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On the Interplay Between Meshing and Discretization
in Three-Dimensional Diffusion Simulation
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Abstract—The maximum principle is the most important prop-
erty of solutions to diffusion equations. Violation of the maximum
principle by the applied discretization scheme is the cause for se-
vere numerical instabilities: the emergence of negative concentra-
tions and, in the nonlinear case, the deterioration of the conver-
gence of the Newton iteration. We compare finite volumes (FV)
and finite elements (FE) in three dimensions with respect to the
constraints they impose on the mesh to achieve a discrete max-
imum principle. Distinctive mesh examples and simulations are
presented to clarify the mutual relationship of the resulting con-
straints: Delaunay meshes guarantee a maximum principle for FV,
while the recently introduced dihedral angle criterion is the nat-
ural constraint for FE. By constructing a mesh which fulfills the
dihedral angle criterion but is not Delaunay we illustrate the dif-
ferent scope of both criteria. Due to the lack of meshing strategies
tuned for the dihedral angle criterion we argue for the use of FV
schemes in three-dimensional diffusion modeling.

Index Terms—Delaunay, diffusion, dihedral angle criterion,
finite element, finite volume, M-matrix, maximum principle,
meshing, positive transmissibility, negative concentration.

I. MOTIVATION

CONTINUUM-based diffusion and dopant activation
models are among the dominant tools used to investigate

and understand integrated circuit process development.
A major part of model development and simulation are still

done in one and two dimensions. This is due to metrological
reasons and the enormous numerical costs for a complex
three-dimensional (3-D) model. Besides this, an additional
factor makes simulation in three dimensions very difficult,
namely strong constraints on meshing. The purpose of our
article is a fundamental one: To clarify the nature of the proper
constraints on the mesh which will ensure a good quality of the
solution.

II. DIFFUSION

The well-known model equation for diffusion is
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where denotes the concentration and is called diffusion
coefficient or diffusivity.

In general, the diffusion models used in semiconductor
process simulation are strongly nonlinear because the diffusion
coefficients depend, e.g., on the impurity and point defect
concentrations. These dependences also couple the equations
for multiple impurities and point defects. Additionally, more
complex models include chemical reactions and contain con-
vection terms.

The actual physical diffusion mechanisms in semiconductor
manufacturing processes are a topic of active research (see [1]
for a special example or [2, Chapter on “Modeling and Simu-
lation”], for wishful thinking). As a basis there is the entropy
principle, universally valid for any assumed physical model:
The flow must always go from regions of high concentrations
to regions where the concentration is low. Evolving in time, the
concentration must smooth out to an equilibrium distribution. It
is desirable that the simulation mirrors this physical behavior.
However, this is far from being a trivial task.

III. PHYSICAL SOUNDNESS

A. The Maximum Principle

In the case of diffusion, physical soundness of the solution
finds its concise expression in the maximum principle for para-
bolic differential operators.

Let denote a finite open domain in with smooth
boundary its closure. Let

for each . Let denote the set of all
functions continuous on the set of all functions
which are once continuously differentiable inand twice
continuously differentiable in for all .

Then, the maximum principle for parabolic differential oper-
ators can be stated as follows [3], [4]: Letbe a nonconstant
function

(2)

which satisfies

in (3)

where is a uniformly elliptic operator with bounded coeffi-
cients (e.g., the Laplace operator). Then,can attain its max-
imum only for 0 or on the boundary of . Furthermore,
if attains its maximum at some point of then

(4)
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where denotes the outward normal derivative.
Physically, this means that the maximum occurs at the initial

time or at the boundary. In the latter case, some flow from out-
side must exist at the point of maximum.

The dual minimum principle states that the minimum occurs
at the initial time or at the boundary. In the latter case, some flow
to the outside must exist.

If homogeneous Neumann boundary conditions

on (5)

and a continuous initial distribution are prescribed to
the partial differential equation (PDE)

on (6)

the combined minimax principle guarantees that the concentra-
tion will stay below the initial maximum value and above the
initial minimum value for all times, as extrema can only occur
for 0.

B. Positive Transmissibility Condition

The parameters of the discretization of a PDE have to be
chosen in a way that the most characteristic physical properties
are maintained.

