
560 IEEE TRANSACTIONS ON COMPUTER AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 19, NO. 5, MAY 2000

Parallelization of a Monte Carlo Ion Implantation
Simulator

Andreas Hössinger, Student Member, IEEE, Erasmus Langer, Member, IEEE, and Siegfried Selberherr, Fellow, IEEE

Abstract—We present a parallelization method based on mes-
sage passing interface (MPI) for a Monte Carlo program for two-
dimensional and three-dimensional (3-D) simulation of ion implan-
tations. We use a master–slave strategy where the master process
synchronizes the slaves and performs the input–output operations,
while the slaves perform the physical simulation. For this method
the simulation domain is geometrically distributed among several
CPU’s which have to exchange only very little information during
the simulation. Thereby, the communication overhead between the
CPU’s is kept so low that it has almost no influence on the per-
formance gain even if a standard network of workstations is used
instead of a massively parallel computer to perform the simula-
tion. We have optimized the performance gain by identifying bot-
tlenecks of this strategy when it is applied to arbitrary geometries
consisting of various materials. This requires the application of dif-
ferent physical models within the simulation domain and makes
it impossible to determine a reasonable domain distribution be-
fore starting the simulation. Due to a feedback between master
and slaves by on-line performance measurements, we obtain an
almost linear performance gain on a cluster of workstations with
just slightly varying processor loads. Besides the increase in per-
formance, the parallelization method also achieves a distribution
of the required memory. This allows 3-D simulations on a cluster of
workstations, where each single machines would not have enough
memory to perform the simulation on its own.

Index Terms—Distributed processors, ion implantation, Monte
Carlo, parallelization, simulation.

I. INTRODUCTION

I ON IMPLANTATION is a very important, but concerning
the simulation time also one of the most critical steps when

simulating semiconductor device fabrication processes [1].
Due to the complicated structures and the small dimensions
of modern semiconductor devices, Monte Carlo simulation
methods often have to be used to describe nonplanarity effects,
phenomena resulting from ion channeling and large tilt angles
[2]–[4]. Moreover, they provide accurate point-defect distri-
butions for rapid thermal annealing processes. To reach the
expected accuracy, three-dimensional (3-D) simulations with
sophisticated models [5], [6] have to be performed, especially
for very shallow implantation conditions. By meeting all these
requirements, the simulation times exceed one day or even
more on high-end workstations, depending on the size of the
structure and the complexity of the physical models.

Manuscript received December 11, 1999; revised February 2, 2000. This
work has been carried out within the SFB project AURORA, funded by the
Austrian Science Fund (FWF). This paper was recommended by Associate
Editor W. Schoenmaker.

The authors are with the Institut für Mikroelektronik, Technische Universität
Wien A-1040 Vienna, Austria (e-mail: hoessinger@iue.tuwien.ac.at).

Publisher Item Identifier S 0278-0070(00)05300-8.

For these reasons, the parallelization of the Monte Carlo ion
implantation simulation is definitely desirable to avoid a bottle-
neck in the process simulation flow. For two-dimensional (2-D)
applications the simulation time for a Monte Carlo ion implan-
tation process step exceeds the simulation time for a diffusion
or oxidation process step by a factor of more than ten. There is
probably not such a big difference in the case of 3-D simula-
tions, but at present it is difficult to state a serious comparison,
because there is no optimized 3-D diffusion/oxidation process
simulator available. First results [7] show that the ratio in simu-
lation time is in the range of 1.5 to 3.

As an additional motivation, a cluster of workstations is usu-
ally available to perform process simulation and optimization.
Therefore, we have concentrated on minimizing the communi-
cation overhead because it limits the performance gain espe-
cially if slow networks are used as it is the case for a cluster
of workstations.

We present a parallelization method based on message
passing interface (MPI) [8] which allows a distributed simu-
lation on a cluster of single and multiprocessor workstations,
which represents a common computer-aided design environ-
ment configuration. The merit of MPI is that it provides a
comfortable and fast interface to define process communication
and that it is available for a wide variety of hardware platforms.
Our parallelization strategy keeps the communication overhead
so low that it has almost no influence on the performance. All
sophisticated physical models and methods [9], [10] developed
for the single processor version can be used without modifica-
tion.

