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Theory of the Monte Carlo Method for Semiconductor
Device Simulation
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Abstract—A brief review of the semiclassical Monte Carlo (MC) rather than as a numerical method. The main MC algorithms
method for semiconductor device simulation is given, covering the ysed to date were originally devised from merely physical con-
standard MC algorithms, variance reduction techniques, the self- gjqerations viewing an MC simulation as a simulated experi-

consistent solution, and the physical semiconductor model. A link . - .
between physically based MC methods and the numerical method ment. The proof that the used algorithms implicitly solve the

of MC integration is established. The integral representations the BE was carried out later. o

transient and the steady-state Boltzmann equations are presented ~ The alternative way to use the BE explicitly and to formulate
as well as the corresponding conjugate equations. The structure MC algorithms for its solution was reported only one decade
of the iteration terms of the Neumann series and their evaluation ago in the literature [1], [2]. New MC algorithms are derived

by MC integration is discussed. Using this formal mathematical which typically differ from the common ones by the fact that

approach, the standard algorithms and variety of new algorithms " . . .
are derived. The basic ideas of the weighted ensemble MC and the additional statistical variables appear, such as weights, that do

MC backward algorithms are explained. not have a counterpart in the real statistical process.
Index Terms—Boltzmann transport equation, event biasing,
Monte Carlo algorithms, semiconductor device simulation, small !l APPLICATION OF THEMC METHOD TO SEMICONDUCTOR
signal analysis. DEVICES
Based upon the physical picture of the MC technique, it has
|. INTRODUCTION been possible to apply the method to the simulation of a great

variety of semiconductor devices. When the need for variance
O VER the last three decades the Monte Carlo (MC) methody,ction techniques emerged, these have again been devised

has evolved to a reliable and frequently used tool thgh physical considerations, such as splitting a particle into
has been successfully employed to investigate a great varight ones by conserving the charge. For the MC simulation of
of transport phenomena in semiconductors and semu:onduq;g(,icesy there are two algorithms generally employed, known

devices. _ _ _ _ as theensemble MGEMC) and theone-particle MC(OPMC)
The method consists of a simulation of the motion of Char%gorithms.

carriers in the six-dimensional (6-D) phase space formed by the

position and wave vectors. Subjected to the action of an exterpal MC Algorithms

force, the pointlike carriers follow trajectories determined by For a svstematic descrintion of the MC algorithms. let us

Newton’s law and the carrier’s dispersion relation. Due to irrb- in Withythe homo eneoEs case. Transient ghenoména oceur

fections of the crystal lattice, the drift is interrupte J ' b

Eer ect|ton_s otthe (irys ?\. T] ice, the (rj' p:jo;:eis IIS n Ie.”“p en the carrier system evolves from an initial to some final
y;pa terTg even .S’t\.N |cTt?redcont§| erfe do'ft €locaiin sg Stribution. Accordingly, the evolution of an ensemble of test

andinstantaneous intime. fhe guration ot a drift process an ticles is simulated starting from a given initial condition. The

type of scattering mechanism are selected randomly accord

. babiliti hat d be th - s sical characteristics are obtained in terms of ensemble aver-
to given probabilities that describe the microscopic process. ages, giving rise to the name “ensemble” MC [3], [4]. For ex-

