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State-of-the-art devices are characterized by the occurence of large gradients in the elec-
tric field. Due to the complex doping profiles which utilize ultra-shallow junctions to ob-
tain an optimum trade-off between short-channel effects and parasitic resistances, two-
dimensional numerical simulation of these structures is mandatory. From the modeling
point of view, non-local and quantum effects gain more and more importance which need
to be properly accounted for. We review the requirements for successful numerical simu-
lation of these semiconductor devices. In addition, we give an overview of recent activities
concerning device calibration and inverse modeling since inverse modeling of the doping
profile in conjunction with calibration of the model parameters has proven to be an effective
method of two-dimensional doping profile extraction.

INTRODUCTION

Continuous advances over the past years in integrated circuit technology impose new challenges on
modeling of fabrication processes and electrical behavior of semiconductor devices. The routine utilization
of process and device simulation has become indispensable for the development and redesign of ULSI
devices as well as for power devices.
Device simulation based on the self-consistent solution of the basic semiconductor equations dates back
to the famous work of Gummel in 1964 [1]. Since then numerical device modeling has been applied to
nearly all important devices. The current relations responsible for modeling carrier transport through a
device have been frequently subject of discussions, in particular in view of their applicability to submicron
devices. It has been argued that the classical drift-diffusion (DD) approach [2] looses its validity for devices
smaller than 1 µm because non-local effects gain more importance. Nevertheless, most of the routinely
performed simulations still employ the DD model and successful simulation of devices as small as 40 nm
has been reported [3]. The reasons why the DD model still gives fairly accurate results even though some
fundamental underlying assumptions are definitely violated has been a permanent issue of discussion and
a recent study on its validity can be found in [4]. One reason for the lasting popularity of the DD model is
its simplicity and the stability of the available implementations. In addition, device and circuit designers are
mainly interested in integral quantities, for instance the contact currents, which can be reproduced with
reasonable accuracy when some parameters of the mobility model are accordingly adjusted. We review
some hydrodynamic and energy-transport models which have been proposed to overcome the limitations
of the DD model. Furthermore, we point out the most important effects which have to be considered when
deep-submicron devices are simulated.
The calibration of model parameters is one of the routine tasks to be performed by device engineers. For
the calibration of device models a proper description of the device in terms of doping profiles and
geometries is required. Calibration of process simulators can be achieved by using measured doping
profiles or by employing a follow-up device simulation. The latter has become known as inverse modeling
of doping profiles and several successful algorithms have been published so far. Care must be taken that
empirical models used in the device simulator do not affect the extracted doping profiles. We review some
of these algorithms and point out their basic difficulties.

DEVICE SIMULATION

A device of a modern ULSI circuit is characterized by large electric fields in conjunction with steep
gradients of the electric field and of the carrier concentrations. The DD model cannot cover non-local
effects as the electron gas is assumed to be in thermal equilibrium with the lattice temperature. For rapidly
increasing electric fields the energy lags behind the electric field because it takes the carriers some time to
pick up energy from the field. This lag gives rise to an overshoot in the carrier velocity because the mobility
depends to first order on the energy and not on the electric field. Thus, DD simulations predict the same
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velocity profile as for slowly varying fields which can dramatically underestimate the carrier velocities.
Similar to the mobility, many other physical processes are more accurately described by a local energy
model rather than a local electric field model. Therefore the assumption of a fixed energy-field relation can
cause non-physical results when used to predict, for example impact ionization. Sophisticated device
models, such as the hydrodynamic and energy-transport models ([5][6]), the spherical harmonics
expansion method ([7][8]) and the Monte-Carlo technique ([9][10][11]), aim for overcoming the limitations
of the established DD model. However, the increased physical rigor of a model comes at the expense of
increased demand on computation time. This fact prevented wide spread application of the models in the
past, and probably in the near future. In addition, the modeling task becomes more complex due to the
large number of parameters required by these models.