The parallelization method has first been presented in [11]
and evaluated for simple input structures. In this paper, we have
also evaluated the parallelization strategy for the simulation of
complex device structures with nonplanar surfaces consisting of
various materials. Additionally, we have introduced a two-step
concept for the distribution of the calculation tasks to optimize
the performance for a loaded cluster of workstations and to op-
timally consider spatial variations of the trajectory calculation
times due to spatially varying physical properties (different ma-
terials) of the target. As an extension of [11] the details of the
parallelization strategy especially concerning the communica-
tion are presented and the parallelization overhead is analyzed.

II. BACKGROUND

Our Monte Carlo ion implantation simulator MCIMPL is
a multidimensional simulator which handles arbitrary shaped
simulation domains consisting of various crystalline and
amorphous materials. It is based on a binary collision algorithm

0278–0070/00$10.00 © 2000 IEEE

HOSSINGERet al.: PARALLELIZATION OF A MCIMPL 561

which means that the trajectories through the simulation
domain of a lot of implanted ions are evaluated by successively
calculating the interaction with atoms and electrons of the
target material [12], [13].

The implanted particles sometimes remove target atoms
from their original position and, thereby, generate recoiled
particles which also move through the target. The simulation
results which are stored in a histogram are the distributions of
the implanted and of the recoiled particles (interstitials) and
the distribution of the original position of the recoiled particles
(vacancies).

Depending on the required accuracy and the target material,
the recoil distributions (material damage) are derived either by
an empirical model [14] from the distribution of the implanted
ion or by a follow-each-recoil method [9]. Hereby, the trajec-
tories of some or all recoiled particles are calculated rigorously
as the ion trajectories. This means that additional moving par-
ticles are generated during the simulation. Worth mentioning
is that the accumulation of the damage during the simulation
which influences the particle trajectories, is considered. This is
the biggest challenge for the parallelization strategy, because the
simulation results influence the behavior of the simulation.

In order to improve the performance, MCIMPL uses two
speedup methods. The trajectory-split method [10] for crys-
talline materials and the trajectory-reuse method [15] for
amorphous materials. The trajectory-split method mainly
increases the accuracy of the simulation by splitting a real
particle into several virtual ones which partially share their
trajectories. Thereby, several particles contributing to the
particle distribution are generated from one real particle. This
accelerates the overall simulation, even if the CPU time related
to one implanted ion is significantly higher. In contrast, it is
dramatically reduced by the trajectory-reuse method which
stores complete ion trajectories and copies them to other parts
of the simulation domain.

Considering all these properties of the simulator, it is obvious
that the calculation time for trajectories varies significantly
throughout the simulation domain, depending on the structure
and the composition of the simulation domain.

III. PARALLELIZATION STRATEGY

We use a master–slave strategy based on MPI, where the
master process provides all the input–output operations and con-
trols and synchronizes the behavior of all slaves which per-
form the trajectory calculations. The most obvious paralleliza-
tion strategy would be to successively distribute the trajectories
among the available slaves. But this method has two significant
drawbacks. On the one hand, the damage accumulation is not
considered correctly. If the trajectories are arbitrarily distributed
among the slaves, the order of trajectory calculation is nonde-
terministic which results in spatially varying damage accumula-
tion. This effect is negligible as long as the number of slaves is
significantly less then the number of ions. The number of ions
simulated is in the range of some hundreds of thousands for two
dimensional applications and some tenth of millions for three
dimensional applications, while the number of workstations is

TABLE I
TYPICAL EXECUTION TIMES OF THE

SINGLE PROCESSORVERSION ON A DEC-600 WORKSATION FOR3-D
SIMULATIONS WITH DIFFERENTPHYSICAL MODELS

typically of the order of ten. The more severe problem is that
an arbitrary distribution of the trajectory calculation requires a
continuous exchange of simulation results between the slaves, in
order to correctly handle the influence of the damage on the ion
trajectories. At least after each time step, the histograms where
the simulation results are stored have to be updated. Even if very
clever update methods are used, this requires a data transfer of
several MB per time step. This transfer would only be acceptable
for massively parallel computers but not for a cluster of worksta-
tions usually connected by 10 MBit/s or 100 MBit/s networks.

