
CONTROLLING TCAD APPLICATIONS WITH AN OBJECT-ORIENTED
DYNAMIC DATABASE

Robert Klima, Tibor Grasser, and Siegfried Selberherr
Institute for Microelectronics

TU Wien
Gußhausstraße 27–29,

Vienna, Austria
E-mail: klima@iue.tuwien.ac.at

KEYWORDS

Object-oriented, Control systems, Computer Aided Engi-
neering, Intelligent Simulation Environments, Electronics.

ABSTRACT

State-of-the-art TCAD applications like device and pro-
cess simulators require a huge number of different informa-
tion in addition to the device input data. Simulation parame-
ters and parameter dependencies, models to use, material in-
formation, or circuit descriptions must be handled in an effi-
cient and comfortable manner. Simple input deck files which
are just a sequence of static keywords or the use of the com-
mand line are no longer sufficient. To obtain a maximum
of flexibility we use a specialized object-oriented dynamic
database to control the simulators.

INTRODUCTION

To perform a specific simulation task TCAD applications
like the complex circuit- and device-simulatorMINIMOS-
NT(Binder et al. 1998) require a huge amount of informa-
tion. This information falls into different categories and cov-
ers for instance simulation modes, iteration schemes, models,
model parameters, material characteristics, input and output
parameters, or circuit descriptions.

Conventional input files are a sequence of pure static pa-
rameters. The parameter values are read or computed while
reading the file. All dependencies between the parameters
are lost because only the values are stored. Default values
are normally stored internally in the application and are not
accessible to the user. So the user can neither inquire the
default values nor alter them. Due to the different nature
of the information conventional simulators often use differ-
ent input languages. The disadvantage of this approach is
that different input modules are needed to handle information
providing different functionalities. Different modules make

maintenance more difficult. Moreover, the user has to learn
different input languages.

We present an object-oriented dynamic database
(Klima et al. 2000) which was developed to meet the
requirements of state-of-the-art TCAD applications.

Requirements for theInput Deck database are:

• Variables store values or formulas to describe depen-
dencies. When the value of a variable is changed, de-
pending variables are recomputed.

• Application specific functions can be integrated to con-
sistently enlarge the functionality of theInput Deck
database.

• All necessary kinds of different information, even cir-
cuits, can be described.

• Information can be grouped and organized hierarchi-
cally.

• The user has access to default settings

• The application can query stored information, modify
the database, and store runtime information.

To demonstrate the capabilities of theInput Deck
database and how it can be used to control TCAD applica-
tions we describe the material handling and an example cir-
cuit simulationMINIMOS-NT.

INFORMATION MANAGEMENT

The Input Deck database has its own description lan-
guage, theInput Deck programming language (IPL). The
syntax of theIPL is similar to that of theC++ programming
language but it is not a sequential programming language as
it describes the entries in the database. Items stored in the
database may be grouped hierarchically. The most important
items are variables and sections.

161

Variables may contain values or expressions which are
evaluated by theInput Deck evaluation module (see Sec-
tion) which is part of theInput Deck database. In contrast to
the handling of common sequential programming languages,
variables can be seen as states depending on other variables
(states). The dependence is described by the formula as-
signed.

Sections are named containers holding an arbitrary set
of variables and an arbitrary number of nested subsections.
Starting at theroot sectiondenoted by the tilde (‘˜ ’) a sec-
tion tree is formed.

Inheritance is a powerful feature of theInput Deck
database. Inheritance can be used to pass a complex tree of
subsections and keywords to a new section creating a derived
section. Since this inheritance is implemented dynamically
all changes in a base section are transparent to the derived
section. This feature is necessary for instance to build up the
material database inMINIMOS-NT (see Section).

Base {
a = 1;
b = a + 1;

}
Extended : Base {

a = 2;
}

In the short example above a sectionBase is defined con-
taining the keywordsa andb. The sectionExtended now
inherites the properties of sectionBase and the keyworda is
overridden. The keywordb within sectionExtended now
evaluates to3.

DATABASE SYSTEM

TheInput Deck database (see Fig. 1) comes with a toolkit
which consists of a reader and a writer module for reading
and writing files.

To extend the functionality of theIPL the application may
register an arbitrary number of application specific functions
to the function module (see Section). Once theIPL files are
read and the database is built up the application can query
items (e.g. model parameters, simulation flow descriptions,
user flags) in the database to test their existence, evaluate
parameters, or analyze structures. Moreover, the applica-
tion may modify existing items or even add new items to the
database to write runtime information back into the database.
Equations are evaluated by the runtime evaluation module
(see Section).