A. HYDRODYNAMIC AND ENERGY-TRANSPORT MODELS

Monte-Carlo (MC) simulations have been proven to give accurate results but are often prohibitively time
consuming. Therefore, a common simplification is to investigate only some moments of the distribution
function, such as the carrier concentration and the carrier temperature. Extensions to the DD model have
been proposed which basically add an additional balance equation for the average carrier energy [5][6].
Furthermore, a term is added to the current relation which is proportional to the gradient of the carrier
temperature. Several different formulations have been proposed which vary considerably in complexity.
Extension to handle non-homogeneous materials and non-parabolicity effects have also been given
[12][13][14].
Transport equations used in semiconductor device simulation are normally derived from Boltzmann’s
transport equation (BTE) which reads [15]

∂f

∂t
+ u · ∇rf +

F
h̄
· ∇kf = C[f ] (1)

for a general inhomogeneous material with arbitrary band structure [16]. For inclusion of quantum effects
equations based on the Wigner-Boltzmann equation have been considered [17]. The group velocity u

u(k, r) =
1
h̄
∇kE(k, r) (2)

defines the inverse effective mass tensor

m̂−1(k, r) =
1
h̄
∇k ⊗ u(k, r) =

1
h̄2∇k ⊗∇kE(k, r) (3)

where ⊗ denotes the tensor product [16]. In the following we will only consider position-independent
masses but permit energy-dependent masses. Generalizations to position-dependent band structures will
be given in the appropriate context. The force F exerted on the particles is generally given as

F(k, r) = −∇rEc,0(r)− q(E(r) + u×B)−∇rE(k, r) (4)

and depends both on k and r. Omitting the influence of u×B (see [18] for a treatment of this term) and
assuming homogeneous materials, F simplifies to

F(r) = −qE(r) (5)

The BTE is an equation in the seven-dimensional phase space which is too demanding to solve for
engineering applications. Therefore, a common simplification is to investigate only some moments of the
distribution function which are defined as 〈Φ〉 =

∫
Φf d3k/(4π3) with a suitable weight function Φ = Φ(k).

The simplest approximation for the complex band structure is a parabolic relationship between the energy
and the crystal momentum

E =
h̄2k2

2m∗
(6)

which is valid for energies close to the band minimum. A first-order non-parabolic relationship was given
by Kane [19] as

E(1 + αE) =
h̄2k2

2m∗
(7)
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with α being the non-parabolicity correction factor. This correction is frequently used for the derivation of
non-parabolic energy-transport models [13][14]. Bløtekjær [5] derived conservation equations by taking
the moments of the BTE using the weight functions 1, h̄k, and E without imposing any assumptions on the
form of the distribution function. These weight functions Φ define the moments of zeroth, first, and second
order. In his original work Bløtekjær used Fourier’s law to close the equation system which has been
shown to be problematic, see for instance [20]. To overcome this shortcoming, the fourth moment of the
BTE has been taken into account (see for example [21]) which gives the following moment equations [22]

∂n

∂t
+∇ · (nv) = nCn (8)

∂(np)
∂t

+∇ · (nÛ)− nF = nCp (9)

∂(nw)
∂t

+∇ · (nS) − nv · F = nCE (10)

∂〈h̄kE〉
∂t

+∇ · (nR̂) − n(wÎ + Û) · F = nCpE (11)

with

n = 〈1〉 p =
1
n
〈h̄k〉 v =

1
n
〈u〉 = − J

qn
w =

1
n
〈E〉 (12)

S =
1
n
〈uE〉 T̂ =

1
kBn
〈m(k)c⊗ c〉 Û =

1
n
〈h̄u⊗ k〉 R̂ =

1
n
〈h̄u⊗ kE〉 (13)

Note that these expressions are valid for arbitrary band structures, provided that the carrier mass is
homogeneous. When F is allowed to be position-dependent, additional force terms appear in (8)-(10) [23].
The collision terms are usually modeled with a macroscopic relaxation time approximation as

Cn = − 1
n

(R−G) = − 1
n
U Cp = −qv

µ
CE = −w − w0

τE
CpE = −qS

µS
(14)

which introduces the energy relaxation time τE and the mobilities µ and µS . A discussion on this
approximation is given in [24]. This equation set is not closed as it contains more unknowns than
equations. Closure relations have to be found to express the equations in terms of the unknowns n, v, and
w. Due to the strong scattering the temperature tensor is normally assumed to be isotropic and is
approximated by a scalar T̂ ≈ TnÎ. Traditionally, parabolic bands were assumed which gives the following
closure relations for p, Û, and w

p = m∗v Û =
m∗

n
〈u⊗ u〉 = kBTnÎ +m∗v ⊗ v w =

3
2

kBTn +
m∗v2

2
(15)