In our parallelization method, we explicitly introduce a tran-
sient simulation. The simulation time is divided into several time
steps, and it is assumed that ions belonging to the same time step
do not influence each other. This requirement is met if the dis-
tance between the entrance points is larger than the lateral range
of the ions or if the number of ions per time step is small com-
pared to the total number of simulated ions, which guarantees an
almost constant damage within a time step. Therefore, the sur-
face of the simulation domain is divided into square subdomains
with a size slightly larger than the lateral range of the implanted
ions. Depending on the total number of simulated ions, one to
four ions are started from within each subdomain at each time
step. The starting positions within the subdomains are equally
distributed. For typical 3-D applications, the number of subdo-
mains is larger than 1000; for 2-D applications, it is larger than
50.

Furthermore, the ions belonging to the same time step are not
randomly distributed among the slaves to avoid the enormous
communication overhead which frustrates the performance gain
of the parallelization. Not only the trajectory calculation is dis-
tributed among several computers, but also the geometry of the
simulation domain and the simulation results. Thereby, the com-
munication between the slaves can be minimized as well as the
memory requirement of the slave, because only a part of geom-
etry description and of the simulation results has to be stored
locally. Each slave is responsible for a prismatic scope whose
base contains several of the subdomains mentioned above, as
shown in Fig. 1. A slave only calculates parts of particle trajec-
tories that are within its scope of responsibility. Communication
only occurs if a particle leaves the scope of responsibility of a
slave or if it moves in the vicinity of the border of the scope of
responsibility.

562 IEEE TRANSACTIONS ON COMPUTER AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 19, NO. 5, MAY 2000

Fig. 1. Schematic presentation of the split of the simulation domain
into subdomains and of the distribution of the subdomains among several
processors. The small dashed lines lines denote the subdomains while the thick
lines denote the scopes of responsibility of the slaves.

Fig. 2. Average idle times of the slaves for a simulation with five identical
CPU’s, using an arbitrary (dark blocks) and an optimized (light blocks)
subdomain distribution.

IV. DISTRIBUTION SCHEME

The most critical aspect concerning the performance gain of
our parallelization method is the distribution of the subdomains
among the available processors. Due to the synchronization after
each time step, the simulation time required for one time step is
determined by the slowest slave, because all faster slaves are
idle until the end of the time step (Fig. 2). In case of a poor
distribution, the average idle times are of the order of the total
simulation time and no performance gain can be achieved by the
parallelization. A distribution scheme which guarantees similar
simulation times for all slaves is obviously desirable. Therefore,

the performance of a certain processor and its actual load have
to be considered when the subdomains are determined. Never-
theless, it is not possible to reduce the average idle time to zero
due to the statistical nature of the simulation problem.

Another problem is that due to spatially varying material
properties which require the application of different models
and algorithms the simulation time significantly depends on
the entrance position of an ion into the simulation domain.
Therefore, the actual simulation time of each slave can only be
determined during the simulation, while the initial distribution
can only be a more or less good guess.

To fully benefit from the parallelization strategy, the commu-
nication overhead has to be minimized by choosing a distribu-
tion with a minimum interface area between the slaves, because
communication only occurs if an ion moves into the vicinity of
an interface. The optimal situation would be if the scopes of re-
sponsibility of all slaves where prism with a square base, but
this is generally not feasible.

In our parallelization method, we use a two-step concept
when distributing the subdomains. For the initial distribution it
is assumed that the trajectory calculation time is constant in all
subdomains. Due to the fact the starting positions of the ions
are equally distributed among the subdomains, the number of
subdomains belonging to a certain slavecan be estimated by

CPU CPU
(1)

is the number of available CPU’s, is the total
number of subdomains and CPUis the performance factor
of slave , which is proportional to the average time a slave
needs to calculate one single ion trajectory. Starting with the
fastest slave and continuing with slaves with decreasing speed
the subdomains are distributed in the following way: First a
subdomain is selected with a maximum distance from already
distributed subdomains. This is done by assuming a repulsive
potential between subdomains belonging to different slaves and
selecting the subdomainso that

(2)

becomes a minimum. and are the coordinates of the cen-
ters of subdomains and . is the Kronecker tensor.