_ In principle, such a procedure yields the carrier distributiog, e “the distribution function in a given phase space point at
in phase space. Integrating the distribution function over Som&yiven time is estimated by the relative number of particles in
phase space volume gives a measure for the relative nUMBEL 411 volume around the point.
of carriers in that volume. Macroscopic quantities are obtainedtpe Epmc algorithm can also be applied under stationary con-
as mean values of the corresponding single-particle quantitigiions. In this situation, for large evolution times the final distri-
Moreover, the distribution function satisfies a Boltzmann equytion approaches a steady state, and the information introduced
tion (BE). _ _ by the initial condition is lost entirely. Alternatively, the ergod-
The method of generating sequences of drift and scatterigy of the process can be exploited to replace the ensemble av-
appears so transparent from a physical point of view that itis figrage by a time average. Since itis sufficient to simulate one test
quently interpreted as a direct emulation of the physical procgsgticle for a long period of time, the algorithm is called “one-
particle” MC. The effect of the particle’s initial state vanishes
Manuscript received March 20, 2000. This work was supported in pd@ l0ng simulation times. The distribution function in a given
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synchronous-ensemble or before-scattering method averages aBeveral attempts were made to circumvent the usage of the
formed by sampling the trajectory at the end of each free flighitjll, anisotropic band structure by employing simpler, analytic
which is in many cases easier a task than evaluating a path intend models whose free parameters are fixed by best fitting a
gral over each free flight. When the EMC algorithm is appliediven density of states [28]-[30]. Although having such models
to the simulation of a stationary phenomenon, the steady statefiSntermediate complexity is very desirable, a comparative
reached after the initial transient has decayed. The ensemblesaMely, however, revealed that they fail to reproduce the high
erage is taken at the end of the simulation time, while, on the cashergy part of the distribution function [31].
trary, withthe OPMC algorithm averages are recorded during theThe interaction of the carriers with the crystal imperfections
whole time of simulation. is generally considered as weak enough such as to allow a treat-
For the inhomogeneous situation, the mathematical moagént by first order perturbation theory. Dominant scattering
needs to be augmented by boundary conditions. A Neumam@chanisms are due to various modes of thermal lattice vibra-
type of boundary is simply realized by reflecting the particles @bns, ionized impurities [32], [33], and at high energies impact
the boundary. Physical models for ohmic contacts typically efpnization [21], [34]-[36]. Other mechanisms, such as plasmon
force local charge neutrality [6]. The EMC and the OPMC algGscattering [37], [38] and carrier—carrier scattering [39], as well

rithms remain basically unchanged in the inhomogeneous cag¢ the Pauli exclusion principle [40], [41] make the transport
Whenever in an OPMC simulation a particle leaves the simgroplem strongly nonlinear.

lation domain through an ohmic contact it is reinjected through
one of the contacts, selected according to the probabilities ofree
underlying model. '
It has been proven that the described algorithms yield a dis-n a semiconductor device, the particles move in an electric
tribution function which satisfy the respective BE. Such prooféeld that originates from fixed background charges and from
have been given by Fawceit alfor the homogeneous OPMCthe charge carried by the particles themselves. In a simulation a
algorithm and the steady-state BE [7], by Baccasdil.for the self-consistent solution of the transport problem and the Poisson
inhomogeneous OPMC algorithm and the steady-state BE [Bfuation is achieved by means of iteration. On each step the
and by Reklaitis [9] for the EMC algorithm and the transienparticle-mesh force calculation is carried out, consisting of the
BE. The latter proof can be found also in [10]. following four principal steps:
The established technique to study the small signal ac charac-l) assign the charge to the mesh:
teristics of a device consists of an EMC simulation of the tran- 2) solve the field equation on the mesh;
sient response. Elements of the impedance matrix are obtaine%) calculate the mesh-defined force field:

by applying a steplike voltage signal at a given port, and calcu- 4) interpolate to find forces on the particles [3].
lating the Fourier transform of the response currents through all

ports of interest. Since the EMC simulation captures the gene eﬂmpared with OPMC, Stab'“t.y reqw'rements for .EMC are
nonlinear behavior of a device, the voltage increment must Bre severe. Problem_s associated with self-consistent EMC
sufficiently small in order to stay in the linear response regimaimulation are the avoidance of self-forces [3], [42] and the
An MC algorithm for the solution of the BE linearized with reProPer choice of the field-adjusting time step. The latter needs
spect to the field would have significant advantages over tfPe in accordance with the Nyquist theorem, where the highest
above described method. Yet, to date, such algorithms exist offfUency to be sampled is given by the plasmon frequency
for the homogeneous case. MC algorithms for small signal ankg4]- The high frequency of required field updates calls for fast

ysis are reported in [11]-[15]. A review can be found in [16]. Poisspn S(_)Ivers [3]. _EMC is 9oupled with the linear Poisson
equation via the particle density.

