been proposed which ba-
sically add an additional balance equation for the average
carrier energy [2], [3]. Furthermore, an additional driving
term is added to the current relation which is proportional
to the gradient of the carrier temperature. Several differ-
ent formulations have been proposed which vary consid-
erably in complexity. Furthermore, these equations have
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been extended to handle non-homogeneous materials and
non-parabolicity effects. In the following, we review some
of the basic assumptions underlying these models.

II. BOLTZMANN’S TRANSPORT EQUATION

Transport equations used in semiconductor device sim-
ulation are normally derived from Boltzmann’s transport
equation (BTE) which reads [4]

Ouf +u-Vef + 1 Vief = CIJ] (1)

for a general inhomogeneous material with arbitrary band
structure [5]. For inclusion of quantum effects equations
based on the Wigner-Boltzmann equation have been con-
sidered [6]. The group velocity u is

1
u(ka I‘) = ﬁvkg(kv I‘) (2)
which defines the inverse effective mass tensor
1 1
ﬁfl(k, r) = ﬁVk ®u(k,r) = ?Vk ® ViE(k,r) (3)

where ® denotes the tensor product [5]. In the following
we will only consider position-independent masses but per-
mit energy-dependent masses. Generalizations to position-
dependent band structures will be given in the appropriate
context. The force F exerted on the particles is generally
given as

F(k,r) = =V, E.o(r) —q(E(r) + ux B) - V,&(k,r) (4)

and depends both on k and r. Omitting the influence of
u X B (see [7] for a treatment of this term) and assuming
homogeneous materials, F simplifies to

F(r) = —qE(r) (5)

The BTE is an equation in the seven-dimensional phase
space which is prohibitive to solve for engineering appli-
cations. Monte-Carlo (MC) simulations have been proven
to give accurate results but are restrictive time consuming.
Furthermore, if the distribution of high-energetic carriers
is relevant, or if the carrier concentration is very low in
specific regions of the device, MC simulations tend to pro-
duce high variance in the results. Therefore, a common
simplification is to investigate only some moments of the
distribution function, such as the carrier concentration and
the carrier temperature. We define the moments of the dis-
tribution function as

@) = 15 [ #7 @'k ()
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with a suitable weight function ® = ®(k). In the following
we will separate the group velocity u into a random part c
and the mean value v = (u)/(1) as u = c+v. We will write
all moment equations introducing the following symbols [8]

n=(1) (7)
p= (k) ®)
1 J

v=_{u)= o (9)
w=1() (10)
S = %(ué‘) (11)
Q= o (m(k)c*v) (12)
A 1

T= kB—n<m(k)C ®c) (13)
ﬁ:$M®m (14)
R= %(hu@kﬁ) (15)

Furthermore, we will employ an isotropic effective mass
approximation via the trace of the mass tensor as [9]

x—1

! = S () (16)

III. BAND STRUCTURE

The simplest approximation for the complex band struc-
ture is a parabolic relationship between the energy and the
crystal momentum

_ RPK?

T omx

&

(17)

which is valid for energies close to the band minimum. A
first-order non-parabolic relationship was given by Kane
[10] as

R2k2

2m*

El+a&)= (18)
with « being the non-parabolicity correction factor. This
gives the following relationship between momentum and
velocity [11]

hk = m*(1 4 2aé)u (19)
and between energy and velocity
1
5::§a<(172awfu2yﬂﬂ—fl) (20)

which reduce to their parabolic counterparts for a = 0.
Expansion of the square root in (20) yields terms in as-
cending powers of velocity which are not negligible when
averaged. This is problematic because these quantities are
additional unknowns representing higher-order moments of
the velocity distribution. Although (18) is an improvement
over (17) it is nevertheless a crude approximation for real
band structures at higher energies.
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IV. STRATTON’S APPROACH

One of the first derivations of moment equations was
performed by Stratton [2]. First, the distribution function
is split into its even and odd parts as

f(kvr) = fO(kar) +f1(k7r)

From fi(—k,r) = —fi(k,r) it follows that (f1) = 0. As-
suming that the collision operator C' is linear and invoking
a microscopic relaxation time approximation for the colli-
sion operator

(21)

f=o
(&, 1)

Clr = (22)

the BTE can be split into two coupled equations. In par-
ticular, f; is related to fo via
fi=—-7(€ 1) (Uvrfo - %E : kao) (23)

The microscopic relaxation time is then expressed using a
power law as

E \P

&) =1(—7) 24
(€)= 24)
which allows for an explicit integration over constant en-
ergy surfaces. When fy is assumed to be a heated