Assuming a suitable mass conserving node-based discretiza-
tion (e.g., finite differences, finite elements (FE) with lumping
mass, finite boxes), the discretized diffusion equation can be
written as a system of equations of the form

(7)

where and denote real coefficients, is the con-
centration value on nodeafter timestep and (using backward
Euler)

(8)

Then, it follows that the discrete solution will satisfy a minimax
principle if the matrix resulting from the discretization is an
M-matrix [5], i.e., a real, nonsingular matrix where

(9)

and

(10)

which means that all elements of are greater or equal to
zero.

Constraint (9) has a physical interpretation in terms of a pos-
itive transmissibility condition [6]: Rewriting (7) gives

(11)

Here, can be interpreted as the amount of mass
transfered from nodeto node per time unit. The physical flow
has to be directed from higher to lower concentrations, which
requires

(12)

and this corresponds to Condition (9).
The violation of the maximum principle in simulation results

can be detected by the emergence of negative concentrations and
spurious oscillations which are caused by negative transmissi-
bilities and the resulting nonphysical flows.

IV. FINITE VOLUMES VERSUSFINITE ELEMENTS

The popular discretization schemes for PDEs in complicated
domains can be divided into two species: FE and finite volume
(FV) (finite box) methods.

We compare FV and FE with respect to the constraints they
impose on the mesh to achieve positive transmissibilities and,
hence, a discrete minimax principle.

For the theoretical analysis of the possible discretization
schemes, we concentrate on the model case (1) with constant
diffusivity .

For both FV and FE we use the standard approaches with
backward Euler time discretization [7]. In the case of FE, we use
the Galerkin approach with linear shape functions and lumping
mass.

In two dimensions, FE and finite boxes give exactly the same
discretization, if in the case of FE the mass matrix is lumped [8].
Therefore, the usage of a customary Delaunay mesh guarantees
that the solution does not contain any nonphysical negative con-
centrations [9].

In three dimensions, the situation changes drastically, since
the good properties of FE on a Delaunay mesh are lost. We will
analyze and explain the meaning of this in practical and theoret-
ical terms. In this section, we will make the beginning and show
simulation results demonstrating what “loss of good properties”
means in purely practical terms. Section V contains a theoret-
ical analysis and gives the abstract theory behind the problem.
Finally, Section VI analyzes in detail the examples of this sec-
tion using the machinery developed in Section V.

The simulations were done usingMIGOS[10], a general pur-
pose PDE solver and integrated model development environ-
ment. All simulations are done on one and the same 3-D De-
launay mesh. The rather coarse mesh is derived from an ortho-
product point distribution (21 21 21 points) on a cubic sim-
ulation domain, whereby every sub-cube is tetrahedralized into
six tetrahedra. The mesh is depicted in Fig. 9 (see also Fig. 7),
its theoretical properties are analyzed in Section VI.

The initial distribution exhibits radial symmetry (Fig. 1) given
by a two-dimensional (2-D) Gaussian profile (offset 10). Ho-
mogeneous Neumann boundary conditions are prescribed on the
whole boundary.

The example is chosen to illustrate the fundamental qualita-
tive difference between two and three dimensions for FE diffu-
sion simulations.

A good discretization should approximately conserve the in-
dependence of and the symmetry of the initial distribution
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Fig. 1. Initial cylinder symmetrical distribution.

Fig. 2. FE solution after 3000 s. Concentration is negative on black areas.

when it evolves in time. Note that even in the continuous case
the rotational symmetry is broken by the cubic boundary.

The visualization of the 3-D concentration distribution is ac-
commodated to the symmetry by use of a planar cut in the
plane combined with a cylindrical cut indirection.

Fig. 2 shows the FE solution after 3000 s. The concentration
has fallen below the initial minimum value on large areas. The
emergence of negative concentrations is demonstrated by the
black patterns on the figure. All symmetries are lost, most re-
markably the independence ofis not preserved. The latter is
shown on Fig. 3 where the viewpoint is rotated 90. The neg-
ative areas spread out in time as seen when comparing Figs. 3
and 4.

The solution produced by FE is qualitatively not satisfactory
and even incorrect on a macroscopic scale. This is opposed by
the FV solution (Fig. 5) which preserves the symmetry and ful-
fills the critical minimax principle. Marginal violation of the in-
dependence of the solution ofis due to rounding and interpo-
lation errors.

Fig. 3. FE after 3000 s. Independence ofz is lost.

Fig. 4. FE after 10 000 s. The FE disaster. Negative Concentrations have
spread out.