With these equations a so-called hydrodynamic equation system is obtained which contains a convective
term 〈u⊗ u〉 in the energy tensor Û. The hydrodynamic (HD) equation system is similar to the Euler
equations of gas dynamics with the addition of a heat conduction term and the collision terms. It describes
the propagation of electrons in a semiconductor device as the flow of a compressible, charged fluid. This
electron gas has a sound speed vc =

√
Tn/m∗, and the electron flow may be either subsonic or

supersonic. With Tn = ξTL and TL = 300 K, vc =
√
ξ 1.3 · 107 cm/s while for TL = 77 K,

vc =
√
ξ 6.6 · 106 cm/s [25]. In the case of supersonic flow, electron shock waves will in general develop

inside the device [25]. These shock waves occur at either short length scales or at low temperatures and
require a special treatment of the equation system. To avoid the difficulties arising from this treatment, the
convective term is normally neglected and an energy-transport model is obtained which is much simpler to
treat with as it only covers the subsonic flows. Furthermore, the contribution of the velocity to the carrier
energy is frequently neglected (w ≈ 3

2kBTn).

A.1 CRITICAL ISSUES

The method of moments transforms the BTE into an equivalent, infinite set of equations. One of the
severest approximation is the truncation to a finite number of equations (normally three or four). The
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equation of highest order contains the moment of the next order which has to be suitably approximated
using available information, typically the lower order moments. Even though no form of the distribution
function needs to be assumed in the derivation, an implicit coupling of the highest order moment and the
lower order moments is enforced by this closure. For their generalized HD model, Thoma et al. [12] give a
maximum error of 30% which can be quite significant. One approach to derive a suitable closure relation is
to assume a distribution function and calculate the fourth order moment. Ramaswami and Tang [26] gave
a comparison of different closure relations available in literature.
An issue which has only been vaguely dealt with is the approximation of the tensors by scalar quantities,
such as the carrier mass and the carrier temperature. One-dimensional simulations have been carried out
in [20] which indicate that the longitudinal temperature component Tl is larger than the transverse
temperature component Tt, indicating that the distribution function is elongated along the field direction
and thus that the normally assumed equipartition of the energy is invalid. A rigorous approach has been
taken by Pejčinović et al. [27] who model four components of the temperature tensor. They observed no
significant difference between the scalar temperature and tr (T̂n)/3 for ballistic diodes and bipolar
transistors but a 15 % difference for aggressively scaled MOSFETs in the linear region of the transfer
characteristics. Tang et al. [22] observed that the energy tensor is not a single valued function of the
average energy and give models using available moments.
Another common approximation is to neglect the drift energy in the average carrier energy [28]
w = mv2

2 + 3
2kBTn ≈ 3

2kBTn As has been pointed out by Baccarani and Wordeman [29], the convective
energy can reach values comparable to thermal energy. This effect has been studied in [30].
The relaxation times have traditionally been derived from homogeneous field measurements or MC
simulations. For homogeneous fields, there is a unique relationship between the electric field and the
carrier temperature which can be used as a definition for τE . However, due to the modeling of the collision
terms, the relaxation times depend on the distribution function. Since the distribution function is not
uniquely described by the average energy, models based on the average energy are bound to fail.
Furthermore, the band structure plays a dominant role. Nevertheless, all models should be able to
correctly reproduce the homogeneous limit. Anile et al. [31] and Muscato [32] derived expressions for the
closure Û and R̂ using the maximum entropy principle. In addition, they were able to derive expressions for
the collision terms. They found that their model fulfills Onsagers reciprocity principle and gave a
comparison with other hydrodynamic models.