In case of OPMC, a stable, self-consistent iteration scheme
is obtained by using the quasi-Fermi level and the carrier tem-

The work of Kurosawa in 1966 [17] is considered as the firgterature from the MC simulation in the Poisson equation, which
account of an application of the MC method to high-field transs nonlinear in this case due to the chosen variable set [43]. The
port in semiconductors. The following decade has seen cao-called MC—drift-diffusion coupling technigue provides an-
siderable improvement of the method and application to a vather scheme for self-consistent iteration [44]. From the particle
riety of materials [6]. Early papers deal with gallium arsenidsimulation transport coefficients are extracted, which are then
[7] and germanium [18]. In the mid-1970s, a physical modeised in adrift-diffusionlike current relation. In each iteration step
of silicon was developed, capable of explaining major macrthe coupled set of semiconductor equations is solved, consisting
scopic transport characteristics [19], [20]. The used band stradthe Poisson and the carrier continuity equations [45].
ture models were represented by simple analytic expression#n surface inversion layers or channels formed by hetero-
accounting for nonparabolicity and anisotropicity. With the inunctions, the motion of the carriers normal to the interface
crease of the energy range of interest the need for accurate,isuguantized and thus governed by the Schrédinger equation
merical band structure models arose [21]-[25]. For electrons[#6]. The coupled solution of MC transport parallel to the in-
silicon, the most thoroughly investigated case, it is believed thatface, Poisson equation, and Schrodinger equation needs to
only recently a satisfactory understanding of the basic scattering sought. Self-consistency has to be achieved for the poten-
mechanisms at high energies has been reached, giving rise tialathe eigenenergies, and subband populations. The strengths
new “standard model” [26]. Various technologically significantf the scattering mechanisms are modified through the overlap
semiconductors and alloys are investigated in [27]. integrals [47]-[50].

Self-Consistent Coupling Schemes

B. Physical Models
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D. Variance Reduction Techniques with f©(z) = fo(z) gives a formal solution to (1), known as

The large variations of the carrier density within a realistic g€ Neumann series [64].

vice impose severe problems upon the common MC algorithms. O () @)

Statistical enhancement methods are required to reduce the vari- f=r0+ 7+ 77+ ©)

ance in rarely visited phase space regions of interest. Trajectory . i i ) i

multiplication schemes used in various MC device simulato;rge integral equation conjugate to (1) is defined by

[51], [52], [45] are extensions of the method of Phillips and

Price [53]. Several variable-weight or population control tech- g(z") = /g(a:)K(a:’, z) dz + go(z'). (4)

nigues have been developed for the EMC method [54]-[57]. A

comparison of statistical enhancement methods is given in [58} evaluate a linear functional ¢f one can either use directly

the solution of the integral equation or as an alternative the so-
[lI. MC A LGORITHMS FOR THESOLUTION OF THE lution of the conjugate equation due to the following equality:
BOLTZMANN EQUATION

(f7 .90):(97 fO) (5)

The alternative way, namely, to state the transport equation
first and to formulate then an MC algorithm for its solution, wa . .
reported only one decade ago [1], [2]. A link between physical Seerg, a scalar product of the forfn, v) = [u(z)v(z)d is

based MC methods and numerical MC methods for solving N~ link with the MC method is established by approaching

tegrals and sernes of integrals has bee_n estabhshed_. . the terms of the Neumann series by MC integration. Consider
In [1], the BE is transformed into an integral equation, whic e task of evaluating an integral