The Input Deck database is controlled by the appli-
cation via an application interface which is available for

IPD Reader IPD Writer

Evaluation Module

Function Module

Application Interface

Input Deck Database

Input Deck Toolkit

Figure 1: TheInput Deck database structure

the programming languagesC, C++, andLISP to support
several different TCAD applications(Binder et al. 1998)
(Binder and Selberherr 2000) (Strasser et al. 1997).

Evaluation Module

Expressions stored in variables may contain references to
other variables which allows to describe dependencies be-
tween equations. Since the application may modify variables
declared extern, so called keywords, at any time, depending
variables change too. Thus, variables are evaluated at time of
query. A dependence tree is used to check the dependencies.
Therefore, circular references are recognized and prevented.

Items stored in theInput Deck database are not assigned
a specific type. The type of the value and the value itself
are evaluated at runtime by the evaluation module. There are
different data types for values: integer numbers, real num-
bers, complex numbers, real or complex numbers with a unit
(quantities), boolean values, and strings. Arrays can be used
to store sets of data, e.g., a curve or coordinates of points.

Function Module

The function module manages all functions which are
used inIPL. Functions are used within expressions and are,
therefore, called at time of evaluation by the evaluation mod-
ule. The function module distinguishes three different types
of functions depending on where they are defined.

Built-in functions are implemented in the function mod-
ule which are either mathematical or supplementary func-
tions. Mathematical functions are defined for complex num-
bers in general. Supplementary functions are conversion
functions and special functions. Conversion functions are
used to convert the result of an expression to a given value
type. Some special functions can be used, e.g., to extract
the unit of an expressions value, to extract the real or imag-
inary part of a complex number, or to get the value of an
environment variable. Theif() function can be used for
conditional evaluations.

162

IdealConductor Al

Cu

Au

...

AlGaAs

InGaAs

Conductor Silicide TiSi2

...

TaSi2

MoSi2

Semiconductor Si SiGe

GaAs

Ge

...

...

GaAsP

...

InAs

AlAs

SiO2Insulator

...

Nitride

......

.........

...

Figure 2: Material Database

Application specific functions are used to extend the func-
tionality of theInput Deck database. They are coded in the
application itself. The application can register an arbitrary
number of functions. The functions are called by the evalua-
tion module when they are used in expressions. This enables
the usage of call-back functions.

User-defined functions can be easily defined inIPL. Thus,
the functionality of the programming language can be simply
enlarged and customized.

EXAMPLE: MATERIAL DATABASE

MINIMOS-NT offers a variety of physical models which
are managed by a separate module of the simulator, the
model server(Mlekus and Selberherr 1998). In addition, the
model server allows the user to add customized models.
Since the models to use depend on the type of the mate-
rial, efficient material handling becomes an important issue.
MINIMOS-NT handles the materials in an abstracted way
by using only the class of the material. Supported classes are
Semiconductor , Insulator , Conductor , andIde-
alConductor . The properties of the material classes are
described via a model set, for instance the mobility or relax-
ation times of semiconductors. These models are defined as
black boxes using a set of input and output parameters. Only
the actual implementation calculates the output values. Sev-

eral implementations are available, each with an unique set
of model-parameters.

The material database (MD) manages hierarchically
structured materials (see Fig. 2). To administrate common
materials properties, real materials like Si or SiO2 are inher-
ited from abstract materials like semiconductor and insulator.
Thus, the material properties of a derived material class are
extended and specialized.

Each material is represented as a section providing the
parameter values for the physical models which are hierar-
chically structured. For each model class (e.g. the mass den-
sity or the band edge energy) and for each material (e.g. Si
or SiGe) certain model instances can be chosen with model-
specializer keywords.

For each geometric region in a device all physical models
to use and their parameters must be specified in a special
section. By inheriting the global MD the default settings are
loaded which can be locally overridden.

This hierarchical approach has major advantages:

• As MINIMOS-NT only deals with abstract material
classes like semiconductor or insulator new materials
can easily be added by inheriting from an abstract ma-
terial class.

• New models can be easily tested and calibrated by over-
riding the default values.

• By changing or adding new entries in the global MD the
material and model defaults can be easily customized.

• Maintenance is easier compared to hard coded default
values.