Maxwellian distribution, the following equation system is
obtained

V-J =q(0n+ R) (25)
J = qunE + kgV (nuT},) (26)
3 3 T,—T
V.S =—2kpd,(nTy) +E-J— Skgn L (27)
2 2 Te
5 ks
S=-— (5 - P) (lkaTnE + ?V(nﬂTn)) (28)
(26) is frequently written as
kB kB
J:qu@E+—4QVn+——M1+wﬁVR) (29)
q q
with
T, 8 a1
vo=2b = T8 (30)

u 0T, OlnT,

which is commonly used as a fit parameter with values
—0.5...—1.0. For v, = —1.0, the thermal diffusion term
disappears. Under certain assumptions [2], [12] p = —w,,.
The problem with expression (24) for 7 is that p must be
approximated by an average value to cover the relevant
scattering processes. However, this average depends on
the doping profile and the applied field and thus no unique
value for p can be given.

V. BL@TEKJAER'S APPROACH

Blgtekjeer [3] derived conservation equations by taking
the moments of the BTE using the weight functions 1, fik,
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and &£ without imposing any assumptions on the form of the
distribution function. These weight functions ® define the
moments of zeroth, first, and second order. The resulting
moment equations can be written as follows [8]

on  +V-(nv) =nC, (31)
di(np) + V- (nU) —nF  =nC, (32)
O(nw) + V- (nS) —nv-F =nCg

Note that these expressions are valid for arbitrary band
structures, provided that the carrier mass is position-
independent. When F is allowed to be position-dependent,
additional force terms appear in (31)-(33) [13]. The colli-
sion terms are usually modeled with a macroscopic relax-
ation time approximation as

Cn:fE(RfG):f—U (34)
__b

Cr=—r (35)
- 7’[1)7’11)0

Ce = - (36)

which introduces the relaxation times 7, and 7¢. A discus-
sion on this approximation is given in [14]. This equation
set is not closed as it contains more unknowns than equa-
tions. Closure relations have to be found to express the
equations in terms of the unknowns n, v, and w. Due to
the strong scattering the temperature tensor is normally
assumed to be isotropic and is approximated by a scalar
T, as

T T Tzz T Tzz T
T~T,I= %I (37)

Traditionally, parabolic bands were assumed which gives
the following closure relations for p, U, and w

p=m'v (38)
IAJ:W; uou) =kgT,l+m'vev (39)
3 m*v?
— 2k T, 4
w 5 Bin + 9 (40)

Note that the random component of the velocity has zero
average ((c) = 0). With (38) one obtains the following
formulation for C,

Vv
C,=——= A\

41
Tp Tp I (41)

For modeling purposes it is advantageous to lump m* and
Tp into one new parameter, the mobility p. As signal
frequencies are well below 1/(277,) ~ 10'? Hz the time
derivative in (32) can safely be neglected.

Furthermore, a suitable approximation for the energy
flux density nS has to be found and different approaches
have been published. Blgtekjaer used

nS = (w + kT )nv + nQ (42)
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and approximated the heat flux nQ by Fourier’s law as

nQ = —k(T,)VT, (43)
in which the thermal conductivity is given by the
Wiedemann-Franz law as

K(Ty) = (g —p) (%B)QqunTn

(44)
where p is a correction factor. As has been pointed out [8],
this expression is problematic as (43) only approximates
the diffusive component of nQ. For a uniform temperature
VT, = 0 and thus Q = 0 which is not plausible. The
convective component Qcony must be included to obtain
physical results when the current flow is not negligible.

With these approximations (31)-(33) can be written in
the usual variables as [15]

V.J =q@n+U) (45)
Ty, I _
1=y (J ® n) — ukpV(nT,) + quuE (46)
V~(nS):76t(nw)+E~anw;wO (47)
&

nS = — - (w+ knT,)d — £(T,)VT, (48)
q

to give the full hydrodynamic model (FHD) for parabolic
band structures. This equation system is similar to the
Euler equations of gas dynamics with the addition of a
heat conduction term and the collision terms. It describes
the propagation of electrons in a semiconductor device as
the flow of a compressible, charged fluid. This electron gas
has a sound speed v, = \/kpT,,/m*, and the electron flow
may be either subsonic or supersonic. With T}, = 717, and
Tr, =300 K, v, = v/£1.3-107 cm/s while for T, = 77 K,
ve = /£6.6- 105 cm/s [16].

In the case of supersonic flow, electron shock waves will
in general develop inside the device [16]. These shock
waves occur at either short length scales or at low temper-
atures. As the equation system is hyperbolic in the super-
sonic regions, special hyperbolic methods have to be used
[16], [17], [18], [19]. Furthermore, the traditionally applied
Scharfetter-Gummel [20] discretization scheme and its ex-
tension to the energy-balance and energy-transport models
[21], [22], [23], [24] cannot be used for this type of equa-
tion. One approximation is to treat the convective term as
a perturbation by freezing its dependence on the state vari-
ables at each linearization step and using the values from
the last iteration [25]. However, this approach will degrade
the convergence in cases where the variation in space or
time is important [26]. Thus, to derive a spatial discretiza-
tion, fluid dynamics methods known as upwinding are used
[26]. Furthermore, the handling of the boundary conditions
becomes more difficult [19], [27].