B. EXTENDED MODELS

The general hydrodynamic equations (8)-(10) are valid for any band structure as F depends only on the
spatial gradient of the dispersion relation. However, parabolicity assumptions are invoked to derive the
closure relations (15). On the other hand, non-parabolicity effects enter the HD equations through the
models used for the collision terms. A good example is the mobility whose homogeneous values are
frequently obtained through measured v(E) characteristics. This mobility contains the full information of a
real band structure, something which is much more difficult to obtain with MC simulations where the
mobility has to be modeled using microscopic scattering rates [10].
Bløtekjær’s [5] equations were originally devised for semiconductors with multiple bands. Woolard et
al. [33], [34] extended these expressions for multiple non-parabolic bands in GaAs. Other GaAs models
can be found in [35][36]. Wilson [37] gave an alternate form of the HD model which he claims to be more
accurate than [5]. Another multivalley non-parabolic energy-transport model was proposed in [38].
The highly non-homogeneous field distributions found in modern devices give rise to distribution functions
which deviate significantly from the frequently assumed Maxwellian distribution. Furthermore, as has been
pointed out in [39], the distribution function is not uniquely described using just the average carrier energy.
Several moment based models have been proposed so far which aim at obtaining some additional
information about the distribution function to the average energy. One approach is to split the energy range
at some characteristic energy and handle both energy ranges with a two-population and two-temperature
model [40][41]. As these models were aimed at modeling impact ionization the band gap energy was
taken as the characteristic energy. This approach leads to various additional macroscopic parameters
which model the transitions between the two energy regions. Determination of these parameters relies on
carefully set up MC simulations. Due to this specialization to impact ionization, this model would have to
be reformulated if another energy range is of interest as is the case for the calculation of gate currents.
Thus this approach is difficult to generalize if both effects need to be captured at the same time which is
demanded for state-of-the-art devices. A special formulation using two electron populations has been
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proposed in [42] for those regions where the high-energy tail is heavily populated. In [43] Tang gave a
simplified version of the two energy model [40].

C. CONTACT MODELS

For the ever shrinking devices the influence of the contacts should no longer be neglected. Traditionally, for
ohmic contacts the potential is modeled via the built-in potential and the metal quasi-fermi level, the carrier
concentration is determined via the built-in potential and a suitable statistic, and the carrier temperature is
set equal to the lattice temperature. Especially the last assumption requires the carriers to loose their
energy before reaching the contact while a more realistic model would allow for a heat-flow over the
contact and thus a contact temperature different from the lattice temperature. Some advanced models
which capture the transition from ohmic to Schottky contacts can be found in [44][45][46]. A tunneling
contact model suitable for small raised source drain MOSFETs and Schottky source drain MOSFETs is
given in [47].

D. QUANTUM EFFECTS

When device dimensions are comparable to the de Broglie wavelength, quantum effects have to be
considered in the simulation. Especially with shrinking feature size of CMOS devices, quantum effects
become important for mainstream technology. Quantum effects at interfaces cause the continuous energy
bands to split into discrete subbands were the carriers are confined in a two-dimensional electron gas.
This has a direct impact on both the amount of charge which can be induced by the gate electrode through
the gate oxide and the profile of the channel charge in the direction perpendicular to the surface which is
shifted away from the surface by 2− 3 nm. In addition, the mobility at the surface is influenced. Proper
solutions of this problem can be obtained by solving the Schrödinger and the Poisson equation
self-consistently. Multidimensional solutions of this problem are very difficult to obtain but fortunately not
necessary in most case [48].
The first analytical correction for capturing quantum effects was proposed by Hänsch et al. [49] which
models the repulsive boundary condition for channel carriers at the Si/SiO2 interface. They propose to use
a depth dependent density of states

Nc(z) = Nc

(
1− exp

(
− (z + z0)2

λ2

))
(16)

with z0 being an offset to model non-zero carrier concentrations at the interface due to finite barrier height
and λ a characteristic length which indicates how fast quantum effects diminish away from the interface.
This approach introduces an additional driving force in the current relation due to the position dependence
of Nc. Another model has been proposed by van Dort et al. [50], which tries to capture the effect of energy
quantization by introducing a quantum related bandgap increase as

∆Eg(z) = βF
2/3
S g(z) (17)

with FS being the pressing force, β a constant and g(z) the depth dependent function. Care must be taken
to apply these models only to those regions where the carriers are confined to the interface [50]. As
pointed out in [51], van Dort’s model shows a discontinuity around the flat band voltage when simulating
C-V curves. A hybrid model which combines the latter two models has been proposed in [51].
A different approach suitable for macroscopic device simulation has been proposed by Ancona [52] termed
density gradient method. This method has been derived from a quantum corrected BTE and is an
extension to the classic drift-diffusion transport model. In the driving force an additional density gradient
term appears which is proportional to

∇
(∇2
√
n√
n

)
(18)

and turns the continuity equation into a fourth order PDE. A recent implementation delivered promising
results [53]. For a detailed discussion and a comparison of quantum correction models see [48][54].