EXAMPLE: MIXED MODE

MINIMOS-NT has been equipped with circuit simulation
capabilities(Grasser 1999) to handle distributed devices, for
which the semiconductor equations need to be solved to-
gether with compact models in one circuit. For the descrip-
tion of circuits, the inheritance feature of theInput Deck is
extensively used. Devices are described by sections which
are inherited into the circuit. Each device overrides the con-
tact values of the base section to provide the connection to
the circuit.

As an example we consider a five-stage current mode
logic (CML) (Treadway 1989) ring oscillator. A CML gate is
an emitter coupled logic (ECL) gate stripped of the emitter-
follower (Embabi 1993) which provided the power gain for
driving external circuits. A single gate of this oscillator is

163

Vt = 25e-3;
k = 20;
Vs = k * Vt;
It = 2e-3;
Rc = Vs/It;
Vee = -5.2;
Vbe = 0.889;
Vref = -Vs/2;
Re = (Vbe - Vee)/It;

aux useSimpleVersion = false;

Subcircuits {
CMLBase {

Vin = "";
VOUT = "";
Vout = fullname(Vout);
intern1 = fullname(intern1);

Rc1 : ˜Devices.R { N1 = "gnd"; N2 = ˆVOUT; R = ˜Rc; }
Rc2 : ˜Devices.R { N1 = "gnd"; N2 = ˆVout; R = ˜Rc; }

T1 : ˜MyDevices.NPN { C = ˆVOUT; B = ˆVin; E = ˆintern1; }
T2 : ˜MyDevices.NPN { C = ˆVout; B = "Vref"; E = ˆintern1; }

}
<CMLSimple> : CMLBase { // The ideal current soure version

It : ˜Devices.I { P = ˆintern1; M = "Vee"; I0 = -˜It; }
Rt : ˜Devices.R { N1 = ˆintern1; N2 = "Vee"; R = 10kOhm; }

}
<CMLComplex> : CMLBase { // The transistor current version

intern2 = fullname(intern2);
T3 : ˜MyDevices.NPN { C = ˆintern1; B = ˆintern2; E = "Vee"; }
T4 : ˜MyDevices.NPN { C = ˆintern2; B = ˆintern2; E = "Vee"; }
RE : ˜Devices.R { N1 = "gnd"; N2 = ˆintern2; R = ˜Re; }

}
CML : CMLSimple ? (˜useSimpleVersion == true),

CMLComplex ? (˜useSimpleVersion != true);
}

Circuit {
Inv1 : ˜Subcircuits.CML { Vin = "pin1"; VOUT = "pin2"; Vout = "hp1"; intern1 = "hi1"; }
Inv2 : ˜Subcircuits.CML { Vin = "pin2"; VOUT = "pin3"; Vout = "hp2"; intern1 = "hi2"; }
Inv3 : ˜Subcircuits.CML { Vin = "pin3"; VOUT = "pin4"; Vout = "hp3"; intern1 = "hi3"; }
Inv4 : ˜Subcircuits.CML { Vin = "pin4"; VOUT = "pin5"; Vout = "hp4"; intern1 = "hi4"; }
Inv5 : ˜Subcircuits.CML { Vin = "pin5"; VOUT = "pin1"; Vout = "hp5"; intern1 = "hi5"; }

Vee : ˜Devices.V { P = "Vee"; M = "gnd"; V0 = ˜Vee; }
Vref : ˜Devices.V { P = "Vref"; M = "gnd"; V0 = ˜Vref; }

}

Figure 3: Input file for a Five-Stage CML Ring Oscillator

a) b)

Vin Vin
VOUT VOUT

T1 T2

Re

VEE

It

VrefV1

T1 T2

Rc Rc Rc Rc R1

Vref

T4T3

It

V1

VEE VEE

VoutVout

Figure 4: Five-Stage CML Ring Oscillator

shown in Fig. 4. Two different version have been investi-
gated, one with an ideal current source (Fig. 4a) and the other
with a more realistic transistor current source (Fig. 4b).

The input deck for the circuit description is shown in
Fig. 3. Subcircuits are realized via sections which may con-
tain subcircuits themselves. First, a base circuit is described
(CMLBase) which contains the differential amplifier. Then
the two different current sources are added to this base circuit
to give the actual realizations of a CML gate. Via conditional
inheritance the subcircuitCMLis defined using the auxiliary
keyworduseSimpleVersion as a switch. In the actual
circuit, theCMLsubcircuit is used five times to form the ring
oscillator. Note that via the switchuseSimpleVersion
two different, though related circuits are contained within
one input deck which increases the maintainability of large
projects.