The further subdomains are added to a slave by selecting the
subdomain with the largest number of interfaces to the slave. If
several subdomains meet this requirement, the subdomain with
the lowest energy assuming a repulsive potential between sub-
domains belonging to different slaves and an attractive potential
between subdomains belonging to the same slave is selected.
Thereby, the average aspect ratio of the resulting scope of re-
sponsibility is kept low. Fig. 3 shows the resulting subdomain
distribution on our alpha workstation cluster consisting of 19
CPU’s (ALPHA 21164 with 333 MHz and ALPHA 21 064 with
200 MHz, 175 MHz, and 133 MHz), for an implantation into the
structure shown in Fig. 4. The simulation domain with a size of

m m was split into subdomains.

HOSSINGERet al.: PARALLELIZATION OF A MCIMPL 563

Fig. 3. Distribution of63� 63 subdomains on our alpha workstation cluster
consisting of 19 CPU’s. Each color denotes a CPU.

Fig. 4. Input structure for the ion implantation simulation with the subdomain
distribution shown in Fig. 3. A block of silicon substrate partially covered by a
thin scattering oxide layer and a thick oxide mask.

As will be explained in more detail in Section V, the current
performance of each slave, considering the load and the varia-
tion of the physical properties, can be measured during the cal-
culation of the first time step and using (1) the number of subdo-
mains can be optimized for all slaves. In order to maximize the
performance gain of the simulation the distribution is adapted
based on the initial distribution. Only small modifications of the
distribution scheme correctly consider spatial variations in the
simulation time. In this way subdomains are successively moved
from slaves with small idle times to slaves with large idle times
until an optimized distribution scheme for the simulation is at-
tained.

V. SIMULATION FLOW

In order to demonstrate the behavior of the parallelization
method, the complete simulation flow of the master process and
of the slave processes is shown in the following.

A. Master Process

• Command line parsing.
• Reading of the input files.
• Initialization of the physical properties of the simulation

domain, the physical models and the implantation condi-
tions.

• Sending the initialization data and the geometry to the
slaves: The amount of data transfer is mainly depending
on the complexity of the input geometry and increases if
damage information is reused from a previous implanta-
tion (0.1–200 MB).

• Creating the subdomains and evaluating the distribution
scheme: Only the CPU performance of the slaves is con-
sidered for the distribution of the subdomains.

• Sending of the subdomains and the distribution scheme to
all slaves (kB).

After the initialization, the master evaluates the quality (av-
erage idle time of the slaves) of the distribution scheme by initi-
ating the simulation of one time step. The initial conditions for
all ions are calculated and the properties of the ions are stored in
stacks related to the slaves according to the entrance point into
the simulation domain. Approximately just 0.2 kB are necessary
to describe one single ion. The completed stacks are sent to the
slaves before the master evaluates the momentary performance
of the slaves, calculates an optimized distribution, and waits for
the completion of the time step.

The performance of a slave and the end of a time step are
determined by analyzing the responses of the slaves. Two types
of messages are sent to the master during the simulation.

• Whenever a slave has finished all tasks aReady Message,
together with the number of processed (received) ions, is
sent to the master.

• Before sending an ion to another slave, the master is in-
formed about this activity by sending aReady Messagein
common with 1.

While the master is waiting for the completion of the time step
he collects allReady Messagesand decreases an internal counter
with the number he received together with theReady Message.
At the beginning of the time step this counter is set to the number
of ions that are sent to the slaves. If this counter is zero, the
master knows that there is nothing left to do for the slaves. This
slightly complicated protocol is necessary to correctly handle
particles that are generated during the simulation either by the
trajectory-split method or by the follow-each-recoil method, and
to avoid errors due to communication delays. The master knows
how many ions were sent to the network. TheReady Messagein
common with 1 informs the master that an additional particle
is sent to the network. When all particles within the network are
processed the time step is finished.