When the convective term

%v. (J® %) (49)

Lviv-Slavsko, Ukraine, VI-th International Conference the Experience of Designing and Application of CAD Systems in Microelectronics



22

is neglected, a parabolic equation system is obtained which
only covers the subsonic flow regions. This is a very com-
mon approximation in todays device simulators. Further-
more, the contribution of the velocity to the carrier energy
is frequently neglected

3

w R §kBTn (50)

which then results in the following equation system
V- -J=q0mn+0) (51)
J = pkgV(nT,) + qnuE (52)

3k 3k T, — T
V-(nS) = —20,(nT,) +E-J —n—2"—"L (53

2 2 Te
5k T,
ns = — 2}3 J — k(T,)VT, (54)
q

(51)-(54) form a typical three moment energy-transport
(ET) model which has been closed using Fourier’s law.

To overcome the difficulties associated with the Fourier
law closure (43), the fourth moment of the BTE has been
taken into account [28] which gives

V- (nR)—n(wl 4+ U) - F= nC,¢ (55)

where the time derivative has been ignored using a simi-
lar argument to (32). The collision term in (55) can be
modeled in analogy to (41) as

qS

which gives

= B i+ 0) v+ 22 (wl + 0) - V(nU) — V(nR
§ =L (wl+0) +qn(( 1+ 0) Vi) - v( R))

Now a closure relation for R has to be introduced, which
can be, for example, obtained by assuming a heated
Maxwellian distribution which gives

. 5 .
R= 51{2}3231 (58)
Using closure (58) and the same approximations that led
to the three moments ET model (51)-(54), a more accurate
expression for nS is obtained from the fourth moment of
the BTE

nS =

5 kT, 5k
,&_B_J,M_S_( B (59)

2
— ) qunT,, VT,
B2 q w2 q)

which should be used to replace (54) to give a four mo-
ments ET model. Comparing (59) with (54) reveals that a
consistent three moment ET model can be obtained with
s/ =1 and p = 0. However, ug/u strongly depends on
the carrier temperature and shows a pronounced hystere-
sis as shown in Fig. 1 where the points B and D are from
the rising and decreasing temperature regions, respectively
(see Fig. 3 for details). The energy relaxation time and the
momentum relaxation time are shown in Fig. 2 and both
are not single valued functions of the temperature.

CADSM*2001 Proceedings

1.2

— ps/p
1.1} :

0.9 r
0.8

0.7

0.6

2000 3000

T, [K]

0 1000 4000

Fig. 1. Ratio of ug and p as a function of the carrier temperature
inside the nt-n-nt test-structure obtained from MC simulations.
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Fig. 2. Relaxation times as a function of the carrier temperature

inside the nt-n-nt test-structure obtained from MC simulations.
VI. COMPARISON

One of the extensively discussed differences between
Blgtekjeer’s (A1) and Stratton’s (A2) approach is that in
A2 the mobility stands inside the gradient whereas in Al
it stands infront of the gradient in the current relation

Blgtekjeer (Al): 1 V(nTy)
Stratton  (A2):  V(np2Ty)

This issue was addressed by Stratton himself [29] and by
Landsberg [30], [31]. It is important to note, that although
this parameter is called mobility in both approaches, their
definition differs significantly. Tang et al. [32] compared
both approaches and found that both formulations are jus-
tified, provided that the respective mobilities are modeled
accordingly. For bulk simulations the mobilities are equal
and can be properly modeled using conventional energy-
dependent expressions [33], [34]. However, in inhomoge-
neous samples where the electric field varies rapidly, the
mobilities are no longer single-valued functions of the aver-
age carrier energy. The advantage of the p; formulation lies
in the fact, that for increasing values of the electric field,
it can be roughly approximated by its bulk value whereas
1o is always different. Thus u; can be expected to be more
suitable because in most commercial simulators the mobil-
ity is modeled as a function of the carrier energy only. By
expressing C,, empirically as

C,=C;+)\V-U (60)

Lviv-Slavsko, Ukraine, VI-th International Conference the Experience of Designing and Application of CAD Systems in Microelectronics



CADSM*2001 Proceedings

where Cj is the homogeneous component and A, a dimen-
sionless transport coefficient, Tang et al. [35] showed that
A2 can be obtained from Al with A\, = —v,. Other com-
parisons of the two approaches can be found in [12], [32],
[36], [37], [38].