164

0 100 200 300 400

t [ps]

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

U
 [

V
]

DD
HD

Figure 5: Results

A simulation result is shown in (Fig. 5) where both a drift-
diffusion (DD) and a hydrodynamic (HD) transport model
have been used. Oscillations start immediately with a fre-
quencyfDD = 6.8 GHz for DD and fHD = 10.6 GHz
for HD which gives a relative difference of36% for the DD
model. This is due to the velocity overshoot which occurs
in the base-collector space charge region of the transistors
which cannot be modeled using a DD transport model.

CONCLUSION

The demands for an input information module for TCAD
application rise with the complexity and amount of infor-
mation. Using a new kind of an object-oriented dynamic
database, theInput Deck database, we obtain a maximum
of flexibility and maintainability.

The Input Deck has been successfully used to enhance
the features of various TCAD tools, especially the cir-
cuit/device simulatorMINIMOS-NT. With the features of the
Input Deck, input decks can be easily customized using aux-
iliary keywords and environment variables. Furthermore, the
material data base has been structured efficiently because of
extensive use of the inheritance feature for related materials.

REFERENCES

Binder, T.; K. Dragosits; T. Grasser; R. Klima; M. Knaipp;
H. Kosina; R. Mlekus; V. Palankovski; M. Rottinger;
G. Schrom; S. Selberherr; and M. Stockinger, 1998,MINIMOS-
NT User’s Guide. Institut für Mikroelektronik.

Binder, T. and S. Selberherr, May 2000, ”Object-Oriented Wafer-
State Services”. In14th European Simulation Multiconference,
pages 360–364, Ghent, Belgium.

Embabi, S.H.K., 1993,Digital BiCMOS Integrated Circuit Design.
Kluwer.

Grasser, T., 1999, Mixed-Mode Device Simu-
lation. Dissertation, Technische Universität Wien.
http://www.iue.tuwien.ac.at/diss/grasser/diss/diss.html.

Klima, R.; T. Grasser; T. Binder; and S. Selberherr, Novem-
ber 2000, ”Controlling TCAD Applications with a Dynamic
Database”. InSoftware Engineering and Applications, pages
103–112, Las Vegas, Nevada, USA.

Mlekus, R. and S. Selberherr, August 1998, ”Object-Oriented Al-
gorithm and Model Management”. InIntl. Conf. on Applied
Modelling and Simulation, pages 437–441, Honolulu, Hawaii,
USA.

Strasser, R.; Ch. Pichler; and S. Selberherr, October 1997, ”VISTA
- A Framework for Technology CAD Purposes”. In Hahn, W.
and A. Lehmann, editors,9th European Simulation Symposium,
pages 450–454, Passau, Germany. Society for Computer Simu-
lation International.

Treadway, R.L., March 1989, ”DC Analysis of Current Mode
Logic”. IEEE Circuits and Devices Magazine, pages 21–35.

AUTHOR BIOGRAPHY

ROBERT KLIMA was born in Vienna, Austria, in 1969. He
studied electrical engineering at the Technische Universität
Wien, where he received the degree of ‘Diplomingenieur’ in
1997. He joined the Institute for Microelectronics in Septem-
ber 1997, where he is currently working for his doctoral de-
gree. His scientific interests include device and circuit simu-
lation, computer visualization, and software technology.

TIBOR GRASSER was born in Vienna, Austria, in 1970.
He studied communications engineering at the Technische
Universiẗat Wien, where he received the ‘Diplomingenieur’
and the Ph.D. degrees in 1995 and 1999, respectively. He
joined the Institute for Microelectronics in April 1996. His
current scientific interests include circuit and device simu-
lation, device modeling and physical aspects in general.

SIEGFRIED SELBERHERR was born in Klosterneuburg,
Austria, in 1955. He received the degree of ‘Diplominge-
nieur’ in electrical engineering and the doctoral degree in
technical sciences from the ‘Technische Universität Wien’ in
1978 and 1981, respectively. Dr. Selberherr has been hold-
ing the ‘venia docendi’ on ‘Computer-Aided Design’ since
1984. Since 1988 he has been the head of the ‘Institut für
Mikroelektronik’ and since 1999 he has been dean of the
‘Fakultät für Elektrotechnik’. His current topics are mod-
eling and simulation of problems for microelectronics engi-
neering.

165