The performance CPUof slave is derived from the
first Ready Messagethe master receives from the slave, by
measuring the time interval between the sending of the ion

564 IEEE TRANSACTIONS ON COMPUTER AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 19, NO. 5, MAY 2000

Fig. 5. Schematic description of the simulation flow of the master process and of a slave process. The thick arrows denote communication events between the
master and the slave.

package of the first time step and the receiving of theReady
Message. This is a significant interval because no slave is idle
during that interval

CPU
Number of processed ions

(3)

Nevertheless, it has to be mentioned that the measured CPU
performance is influenced by the statistical nature of the simu-
lation process. But the number of simulated ions per slave and
time step is typically of the order of hundred and therefore, the
measured performance is an average of a large number of sta-
tistical processes. Hence, the performance is not only valid for
the first time step, but also for all further time steps.

Before the master starts the actual simulation he sends a
Reset Messagein common with the optimized distribution to
the slaves to clear the simulation results of the initial time step,
because the redistribution of the subdomains requires also the
transfer of a lot of simulation results. This communication

takes significantly more time than recalculating the first time
step with the new distribution scheme. So, the master calculates
the initial conditions of all ions of the first time step again,
prepares them for distribution, and enters the following main
control loop until the simulation is finished.

• Distributing the prepared ion packages among the slaves.
• Calculating the initial conditions for all ions of the next

time step and preparing them for distribution.
• Waiting until all slaves have finished their calculations by

collecting theReady Messages.

The master terminates the main loop after the last time step is
finished. He sends anEnd Messageto all slaves to terminate
their main simulation loop and collects all simulation results
from the slaves (up to several hundred megabytes). To reduce
collisions in the network due to the huge amount of data which
are sent simultaneously from all slaves, the simulation results
are collected piecewise. Finally, the master performs statistical
analysis of the resulting doping and point-defect distributions,
prepares the generation of the output, and writes the output files.

HOSSINGERet al.: PARALLELIZATION OF A MCIMPL 565

(a) (b)

(c)

Fig. 6. Schematic presentation of the slave to slave communication events. (a) Transfer of an ion. (b) Storing simulation results outside the local memory. (c)
Accessing simulation results from outside.

B. Slave Process

Similar to the master, the slave starts with an initialization
process.

• Receiving the description of the simulation domain and of
the implantation conditions for initialization.

• Receiving the initial distribution scheme. Thereby, each
slave knows all scopes of responsibility, which allows a
direct communication between the slaves.

Then, the slave immediately enters the main simulation loop,
where his behavior is determined by requests he receives either
from the master or from other slaves. Six different types of re-
quests are handled.

• Reset Memory: The histogram where the simulation re-
sults are stored is cleared and a new distribution scheme
is received. This request is used by the master to reset the
simulation after he has evaluated the performance of the
slaves.

• Next Time Step: The slave has to be informed about the
beginning of a new time step because the trajectory stack
used by the trajectory-reuse method has to be reinitialized
after each time step.

• Simulation Finished: The slave leaves the main simulation
loop, sends the simulation results to the master, and termi-
nates operation.

• Store Data: The slave receives simulation results and the
coordinates of where to store them and writes the data to
the local histogram.

• Deliver Data: The slaves receives the coordinates of the
required data and sends them to the slave who has asked
for the data. This request is also processed during the cal-
culation of an ion trajectory because the slave who has sent
the request is blocked until he receives the response.