VII. NON-PARABOLICITY EXTENSIONS

The general hydrodynamic equations (31)-(33) are valid
for any band structure as F depends only on the spatial
gradient of the dispersion relation. However, parabolic-
ity assumptions are invoked to derive the closure relations
(38)-(40). On the other hand, non-parabolicity effects en-
ter the HD equations through the models used for the col-
lision terms. A good example is the mobility whose homo-
geneous values are frequently obtained through measured
v(E) characteristics. This mobility contains the full infor-
mation of a real band structure, something which is much
more difficult to obtain with MC simulations where the
mobility has to be modeled using microscopic scattering
rates [39]. As pointed out in the discussion of (20), there
is no analytic relationship between the (£) and v in the
general case. For parabolic bands the carrier temperature
is normally defined via the average carrier energy as

T = gy (€= 757)

Unfortunately, there is no similar equation for non-
parabolic bands. Another possibility is to define the tem-
perature via the variance of the velocity as [9]

(61)

*

m

T* — 2
3

(62)

Definitions (61) and (62) are consistent with the ther-
modynamic definition of the carrier temperature in ther-
modynamic equilibrium and both are identical for non-
equilibrium cases when a constant carrier mass is assumed
which in turn corresponds to the assumption of parabolic
energy bands. However, large differences are observed
when a more realistic band structure is considered [9], [40].

A. The Generalized Hydrodynamic Model

Thoma et al. [9], [40] proposed a model which they
termed ’generalized hydrodynamic model’. Instead of us-
ing the average energy and the temperature as variables
in their formulation, they opted for a temperature-only
description. To obtain a form similar to standard mod-
els, they defined the temperature according to (62) which
differs significantly from (61) for non-parabolic bands. In-
stead of the momentum weight functions 7k and 7kE, they
used u and u€ to derive the moment equations of order one
and three. Without assuming a Kane dispersion they de-
rived the following equations for the current and energy
flux density

J= Li,u*kBV(nT*) + qu*nE
T

K2

(63)

23
3k kg T* —T
V-(nS)=—-220,(nT*)+E-J—n=2— "L (64)
2 2 TE
_ _MsbkeT™ «Ti .
ns = 20 (J+u Ti*nkBVT) (65)

All relaxation times and mobilities are modeled as a func-
tion of T* and explicit formulas were given in [41]. The
advantage of this formulation is that it can be applied to
arbitrary band structures. Thoma et al., however, used
parameters extracted from MC simulations employing the
Kane dispersion relation.

B. Model of Bordelon

Another non-parabolic formulation was derived by Bor-
delon et al. [42], [11] which explicitly assumed a Kane
dispersion. They used the weight functions 1, Ak and &
and closed the system by ignoring the heat flux. To avoid
the problem with the missing energy-temperature relation,
they formulate their equation system solely in w. By in-
troducing the function H(w) = (1 4+ aw)/(1 + 2cw) in the
approximation for U [37] they obtain

3= u%V(an(w)) + qunE (66)
3
nS = —Q(w)wa (67)

with Q(w) ~ 1.3. In the comparison made by Ramaswami
et al. [37] the predicted v and S curves agree quite well
with the MC data, even with this simplified model for S.

C. Model of Chen

In [43], Chen et al. published a model which they termed
‘energy transport model’. They tried to include non-
parabolic and non-Maxwellian effects to a first order. Their
approach is based on Stratton’s model and the use of
Kane’s dispersion relation. Their Ansatz contains a non-
Maxwellian factor « which, however, does not show up in
the final equations which read

J =kgV(nuTy,) + qunE (68)
k% 2
nS = —-C, (/kaTmE + EV(TLNTm)) (69)
with
_ 5 kBaTm
Co=(5-2)(1-=57) (70)
5 3
(€) = (1+ SakeT, ) Skl (71)

Sadovnikov et al. [41] showed that Chen’s model fails to
predict proper velocity profiles and is not consistent with
homogeneous simulation results.

D. Model of Tang

Tang et al. [35] gave very elaborate expressions for Ij, P
and R to close the equation system. Their discussion aims
at a correct handling of the inhomogeneity effects normally
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ignored. By observing that (U—v®p) and (R+2.5wvQp)
show nearly no hysteresis for an n™-n-n* test-structure
they proposed the following closure relations

N 2 . o

U= gw1+v®p+u(w)1 (72)
p = m*v +2am*S (73)
-~ 10 o R

R = §w21 —25wv @ p + r(w)l (74)

with u(w) and r(w) being single-valued fit-functions. They
used a Kane dispersion for the MC simulation which might
somehow limit the validity of the expressions above. Un-
fortunately, the additional convective terms are likely to
cause numerical problems in an actual multi-dimensional
implementation.