D.1 TUNNELING CURRENTS

The calculation of tunneling currents is closely related the quantum corrections mentioned before and
should be treated together. Due to the finite barrier height, the probability density is not equal to zero at the
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interface and a current can flow between gate and substrate. Accurate predictions of the currents can be
obtained by solving Schrödinger’s equation which is, however, very time consuming. Thus simplified
models have been proposed to capture the different effects which eventually lead to a gate current. These
effects are direct tunneling, Fowler-Nordheim tunneling, and thermionic emission. Detailed studies of
these tunneling processes are available in the literature and many models have been reported to
accurately reproduce measured results [53][55][56][57]. The issue of hot electron injection, however, is still
critical. Cold carriers in the channel of a silicon nMOS transistor face a barrier of 3.2 eV. As they travel
along the channel they pick up energy, which decreases the height of the barrier to be surmounted and
thus increases the tunneling probability. Unfortunately the distribution function of hot carriers is only poorly
described by the traditionally assumed heated Maxwellian shape which introduces a large uncertainty into
the result. An attempt to use a more realistic distribution function can be found in [58]. However, it is to be
expected that an extension to the energy-transport model is required to properly capture this effect.

E. POLYSILICON DEPLETION AND LDD SOURCE/DRAIN SERIES RESISTANCES

The modeling of both the depletion of polysilicon gates and the series resistances found in the
source/drain extension of LDD structures fits well into the concept of semi-classical device simulation as
both effects are captured by the semiconductor device equations and no additional modeling is necessary.
For the extraction of series resistances see for instance [59][60]. When modeling poly depletion, the
straight-forward solution of the semiconductor equations in the gate increase the computational burden.
Under steady-state conditions, where there is negligible electron and hole current flow, simplified models
have been proposed which capture the essential effects with sufficient accuracy [61]. For steady-state the
carrier concentrations can be calculated as a function of the potential using Fermi-Dirac statistics. Using
the gradual channel approximation for the potential near the interface the problem can be reduced to one
dimension where the potential ψc at the gate is replaced by ψc −∆(x) with ∆(x) modeling the position
dependence of the gate potential [61]. See [62][63] for other detailed discussions.

F. IMPACT IONIZATION

To properly account for substrate currents accurate impact ionization models are of utmost importance. In
a classical paper Chynoweth [64] proposed a local electric field model for the ionization coefficients. This
model accurately predicts the ionization rates in homogeneous bulk material. For inhomogeneous fields,
local temperature dependent models proved to be more accurate [65]. However, recent research revealed
that for submicron devices local temperature dependent models break down and tend to overestimate the
maximum of the ionization rate. Furthermore, a lag in space was observed, that is, the maximum of the
ionization rate occurred after the temperature has already started to decrease. Although the parameters of
local temperature models had been successfully adjusted to reproduce measured substrate currents, the
distribution of the physical quantities inside the device are wrong. Even worse, bulk results cannot be
recovered with these adjusted parameters and the parameters are only valid for a distinct technology.
Several corrections have been proposed to cover these effects, for instance a “dead length” correction [66].
We believe that the necessary information is contained in the distribution function and a more accurate
description of the distribution function can improve the quality of the model. The calculation of impact
ionization using a six moment transport model can be found in [67][68]. For results obtained by two carrier
type models see [40][41][42].