is then iteratively substituted into itself. The resulting iteration
series is evaluated by a new MC technique, caN&d back- o0 o0
ward (MCB) since the trajectories are followed back in time. I= / P(x)dx = / p(x)(z) dx (6)
All trajectories start from the chosen phase space point, and their e e

number is freely adjustable and not controlled by the physiGghereg is absolutely integrable. Suppose that py), where
process. The MCB method allows the evaluation of the distti-is nonnegative and™_ p(z)dr = 1, which means that
bution function in a given point with a desired precision. Thg is a density function. Thet is the expectation value of a
algorithm offers advantages when rare events have to be sirfdhdom variable) with respect to the density: I = E3.
lated or when the distribution function is needed only ina smally MC estimate for! is obtained by generating a sample
phase space domain. {1, ---zn} from the densityp, and taking the sample mean

Theweighted ensemble M@VEMC) method allows the use; — -1 EZ(\;I ¥(z;). After the central limit theorem, the
of arbitrary probabilities for trajectory construction, such thafample mean: approacheg for N — oc.

particles can be guided toward a region of interest [59], [60].

The method evalugtes the i.teration series .of an i.ntegral fpgn Integral Form of the BE

of the BE. The unbiased estimator for the distribution function _ _ _ ) )

contains a product of weights which are given by the ratio of the The BE descnb(_as carrier transport.by using a sgmlclassmal

real and the modified probabilities of the selected events. aPProach. For device simulation the time- and position-depen-
With the iteration approach introduced in [2], the MCB an§€Nt BE needs to be considered.

the WEMC algorithms are stated in an unified way. The cony 5

cept of numerical trajectories is introduced. The common EMé—t +v(k) - Vi + F(r, t) 'Vk> [k, r. ) = Q[fI(k, T, t).

algorithm is obtained as a particular case, in which the numer- (7)

ical trajectories coincide with the physical carrier trajectorieghe force fieldF takes into account electric and magnetic fields.
for homogeneous [62] and inhomogeneous [63] conditions. |f only an electric fieldE is presentF is given byF(r, t) =

qE(r, t)/h, wheregq is the charge of the carrier. The carrier's
A. Integral Equations group velocityw is related to the band energyk) by v =

The semiclassical transport problem is described by a Frdt- Vi<(k). The scattering operate = Q, — @ consists of

holm integral equation of the second kind for the distributiof 9ain term?, and a loss termy;. In the following the nonde-
function f. generate case is considered. If the carrier concentration is small

enough, the Pauli exclusion principle has a negligible effect and
the scattering operator is linear.

f(z) = / f@)K (', x)de! + folz).

kv t)= | f(,r )S(K, k r t)d (8
The kernelK and the free termy, are given functions. The QlJl( ) /f( 8¢ ) ®)
multi-dimensional variable stands fofk, =, t) in the transient Quf)(k, 7, t) =Xk, v, t) f(k, 7, 1). 9)
case and fofk, r) in the steady state. The iteration
Here,S(K', k, v, t) dk denotes the scattering rate from a skite
. . to states indk aroundk, and\(k, v, t) = [ S(k, k', r, t) dk’
fo (@) = /f( N2 (', x) da’ @) is the total scattering rate. J
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The phase space trajectal§(7), R(r) is a solution of the performing the’ integration and replacing the upper bound of
equations of motion. Assuming the initial conditiéf(t) = &, the time integral by, thus eliminating the unit step function.