E. Model of Smith

In [44] Smith et al. derived two non-parabolic equation
sets for inhomogeneous and degenerate semiconductors (see
also [45], [46]). They used both the Kane dispersion and a
simpler power-law approximation after Cassi and Ricco [47]
because the Kane dispersion relation cannot be integrated
analytically. They showed that the typically employed bi-
nomial expansion of the Kane-integrands looses its validity
and physically not consistent results are obtained. The
power-law approximation, on the other hand, approaches
the parabolic limit and has a larger range of validity.

F. Model of Anile

Anile et al. [48] and Muscato [49] derived expressions for
the closure U and R using the maximum entropy princi-
ple. In addition, they were able to derive expressions for
the collision terms. They found that their model fulfills
Onsagers reciprocity principle and gave a comparison with
other hydrodynamic models.

G. Comparison

A comparison of the simple ET model with the expres-
sions given by Thoma et al., Lee et al., Chen et al., and
Tang et al. for Si bipolar transistors is given by Sadovnikov
et al. [41] who observed no significant differences in the sim-
ulated output characteristics.

VIII. EXTENSIONS FOR SEMICONDUCTOR ALLOYS

The derivations given above are restricted to homoge-
neous materials where the effective carrier masses and the
band edge energies do not depend on position. Over the
last years extensive research has been made concerning III-
V materials and SiGe heterostructure devices. Especially
for III-V materials inclusion of the carrier temperature in
the transport equations is considered a must. State-of-
the-art I1I-V heterostructure transistors employ many dif-
ferent combinations of materials. In addition differently
graded profiles have been used. SiGe bipolar transistors
with graded Ge profiles in the base have also been widely
investigated. To properly account for the additional driv-
ing forces due to changes in the effective masses and the
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band edge energies the energy-transport models have been
extended accordingly. The foundation for these extensions
was laid in the pioneering work by Marshak for the drift-
diffusion equations [50], [51]. These concepts have been ap-
plied to the energy-transport models by Azoff in [5], [52],
[13]. In the case of a position-dependent parabolic band
structure, the force exerted on an electron is given as

v *

m
m*

F=-VE.+¢&

(75)

These additional forces give rise to an additional compo-
nent in the current relation and the electric field is replaced
by an effective electric field which also contains the gradient
of the band edges.

2
J=unVE, + guV(nw) — pnwV In(m™) (76)
5J 10

An extension to non-parabolic bandstructures has been
presented by Smith et al. [44], [45].

IX. MuLTIPLE BAND MODELS

Blgtekjeer’s [3] equations were originally devised for semi-
conductors with multiple bands. Woolard et al. [53],
[54] extended these expressions for multiple non-parabolic
bands in GaAs. Other GaAs models can be found in [55],
[56]. Wilson [57] gave an alternate form of the hydrody-
namic model which he claims to be more accurate than [3].
Another multivalley non-parabolic energy-transport model
was proposed in [58].

X. BAND SPLITTING MODELS

As device geometries are further reduced without accord-
ing reduction of the supply voltages, the electric fields oc-
curring inside the devices increase rapidly. Furthermore,
strong gradients in the electric field are observed. These
highly non-homogeneous field distributions give rise to dis-
tribution functions which deviate significantly from the fre-
quently assumed Maxwellian distribution. Furthermore, as
has been pointed out in [59], the distribution function is
not uniquely described using just the average carrier en-
ergy. This is depicted in Fig. 3 which shows some electron
distribution functions inside an n*-n-n™ test-structure ob-
tained by MC simulation. Points ABC are in the channel
while the points D and E are taken from the drain region.
In the drain region, the overpopulation of the high-energy
tail is obvious, whereas in the channel it is underpopulated,
showing a significant thermal tail [60].

Several moment based models have been proposed so far
which aim at obtaining some additional information about
the DF to the average energy. One approach is to split the
energy range at some characteristic energy and handle both
energy ranges with a two-population and two-temperature
model [61], [62]. As these models were aimed at model-
ing impact ionization the band gap energy was taken as
the characteristic energy. This approach leads to various
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Fig. 3. Electron temperature and distribution function five charac-
teristics points inside the nt-n-n™ test-structure. Note that the
average energies at the points B and D are the same.

additional macroscopic parameters which model the tran-
sitions between the two energy regions. Determination of
these parameters relies on carefully set up MC simulations.
Due to this specialization to impact ionization, this model
would have to be reformulated if another energy range is
of interest as is the case for the calculation of gate cur-
rents. Thus this approach is difficult to generalize if both
effects need to be captured at the same time which is de-
manded for state-of-the-art devices. A special formulation
using two electron populations has been proposed in [63]
for those regions where the high-energy tail is heavily pop-
ulated. In [64] Tang gave a simplified version of the two
energy model [61] which used assumptions similar to those
made by Cook and Frey [65].