• New Ion Package: The slave can receive packages of sev-
eral ions which are processed successively until they come
to rest or leave the scope of responsibility of the slave. In
that case, the master is informed by aReady Messageand
the ion is sent to the neighboring slave. When all ions of
a package are processed and no other request is pending,
he sends aReady Messagetogether with the number of
processed ions to the master, before he starts waiting for
a new request. Besides the transfer of complete ions, two
other types of communication events can occur. Simula-
tion results located outside the scope of responsibility of
the slave can be generated or required by certain models.
For instance by the Kinchin–Pease Model [16] with a dis-
placement in the vacancy and interstitial distribution [15].
Therefore, a method for nonlocal memory access is imple-
mented. If simulation results have to be stored outside, a
Store Data Requestin common with the simulation data

566 IEEE TRANSACTIONS ON COMPUTER AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 19, NO. 5, MAY 2000

Fig. 7. Speedup as a function of the number of slaves compared to an ideal
speedup.

and the coordinates of where to store them is sent to an
appropriate slave. If simulation results outside have to be
accessed, aDeliver Data Requestis sent together with the
coordinates of the required data. The slave has to wait for
an answer, before continuing the simulation. Fig. 6 sum-
marizes all possible slave to slave communications.

VI. RESULTS

In order to estimate the performance gain of the paralleliza-
tion, we have performed a 3-D simulation on a cluster of iden-
tical workstations using 1–6 slave processes. Fig. 7 shows the
speedup as a function of the number of slaves. The speedup is
determined by the ratio between the simulation time of the par-
allelized simulation and the single-processor version. In the case
of just slightly varying processor loads, an almost linear perfor-
mance gain is achieved and the overhead due to parallelization
can be neglected.

However, although if the results are very promising, it will
be necessary to implement a dynamic load-balancing strategy,
because in normal operation conditions an almost constant load
cannot be guaranteed on a cluster of workstations. The major
problem of such a load-balancing strategy is that it requires the
transfer of a huge amount of data between the slaves. Load bal-
ancing can be done by adding subdomains to faster slaves and
removing them from slower slaves and, therefore, parts of the
histogram which stores the simulation results have to be trans-
fered. A strategy has to be developed which is capable of dis-
tinguishing between long-time and short-time load variations,
because only the increase in the average idle times due to long
time load variations warrants an efficient, dynamic redistribu-
tion of the subdomains.

VII. CONCLUSION

We have presented a parallelization method for a Monte Carlo
ion implantation simulator which results in an almost linear per-
formance gain on a cluster of workstations under just slightly
varying load situations. The communication overhead can al-
most be neglected and, therefore, very fast networks are not

necessary. Due to the fact that the memory requirement is dis-
tributed among several workstations, small workstations can be
used for 3-D simulations.

REFERENCES

[1] J. Lorenz, K. Tietzel, A. Burenkov, and H. Ryssel, “Three-dimensional
simulation of ion implantation,” inSimulation of Semiconductor Pro-
cesses and Devices. Tokyo, Japan: Business Center for Academic So-
cieties Japan, 1996, pp. 23–24.

[2] S. Tian, S. J. Morris, M. Morris, B. Obradovic, and A. F. Tasch, “Monte
Carlo simulation of ion implantation damage process in silicon,” inProc.
Int. Electron Devices Meeting, 1996, pp. 713–716.

[3] B. J. Obradovic, G. Balamurugan, G. Wang, Y. Chen, and A. F. Tasch,
“Monte Carlo simulation of ion implantation into topographically
complex structures,” inProc. Int. Electron Devices Meeting, 1998, pp.
513–516.

[4] M. Posselt, “3D modeling of ion implantation into crystalline silicon:
Influence of damage accumulation on dopant profiles,”Nucl. Instrum.
Meth. B, vol. 96, pp. 163–167, 1995.

[5] G. Hobler and S. Selberherr, “Two-dimensional modeling of ion implan-
tation induced point defects,”IEEE Trans. Computer-Aided Design, vol.
7, pp. 174–180, Feb. 1988.

[6] S. Tian, M. F. Morris, S. J. Morris, B. Obradovic, G. Wang, G. Al F,
G. Tasch, and Ch. M. Snell, “A detailed physical model for ion implant
induced damage in silicon,”IEEE Trans. Electron Devices, vol. 45, pp.
1226–1238, June 1998.

[7] V. Senez, S. Bozek, and B. Baccus, “3-dimensional simulation of
thermal diffusion and oxidation processes,” inProc. Int. Electron
Devices Meeting, 1996, pp. 705–708.