R(t) = r the formal solution can be written as Using the kernel (15) in the defining equation (4) the conju-
™ gate equation evaluates to
k+ / F 00
- E v t)= / d’r/ dkoS(K | ko, 7', 1)
R(r)=r+ [ oK) (10) PR
t
The left-hand side of (7) represents the total time derivative of P < A AUK(w), B(y), v) dy)
FK (@), R(t), t). In this way, (7) can be rewritten as an ordi- -g(K(7), R(7), 7) + go(K', v, ¥). (17)
?iazr;/ first-order differential equation (11), that has the solut|o1r_10 obtain this equation, in (15) variables are changed—
K(t'), ¥ = R(t). According to the Liouville theorem the
df_(t) FADLE = Q1) (11) volume element does not change over a trajectory such that
dt e dkdr = dk,dr”. Ther” integration is then carried out with

the help of the-function.
t ) t ) The solutiory for free termgg = §(k — k' )6(r —7/)6(t — /)
t)= / Qq[f](t') exp <— / Ay) dy) di represents the Green’s function of the BE. From (5), it follows
fo + ¢ that the solutiorf of (14) is given by the scalar product
+ f(tg) ex —/Aydy). 12

Jibo) p< ) (12) Fk,t) /dt/dk’/dr
f(to) denotes the initial condition at tintg. Remembering that , ,
in (12) every time argument, say stand for(K (7), R(7), 7), gk, ¢k ) fo(K, 7, ¢). (18)
and by settingy = 0, one obtains the integral form of the BE. 1) EMC Method: Assume we are interested in the integral

t of f over some phase space sub-donfaiat time¢:
kv t / dt/dk’f(k’,R(t’), )
dt’ dk’/ dr’
t), R(t'), ¢ al? / / "
FE 7 )6t — )0 (K, ) (19)

t
o (= [ A, R, ) ) |
% wherefg denotes the indicator function of the subdomain. Con-
+ f(K(0), B(0), 0) sidering this integral as scalar prodyet(t) = (f, go), it fol-
lows thatgy = &§(t — ¢')8q (K, 7). Using the Neumann series

- exp <— /0 MK (y), B(y), ) dy) - (13) of(17),9 = S ¢, we obtain

This equation represents the generalized form of Chambersfg( £ = (fo, g) = g(20)( )+f(1)( £) + f(2)( t)+---. (20)

path integral [61]. . . :
The meaning of the iteration terms can be understood from their

C. MC Algorithms for Transient Carrier Transport structure. The second iteration term, for example, can be ex-

To complete the set of basic equations for the transigessed as
problem the conjugate equation has to be found. The derlvat|0n(2 N N
begins with a transformation of (13) into the standard form (1 / dta / dty / dk / dky / dk; / dri
by augmenting the kernel.

N e sttryon(~ [t )
. S(KQ(tQ)v kl217 RQ(tQ)v tQ)
L ko )+ folk, r t) (14) t
e (= [ AU ). R, ) )
K(E, vt krt) -S(K1(t), ki, Ri(t1), t1)
SO, K(t), 7, ) exp (— | 2w, kw0 dy) exp (— | AEow). Bolw). ) dy)
5 — RE)H(E—t) (15) 0o (Ko(t), Ro(t)). (21)

Initial conditions for thek-space trajectories are given first by
. K,(0) = k; and then by the after-scattering stal€s(tz) =
Jolk, 7, £) = fi(K(0), R(?)) k5 andKo(t1) = k7. The real space trajectory starts initially
- exp <_/ MK (), R(y), v) dy) . (16) from R»(0) = r; and is continuous at the time of scattering:
0 RQ(tQ) = Rl(tg), Rl(tl) = Ro(tl).
H denotes the unit step function agidthe initial distribution. The iteration term (21) describes the contribution of all par-
The integral form (13) is immediately recovered from (14) bticles that undergo two scattering events when they propagate
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from time zero tot. At time ¢, we find the particles on their covered. The separation of the integrand intand+) follows
third free flight path. Analogousl;ﬁéf) represents the contribu- quite naturally from (23).