XI. ELECTRO-THERMAL EXTENSIONS

One of the problems resulting from the reduction in de-
vice geometries is that the generated heat has to be kept
to a minimum. To capture these self-heating effects, the
moment equations have to be extended to account for non-
constant lattice temperature. A detailed treatment of this
subject was given by Wachutka [66] for the classical DD
equations. Chen et al. gave an extension for the energy-
transport models in [67]. Benvenuti et al. introduced a
thermal-fully hydrodynamic model in [26]. A detailed dis-
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cussion can be found in [68].

XII. CRITICAL ISSUES

The models given above employ various approximations
of different severity. As these approximations have been
discussed extensively in literature, they will be summarized
in the following sections.

A. Closure

The method of moments transforms the BTE into an
equivalent, infinite set of equations. One of the severest
approximation is the truncation to a finite number of equa-
tions (normally three or four). The equation of highest
order contains the moment of the next order which has
to be suitably approximated using available information,
typically the lower order moments. Even though no form
of the distribution function needs to be assumed in the
derivation, an implicit coupling of the highest order mo-
ment and the lower order moments is enforced by this clo-
sure. For their generalized HD model, Thoma et al. [9],
[40] give a maximum error of 30% which can be quite sig-
nificant. One approach to derive a suitable closure rela-
tion is to assume a distribution function and calculate the
fourth order moment. Geurts [69] expanded the distribu-
tion function around drifted and heated Maxwellian dis-
tribution using Hermite polynomials. This gives a closure
relation which generalizes the standard Maxwellian closure.
However, these closures proved to be numerically unstable
for higher electric fields. Liotta et al. [70] investigated a
closure using an equilibrium Maxwellian which proved to
be numerically very efficient but with unacceptable errors
for higher electric fields. For a discussion on heated Fermi-
Dirac distributions see [44], [46]. Ramaswami and Tang
[37] gave a comparison of different closure relations avail-
able in literature.

B. Tensor Quantities

An issue which has only been vaguely dealt with is the
approximation of the tensors by scalar quantities, such
as the carrier mass and the carrier temperature. One-
dimensional simulations have been carried out in [8] which
indicate that the longitudinal temperature component 7 is
larger than the transverse temperature component 7%, indi-
cating that the distribution function is elongated along the
field direction and thus that the normally assumed equipar-
tition of the energy is invalid. A rigorous approach has been
taken by Pej¢inovié et al. [71] who model four components
of the temperature tensor. They observed no significant
difference between the scalar temperature and tr (T,)/3 for
ballistic diodes and bipolar transistors but a 15 % differ-
ence for aggressively scaled MOSFETs in the linear region
of the transfer characteristics.

Tang et al. [35] observed that the energy tensor is not
a single valued function of the average energy and give
models using available moments (see (72) and (74)).
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Fig. 4. Effect of approximation (50) on the carrier temperature and
the deviation introduced by it obtained by a MC simulation of
the nt-n-nT test-structure.

C. Drift Energy vs. Thermal Energy

Another common approximation is the neglection of the
drift energy in the average carrier energy [65]

mv? 3

3
—kpT,, ~ =kpT,,
5 T3k 9B

As has been pointed out by Baccarani and Wordeman [72],
the convective energy can reach values comparable to ther-
mal energy. A plot of the difference of these tempera-
ture definitions inside an n™-n-n* test-structure is given
in Fig. 4. As can be seen, the error introduced by this
approximation is larger than 15 % in the beginning of the
channel where the carrier temperature is still low and a ve-
locity overshoot is observed. This effect has been studied
in [73].

w =

(78)

D. Relazation Times

The relaxation times have traditionally been derived
from homogeneous field measurements or MC simulations.
For homogeneous fields, there is a unique relationship be-
tween the electric field and the carrier temperature via (47)
which can be used as a definition for 7¢. However, due to
the modeling of the collision terms, the relaxation times
depend on the distribution function. Since the distribution
function is not uniquely described by the average energy,
models based on the average energy are bound to fail. Fur-
thermore, the band structure plays a dominant role. Nev-
ertheless, all models should be able to correctly reproduce
the homogeneous limit. In the following, some models for
Si are reviewed.

D.1 Mobility

Two models for the energy dependence of the mobility
are frequently used, the model after Baccarani et al. [33],
[72]

w(Ty) Ty
Ho T T, (79)
and the model after Hansch [34], [74]
w(Ty) 3 po (kpTp 2nS\\~!
Bin) (12 222
140 ( 2 1gv2 ( q + 5 J )) (80)
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For homogeneous materials S/J = 5kpT,/(2q) which can
be used to simplify (80) as

T, k -1
wTn) _ (1+§uo B (Tn_TL))
fio 2 qrev?