DEVICE CHARACTERIZATION: CALIBRATION AND INVERSE MODELING

Although calibration of model parameters is widely used by engineers around the world, a lot of experience
and understanding of the physical involved models is required to obtain meaningful results. This is partly
due to the fact that many models used in process and device simulation are empirical and due to their
complex interplay when applied to a realistic simulation. Even physics based models normally employ
some simplifying assumptions to yield analytical expressions. Furthermore, most of the models were
derived under homogeneous assumptions or slowly varying electric fields which is not applicable to
state-of-the-art devices. So the parameters of these models need to be adjusted using an “effective” value
to fit the process under consideration.
For successful device simulation a high-quality description of the device in terms of doping profiles and
geometry, especially the gate thickness and gate length, is required. These device descriptions can be
obtained by process simulators which need to be carefully calibrated to the process under consideration.
This calibration is difficult due to the fact that two-dimensional doping profiles are complicated to extract.
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Another approach is to develop an analytical description of the device which is then optimized using
measured electrical characteristics. As suitable fitting targets C-V measurements [69][70][71],
subthreshold I-V characteristics [72], and the threshold voltage [73] have been identified. As pointed out in
[72], C-V measurements are problematic due to the extremely small dimensions and capacitance of
modern submicron devices and special test structures are needed which limits the applicability of this
method. Furthermore, as quantum effects and poly-depletion can no longer be neglected for oxides
thinner than 4 nm, uncertainties in the modeling of these effects introduce an error in the extracted gate
length. A recent comparison of the most sophisticated TCAD tools (Schrödinger solvers) revealed a 20%
difference in the extracted gate lengths [74].
For inverse modeling, the crucial features of the doping profile need to be captured in the analytical
description. Several analytical expressions have been used so far, including two-dimensional Gaussian
functions for representing source/drain extensions [72], one-dimensional splines for representing the depth
dependence of the channel doping [69], and Pearson Type IV functions [2][75].
Inverse modeling and calibration tasks are described by a set of parameters which need to be optimized to
meet a required target. For this optimization, several different algorithms have been investigated.
Traditionally gradient-based algorithms like the Levenberg-Marquardt algorithm or the simpler response
surface method (RSM) [76] have been used. Gradient-based methods work fast and efficiently when a
proper initial guess is supplied but fail otherwise. Furthermore, they are only guaranteed to find a local
minimum which does not necessarily coincide with the desired global minimum. A suitability study with
respect to inverse modeling of global optimization algorithms is given in [75] where two global optimization
methods, simulated annealing and genetic optimization, are compared with a Levenberg-Marquardt local
gradient-based optimization technique. It was found that among the global optimization strategies they
evaluated, simulated annealing seems to be very well suited for the case of inverse modeling applications.
As a rigorous model calibration can be a cumbersome task, models are often poorly calibrated based on a
very limited number of measurements. Thus, the models deliver satisfying results only in the vicinity of the
calibration conditions. Due to such a restricted calibration within small subspaces of the model parameter
set, miscalibrations are likely to occur meaning that differences between measurements and simulation are
fitted with the wrong parameters. Although the model accuracy can be improved for the considered
measurements, the accuracy might have even worsened for different operating regions not considered in
the calibration. Such calibrations can hardly be carried out by hand and a flexible calibration framework is
required [77].
A typical calibration example is the adjustment of the saturation velocity employed in drift-diffusion models.
As for submicron devices the velocity overshoot in the channel can no longer be neglected, it is common
practice to increase the saturation velocity to reflect this fact. In a recent publication Bude [3] used
vs = 2.2 · 107 cm/s and β = 1 in the Caughey-Thomas mobility model to fit the velocity profile in the
channel of both a 150 nm and a 40 nm nMOS transistor. Furthermore, the zero-field mobility had to be
adjusted. Several other examples indicate, that although the distributed quantities inside the devices may
be incorrect, integral quantities like contact currents can be well reproduced. However, these non-physical
values used for the model parameters make predictive simulations very questionable and due to the
complex dependencies between the models it is difficult to adjust the appropriate parameters [78].

CONCLUSIONS

Simulation of semiconductor devices has been part of the design process for nearly forty years. With
shrinking feature size, basic models loose their validity which has led to successively refinement of the
models. Furthermore, quantum mechanical and non-local effects gain more importance and have to be
properly accounted for. We have reviewed the requirements for successful simulation of modern
semiconductor devices. As many of the models employed in process and device simulation are either
empirical or contain some simplifying assumptions, an adjustment of the model parameters to fit the
process under consideration is required. As has been pointed out, this is a complex task and care must be
taken to obtain physically meaningful results.
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