[8] M. Snir, S. Otto, S. Huss-Lederman, D. Walker, and J. Dongarra,
MPI—The Complete Reference: Volume 1, The MPI Core. Cambridge,
MA: MIT Press, 1998.

[9] A. Hössinger and S. Selberherr, “Accurate three-dimensional simulation
of damage caused by ion implantation,” inProc. 2nd Int. Conf. Modeling
and Simulation of Microsystems, San Juan, Puerto Rico, Apr. 1999, pp.
363–366.

[10] W. Bohmayr, A. Burenkov, J. Lorenz, H. Ryssel, and S. Selberherr, “Tra-
jectory split method for Monte Carlo simulation of ion implantation,”
IEEE Trans. Semiconduct. Manufact., vol. 8, pp. 402–407, Apr. 1995.

[11] A. Hössinger, M. Radi, B. Scholz, T. Fahringer, E. Langer, and S. Sel-
berherr, “Parallelization of a Monte Carlo ion implantation simulator for
three-dimensional crystalline structures,”Simulation Semiconduct. Pro-
cesses Devices, pp. 103–106, Sept. 1999.

[12] G. Hobler and S. Selberherr, “Monte Carlo simulation of ion implan-
tation into two- and three-dimensional structures,”IEEE Trans. Com-
puter-Aided Design, vol. 8, pp. 450–459, May 1989.

[13] H. Stippel and S. Selberherr, “Monte Carlo simulation of ion implan-
tation for three-dimensional structures using an octree,”IEICE Trans.
Electron., vol. E77-C, no. 2, pp. 118–123, 1994.

[14] G. Hobler, A. Simionescu, L. Palmetshofer, C. Tian, and G. Stingeder,
“Boron channeling implantations in silicon: Modeling of electronic
stopping and damage accumulation,”J. Appl. Phys., vol. 77, no. 8, pp.
3697–3703, 1995.

[15] A. Hössinger, S. Selberherr, M. Kimura, I. Nomachi, and S. Kusanagi,
“Three-dimensional Monte Carlo ion implantation simulation for molec-
ular ions,”Electrochem. Soc. Proc., vol. 99–2, pp. 18–25, 1999.

[16] G. H. Kinchin and R. S. Pease, “The displacement of atoms in solids by
radiation,”Rep. Progress Phys., vol. 18, pp. 1–51, 1955.

Andreas Hössingerwas born in St. Pölten, Austria,
in 1969. He studied physical engineering at the
“Technische Universität Wien,” Austria where he
received the “Diplomingenieur”degree in January
1996. He is currently working toward the Ph.D.
degree.

He joined the “Institut für Mikroelektronik,”,
Wien, Austria, in June 1996. In 1998, he was a
Visiting Researcher at Sony/Atsugi. His research
interests include process simulation with special
emphasis on the simulation of ion implantation.

HOSSINGERet al.: PARALLELIZATION OF A MCIMPL 567

Erasmus Langer was born in Vienna, Austria,
in 1951. He received the “Diplomingenieur” and
doctoral degrees from the “Technische Universität
Wien”, Vienna, Austria, in 1980 and 1986, respec-
tively. In 1997, he received the “venia docendi”
degree on “Microelectronics.”

He was with the “Institut für Allgemeine Elek-
trotechnik und Elektronik.” and in 1988 joined the
“Institut für Mikroelektronik.” Since 1999, he has
been Head of the “Institut für Mikroelektronik.”
His current research topic is the simulation of

micro-structures using high performance computing paradigms.

Siegfried Selberherr was born in Klosterneuburg,
Austria, in 1955. He received the “Diplomingenieur”
degree in electrical engineering and the doctoral
degree in technical sciences from the “Technische
Universität Wien” in 1978 and 1981, respectively.He
received the “venia docendi” degree on “com-
puter-aided design” since 1984.

Since 1988, he has been the Head of the “Institut
für Mikroelektronik” and since 1999 he is Dean of
the “Fakultät für Elektrotechnik.” His current topics
of interest are modeling and simulation of problems

for microelectronics engineering.