As has been shown in [8], [75] expression (81) reproduces
the mobility quite well in the regions with increasing E.
However, for decreasing E, (80) should be used [§], [32].
Tang et al. [35] proposed another expression by separat-
ing the homogeneous from the inhomogeneous part of the
mobility. They suggest to model the collision term C, as

(81)

J J

nC,=>="=—+\nV-U (82)
w

with p* being the homogeneous mobility. The second
term of (82) can then be moved to the left-hand-side of
(32) to give a Stratton-like energy gradient expression
(1 — X\,)nVU. The quantity A, has been extracted from
MC simulations as

0.15
)\ =
P {0.50

In [76] Tang et al. give an improved expression.

vU >0
vU <0

fi
or (83)
for

D.2 Energy Relaxation Time

The simplest approach at modeling 7¢ a constant approx-
imation with values in the range 0.3 — 0.4 ps. Baccarani et
al. [33], [72] proposed the expression

o 3 kBMO TnTL m*,uo Tn

T,) = In 84
7e(Tn) = 3 q@? To+ Ty 2q T (84)
Note that when
3kppolr
= SXBHOTL 85
re = (85)

is used in the Hansch mobility model [34], the Baccarani
and Hansch models are equivalent in the homogeneous case
[77]. Tt is also to note that (79) should be used together
with (84) whereas in the Hénsch approach 7¢ is only re-
quired to be independent of the temperature for (80) to
correctly predict the homogeneous limit. A comparison of
these two models is given in Fig. 5 where the differences
for the non-homogeneous case are visible. A discussion of
the inconsistencies resulting from mixing arbitrary energy-
dependent mobility and energy relaxation time models can
be found in [78].

Agostinelli et al. [79] proposed a model which is fit to
the data of Fischetti [80]

forW <04
forW > 0.4
(86)

~Yo.es

Te(W) {0.172 +2.656W — 3.448W?2
1 ps

with W = w/(1eV). Another more elaborate fit to the data
of Fischetti is given in [81]. A maximum value of 0.68 ps
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seems to be too high, and yet another fit to newer data
from Fischetti has been published by Hasnat et al. [82] as

e(W)

T 0.27 + 0.62W — 0.63W?2 4+ 0.13W?3 + 0.01W*

(87)

with a maximum value of approximately 0.42 ps. Another
expression was given by Lee et al. [8] as

Te(w) = to + tin(w) + t2 exp(—pn(w)) (88)
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with 7 = w/wy — 1 and the parameters o = 0.28 ps, t; =
3 fs, to = 2.2 ps, and B = 10.

A comparison for these energy relaxation time models is
given in Fig. 6 where the differences between the models
is obvious. Also shown is the result of our MC simulation.
Note that for the Baccarani and Hénsch models the low-
field mobility has been calculated with the expression of
Caughey and Thomas [83] using the given doping profile
and vs = 107 ecm/s. The other models offer no adjustment
of the low-field mobility which can be considered a serious
drawback and a cause for inconsistencies. A detailed com-
parison of the effects of both relaxation times and transport
models on the performance of Si bipolar transistors is given
in [41].

As the temperature profile occurring inside the device is
very sensitive to 7¢ this disagreement is rather astonishing
and further research on this topic is in order.

D.3 Energy Flux Relaxation Time

The ratio of the energy flux mobility and the mobility
Ts/Tp is usually modeled as a constant with values in the
range 0.79-1 [8], [35]. Tang et al. [35] proposed an expres-
sion in analogy to (82) by separating the homogeneous and
inhomogeneous parts. They suggest to model the collision
term C,¢ as

S .

C,ec = -
P 1

(89)

with u§ being the homogeneous energy flux mobility. Ex-
pressions for pf and A,g can be found in [35].

E. Spurious Velocity Overshoot

Models based on Blgtekjeer’s approach have been fre-
quently associated with spurious velocity overshoot (SVO),
that is, non plausible spikes in the velocity characteristics
which do not occur in MC simulations. This effect can be
seen in Fig. 5 where the SVO is clearly visible. Several
theories have been put forward to explain this effect. Some
authors argue that it is related to the hysteresis in the
mobility [59], whereas others relate it to non-parabolicity
effects [42]. Still others argue that it is related to the clo-
sure of the energy-transport equation system [73]. The
improvement obtained by the non-parabolic model [42] is
probably due to the improved closure relation for R. As
already argued by [73], SVO is not likely to be caused only
by the mobility because the mobility is not properly mod-
eled in the whole V- U < 0 region and SVO is restricted
to a very small area. Lee et al. [8] investigated SVO using
different mobility models and found that improvement is
possible when proper mobility models are used. For ex-
ample, with the Hinsch mobility model (80) these spikes
are strongly diminished but not completely removed. Un-
fortunately, our own MC simulations show that (80) also
overestimates the real velocity overshoot at the beginning
of the channel. Chen et al. [84] proposed a model based on
Stratton’s approach. In their simplified analysis they used
Baccarani’s mobility model which gives v, = —1 in (30)
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and thus removes any thermal diffusion current inside the
whole device which is definitely unphysical [35].