Fig. 5. FV after 10 000 s. Preservation of the symmetry.
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Fig. 6. Absolute error between FE and FV. Global anisotropy.

Finally, Fig. 6 displays the absolute error (FV solution
minus FE solution) between FE and FV and depicts a global
anisotropy.

In a 2-D FE simulation of the same problem, none of the ef-
fects described above can be observed when a Delaunay mesh is
used. The examples in this section were based on an ortho-grid
for ease of theoretical analysis in Section VI. As a side effect
they also show that naive use (choice of a “bad” Delaunay tri-
angulation) of a mesh based on a structured grid can lead to large
discretization errors.

V. NATURAL MESHING CONSTRAINTS

The experiments above demonstrate a puzzling dependence
of the quality of FE solutions on the dimension of the Delaunay
mesh. While in two dimensions FE solutions exhibit good qual-
itative properties, in three dimensions the produced solutions
can be a disaster. The aim of this section is to investigate the
observed effects in terms of mesh requirements.

Already in two dimensions, careless discretization (e.g., FE
without lumping mass) and/or bad meshing (e.g., use of a non-
Delaunay mesh) will result in nonphysical flows and the emer-
gence of negative concentrations, see [6] and [11].

In three dimensions, the interplay between meshing and dis-
cretization is still more complicated. In many cases, the dis-
cretizations rely on heavy constraints on the meshing strategy
applied in order to achieve the desired properties.

In the simulations above, we used the standard Galerkin ap-
proach for FE with linear shape functions and backward Euler
time discretization.

In this case, the system matrix is of the form

(13)

where denotes the mass matrix,is the stiffness matrix, and
is the diffusion constant.

Fig. 7. T tessellation and the dihedral angle criterion (16).

The discrete solution fulfills a maximum principle if the mass
matrix is lumped and is an M-matrix. The coefficients of

are given by

(14)

where and denote the shape functions andis the area
(volume) of element . The sum runs over all elementscon-
taining the edge . To make an M-matrix, the off-diagonal
entries must not be positive

(15)

If the mesh has no obtuse angles, every term in the sum is nega-
tive and Condition (9) is trivially fulfilled. However, this is too
strict.

The scalar product has a simple geometrical
meaning and allows a reinterpretation of the constraint (15) in
basic geometrical terms using only the dihedral angles and the
length of the edges.

Xu and Zikatanov [12] derive the following equivalent crite-
rion which we name the (weighted) dihedral angle criterion: Let

be the edge connecting two verticesand in a 3-D mesh.
In every tetrahedra containing , there exists a face oppo-
site to and a face opposite to. The two faces span a dihedral
angle and their intersection has length. is an M-matrix
if and only if, for any fixed edge the following inequality is
satisfied:

(16)

where is the number of tetrahedra adjacent to.
Fig. 7 displays the dihedral angles linked to the cube diagonal

in a tessellation consisting of six tetrahedra.
The 2-D variant of (16) is

(17)
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Fig. 8. T tessellation, no obtuse dihedral angles.

where and are the angles opposite to an edgewhich
is shared by two triangles. This is equivalent to the Delaunay
criterion [9] and explains the good properties of FE in two di-
mensions on Delaunay meshes.

VI. DISTINCTIVE MESH EXAMPLES

In three dimensions, the dihedral angle and the Delaunay cri-
terion are of quite diverse nature. Both constraints form the in-
teresting case of two natural quality criteria, which are equiv-
alent in two dimensions but split into different notions in three
dimensions.

Our analysis is based on three specific mesh examples.

Mesh Example 1:A Delaunay mesh which is not suitable
as a FE mesh for diffusion applications. This kind of mesh
was used in the simulations above.
Mesh Example 2:A Delaunay mesh which is suitable for
FE diffusion simulation.
Mesh Example 3:A non-Delaunay mesh with obtuse dihe-
dral angles which is still suitable as a FE mesh.

The combinationof theseexamplesproves that in three dimen-
sions the Delaunay criterion is neither sufficient nor necessary to
achieve a maximum principle in FE diffusion simulations.

A. Basic Mesh Construction

The examples were constructed by exploiting an ortho-
product point distribution. A cube defined by eight points can
be tetrahedralized in several different ways:

Tessellation:A cube is composed of six tetrahedra
(Fig. 7).

Tessellation:A cube is composed of five tetrahedra
(Fig. 8).