XIII. VALIDITY OF MOMENT BASED MODELS

When the critical dimensions of devices shrink below a
certain value (around 100 nm for Si at room temperature)
MC simulations reveal strong off-equilibrium transport ef-
fects such as velocity overshoot and quasi-ballistic trans-
port. So the range of validity for moment based models
has been extensively examined. Furthermore, with shrink-
ing device geometries quantum effects gain more impor-
tance and limit the validity for the BTE itself [85]. Banoo
et al. [86] compared the results obtained by (51)-(54) with a
DD model and a solution of the BTE obtained by using the
scattering matrix approach. They found that this energy-
transport model dramatically overestimates both the drain
current and the velocity inside the device. Tomizawa et
al. [87] found through a comparison with MC simulations
that relaxation time based models tend to overestimate
non-stationary carrier dynamics, especially the energy dis-
tribution. Nekovee et al. [88] compared moment hierar-
chy based models with a solution of the BTE and found
that moment based models fail in the prediction of ballistic
diodes because the moment hierarchy converges to slowly.
A similar conclusion was drawn by Liotta et al. [70] who
found that a hierarchy containing 12 moment equations
was needed to reproduce results similar to those obtained
by spherical harmonics expansions.

XIV. SIMPLIFIED MODELS

Despite of the limitations and approximations contained
in the moment equations given above, the solution proce-
dure can be quite involved. Thus several authors tried
to find suitable approximations to simplify the analy-
sis. These approximations were frequently used in post-
processors to account for an average energy distribution
different from the local approximation. Slotboom et al. [89]
used this technique to calculate energy-dependent impact
ionization rates via a post-processing model. Cook et
al. [65], [90] proposed a simplified model by using the ap-
proximations v, > vy and E,; > F, in a two-dimensional
Si MESFET to yield

or 20"

ow 21 9 /40 m*(w — wp)
E, - o ( (90)

b o\ 1/2
Dmw T W) | 2R )
9 vTeTy taks

Thus, the energy balance equation and the continuity equa-
tion become decoupled and the complexity of the problem
is considerably reduced. Approximations for GaAs were
also given. Although these approximations might have de-
livered promising results, progress in the size-reduction of
state-of-the-art devices makes the assumptions v, > v,
and E; > F, questionable. In particular, for deep-
submicron MOSFETSs, velocity overshoot influences the
electric field distribution for a given bias condition, and
effectively defines a higher drain saturation voltage which
in turn defines a higher current [91].
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To bring the energy-transport equations into a self-
adjoint form Lin et al. [92] approximated the carrier tem-
perature in the diffusion coefficient by the lattice temper-
ature as

J=pukg T, Vn+ pkgnVT, +qnuE 91
pkp pkp qnp (91)

~Tr,

which will underestimate the diffusion current by a factor
of =~ 10 — 20 for state-of-the-art devices and can therefore
not be recommended.

XV. CONCLUSIONS

Many different hydrodynamic and energy-transport
models have been published so far. They rely on either
Stratton’s or Blgtekjeer’s approach to find a suitable set of
balance and flux equations. In Stratton’s approach there
is no need to invoke Fourier’s law to close the equation
system due to the relationship (23). Blgtekjeer used only
three moments and closed the equation system by approx-
imating the heat flux with Fourier’s law. This closure has
frequently been replaced by equations obtained from the
fourth moment of the BTE.

Uncertainties are introduced by the approximation of the
collision terms which are modeled via relaxation times and
by the derivation of closure relations. Expression for these
are normally extracted from homogeneous MC simulations.
As has been clearly shown, homogeneous MC simulation
data are not sufficient for the simulation of state-of-the-art
devices as neither the relation times nor the closure rela-
tions are single-valued functions of the average energy. This
used to be one of the advantages of the macroscopic trans-
port models over the MC method because measured u(E)
characteristics could be directly incorporated into the sim-
ulation which is not possible for the microscopic approach
taken in the MC method. Unfortunately, data for inhomo-
geneous situations are difficult to extract from measure-
ments due to the complex interaction between the various
parameters. Therefore, MC simulations of n*-n-n™ test-
structure were performed to extract the desired data.

Another problem is directly related to the MC simula-
tions itself. As has been frequently reported, the results
obtained by available MC codes differ significantly [93].
Especially impurity scattering is difficult to model [94] and
any error in the mobility influences the simulated energy
relaxation times were large differences were found in the
published data.
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