For the purpose of demonstration a specific tessellation
(Fig. 7) is used which contains sliver elements with obtuse di-
hedral angles. (Note that also tessellations exist which do not
contain obtuse angles.) The tessellation(Fig. 8), on the other
hand, does not contain such elements.

Fig. 9. Delaunay mesh built fromT -tessellated cubes, dihedral angle
criterion is not fulfilled.

Fig. 10. Delaunay mesh built fromT -tessellated cubes, dihedral angle
criterion is satisfied.

Meshes suitable for simulation are then built by stacking a
large number of identically tessellated cubes (see Figs. 9 and
10). The typical characteristics of each tessellation type are
thereby conserved.

All elements of both tessellations fulfill the empty cir-
cumsphere Delaunay criterion, because all points lie on the
perimeter of the cube’s circumsphere.

Because of the total absence of obtuse dihedral angles, the
tessellation fulfills the dihedral angle criterion.

To test if this result is valid for the tessellation, we use
MIGOS to display the stiffness matrix and directly check the

sign of the matrix entries. The stiffness matrix corresponding
to a -tessellated cube is shown in Fig. 11 where the entries
for the edge (3, 4) of the mesh are underlined. The global cou-
pling coefficient has positive sign, which proves that the dihe-
dral angle criterion is violated in this case.

Hence, both meshes are global Delaunay meshes and yet only
one satisfies the dihedral angle criterion.

B. A Non-Delaunay Mesh Suitable for FE

We try to construct a mesh, which is not Delaunay, but still
fulfills the dihedral angle criterion. The key idea to its construc-
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Fig. 11. Global stiffness matrix for aT tessellation and local matrices of those four elements which are adjacent to edge (3, 4).

Fig. 12. T type tessellation with a shifted point. Building block for mesh in
Fig. 13.

tion is to take the “good” mesh (which fulfills both the angle
and the Delaunay criterion) and to modify it in such a way, that
Delaunay is violated but the angle criterion is preserved [13].

As the mesh is a degenerate case with eight cospherical
points, violation of Delaunay is easily achieved by shifting
points slightly (e.g., infinitesimally) in certain locations. This
results in a non-Delaunay mesh which (by a simple continuity
argument) still satisfies (16).

Fig. 12 shows a submesh consisting of eight cubes, which
form the building blocks of the mesh in Fig. 13. The point in
the middle (numbered “6”), which belongs to all eight cubes has
been shifted downwards. The Delaunay criterion is violated, be-
cause the circumspheres of several unmodified tetrahedra con-

Fig. 13. Non-Delaunay mesh fulfilling the dihedral angle criterion.

tain the shifted point in its interior. The dashed lines in the figure
mark two of the non-Delaunay triangles.

The calculation for the entire mesh (Fig. 13) verifies, that
the FE requirements for the stiffness matrix are fulfilled. The
shifting of a point introduces obtuse dihedral angles and posi-
tive contributions to off-diagonal elements of the stiffness ma-
trix. However, criterion (14) is satisfied and the global stiffness
matrix remains an M-matrix.

C. Heuristics

Our examples show that Delaunay neither implies nor is it
implied by the dihedral angle criterion.

The former result was discussed in [9] where a Delaunay
mesh unsuitable for FE simulation was presented. The construc-
tion of a simple mesh which fulfills the dihedral angle criterion
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but not the Delaunay criterion complements this previous re-
search.

Heuristically, the latter result was motivated by Putti’s dis-
covery (see Section VII-A) that FE gives the same discretization
as gravity boxes in three dimensions. Gravity boxes and Voronoi
boxes are distinct notions. There is no sense in which a gravity
box is a Voronoi box or vice versa. By this analogy, there is no
reason why Delaunay should imply the dihedral angle criterion
and vice versa.

Our examples also point out another weakness of combining
FE and the Delaunay criterion: If the Delaunay tetrahedraliza-
tion is not unique, FE gives different results depending on the
choice of tetrahedralization. The FV schemes, however, only
rely on the Voronoi boxes. In degenerate cases, the result does
not depend on the choice of tetrahedralization.

In this respect, the dihedral angle criterion cannot achieve for
FE what Delaunay achieves for FV. There may be several or no
tetrahedralizations which fulfill the dihedral angle criterion and
they will produce different solutions.

VII. D ISCUSSION

A. The Abstract Viewpoint

Stemming from the equivalence of FE and FV in two dimen-
sions there is a widely spread belief that this equivalence is also
valid in higher dimensions, in other words that FE can be re-
duced to some kind of FV and vice versa. However, FE and FV
are different with respect to the heuristical basis on which they
are derived. Finite elements are a very general and flexible ap-
proach for which a sophisticated mathematical theory exists. On
the other hand, there are FV schemes which are motivated more
physically. Usually, the latter employ a conservation law or bal-
ance equations for control volumes using an integral theorem.
[14] compares FE and FV schemes using concepts from alge-
braic topology and the theory of differential forms. It explains
why FE and FV are different on a fundamental level and why
“the charge brought against FE of reducing all to nodes must be
reconsidered” [14].

In the special case of the Laplace operator, it is still possible to
interpret FE as a FV scheme in three dimensions, but in contrast
to the 2-D case the corresponding FV scheme is based on gravity
boxes instead of the Voronoi boxes [7].

B. Practical Strategies

In the attempt to avoid numerical instabilities, the most im-
portant strategic decision is the proper choice of discretization.
With respect to diffusion problems the decision is an easy one:
use a variant of FV. Many meshing tools construct their basic
meshes relying on the Delaunay criterion, then possibly doing
some kind of quality improvement. In any case, many available
meshers are Delaunay-based. Finite elements on a conventional
Delaunay mesh, however, can be a disaster and are much more
vulnerable and sensitive to the meshing quality.

If one wants or has to use a FE solver a practical meshing
strategy will generally try to avoid extremely obtuse (dihedral)
angles and badly shaped elements without too much concern on
the Delaunay property and without a technique to enforce the

dihedral angle criterion directly. Existing meshing techniques
often try to avoid any obtuse dihedral angles. This is not nec-
essary if techniques can be developed to generate FE meshes
which satisfy the dihedral angle criterion. However, such a tech-
nique remains open to further research.

In many practical cases, one cannot rely on a very good
quality of the FE mesh. Then, additional strategies are pursued:
e.g., mesh refinement combined with a time step reduction.
According to standard FE theory, the discretized solution
(using backward Euler) will converge to the exact solution if
meshing granularity and time step size tend to zero. The main
obstacle to make successful use of this property is the lack of
a smart refinement strategy. There is no way to exclude global
anisotropic effects as in Fig. 6. In cases like this, getting rid of
negative concentrations by-refinement is not feasible.

Alternative strategies like the use of higher order shape func-
tions ( -refinement) or a simplistic cutting off of negative con-
centrations are even less promising from a theoretical as well as
from an empirical point of view.

C. Nonlinear Case

In the linear case, the emergence of negative concentrations
can be simply considered as an annoyance as long as the preci-
sion is high enough. In the nonlinear case, the consequences of
insufficient meshing quality are much more serious: (1) is then
solved by a Newton method. Exemplary simulations reveal that
negative transmissibilities cause a deterioration of the conver-
gence of the Newton iteration. For a physical explanation, see
[6].

The negative concentrations are particularly severe in diffu-
sion problems for semiconductor process simulation, because
in typical applications the concentration varies in many orders
of magnitude within a small area. If the Newton iteration does
not converge, the time step is usually reduced. This can lead
to convergence, but has no diminishing effect on the emerging
negative concentrations. Therefore, appropriate meshing quality
is of utmost importance for the solution of nonlinear transient
problems with high concentration gradients like, e.g., the pair
diffusion model [15].

VIII. R ESUME

We presented a case study on the interplay between meshing
and discretization in diffusion simulation. Finding meshing al-
gorithms specially tuned for the discretization in use is a strong
challenge to the TCAD community. From a mathematical point
of view, FE schemes are often easier to analyze than FV schemes
for the same problem. However, with regard to easy fulfillment
of the corresponding meshing requirements, FV is the supe-
rior discretization. Progress in the development of robust PDE
solvers can only be achieved by a point of view which regards
discretization and meshing not as two distinct tasks but as one
problem with an analytic and a more algorithmic part. One in-
stance for a solution is the perfect interplay between the FV
discretization and Delaunay meshes. This symmetry is broken
when FE is combined with the Delaunay criterion and it is re-
stored only incompletely when Delaunay is replaced by the di-
hedral angle criterion.
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Based on a vast series of numerical experiments conducted
using MIGOS and theoretical investigations, we advocate the
use of FV schemes in 3-D diffusion modeling.
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