tion of all particles that propagate without scattering from zero N N

tot, fg(zl) the contribution of all particles that propagate with one ¥ = (i, 73, t2, K3, 1, ki, to) (25)

scattering event, and so forth. p={f;} {)\exp <_ /)} {15} {)\exp <_ /)}
The next task is to separate the integrand in (21) into a prob-

ability densityp and a random variabl¢ according to (6). To -l _
accomplish this task the integrand is augmented in two steps. TS} Aexp (26)
First, the termexp(— fttl), which represents the probability that ) = 6,(Ko(t), Ro(t)). (27)

the particle drifts without scattering frota to ¢, is expressed as ' '
an integral over the corresponding probability density. For tH@ evaluate (23) by MC integration one has to genefareal-
sake of brevity the time and position-dependence of the sc&@tions of the multidimensional variabte which are referred

tering rates is not written explicitly. to as numerical trajectories. The factors in (26) denote condi-
. tional probability densities, excegt, which is unconditional.
exp <_ / ANKo(y)) dy) Thereforg, one wpul_d f|r§t generate a phase space ffgint;)
t from the initial distributionf;, then choosé, from the free

o0 to flight time distribution, seleck$ with density A=1S, and so
= /t A(Ko(to)) exp <_/t A(Ko(y)) dy) dto. (22) forth, Finally, at timet the indicator functiorfq,, which plays
' the role ofs in (6), needs to be evaluated. The result will be
Second, products of the foraxp(— [)S in (21) are multiplied simply one or zero. Doing so fa¥ trajectories corresponds to
by AX~*. These changes yield the following expression for th@unting the number of particles foundghat timet.

second iteration term: The generated times are of ascending ordlet, t» < ¢ <
@) t t o Y to, which means that the trajectory is followed forward in time.
o = /0 dt?/t dtl/t dtO/ dk; With a forward algorithm it is only possible to evaluate an av-
z erage of the distribution function over some subdomain, but not
/ dk'f/ dki/ dri { fi(ki, 7i)} the exact value in a given point.
4 2) Weighted EMC Methodin the WEMC method, instead
. {)\(Kg(tg)) exp <_ MK () dy)} of the physical densities in (23), which follow in a natural way
0 from the kernel, arbitrary densities are used for numerical tra-
S(K2(t2), k3) jectory construction. The ratio of the physical density over the
' A(K2(t2)) numerical density determines the weight of the numerical trajec-
ty tory. The basic ideas can be explained by rewriting the random
: {)\(Kl (tl))exp<— MK (y) dy)} variable z, the densityp, and the dependent random variable
{S(Kl (1), k%) } t2 () for thenth iteration term in a formal way as
)\(Kl(tl)) 37:(370, L1y oy a:n) (28)
to
. {/\(Ko(to))exp<—/ MKo(y)) du)} p = folwo)K(vo, 1) -+ K(wpn_1, Tp) (29)
t ¥ =6 (30)
~Oa(Ko(t), Ro(t)). (23)

where K stands for the kernel of the conjugate equation. One
Probability densities assigned to elementary events, such as ggim now choose an arbitrary initial distributipm and arbitrary
eration of an initial state, of a free flight time or an after scatransition probabilities” for numerical trajectory construction.
tering state are enclosed in curly brackets for easier recogniti®ince the produgi» has to remain unchanged, the random vari-
Note thatA\ 'S is the normalized distribution of the after-scatables has to compensate for the changes in the depsity
tering states, sinc A\=*(k)S(k, k')dk’ = 1 for all k. The free

flight time distributions are normalized on semi-infinite time in- p =po(xo)P(z0, x1) -+ P(Tn—1, Tn) (31)

tervals. For instance, fas we get b — Jolxo)K (o, z1) -+ K(xpn_1, zn) o (32)
oo oo pO(-/EO)P(-/EOa .’L'l) o 'P(xn,—la xn)

/t2 p(ty) dty = /t2 MK (t)) The numerical initial distributiorpy and the numerical tran-

t sition probability P have to be nonzero where the physical
-exp <—/ MK 1 (y)) dy) dt; =1. (24) counterparts are nonzero, i.@g(zo) # 0 if fo(zg) # O
tz and P(x;, z;) # 0 if K(x;, z;) # 0. Furthermore, only

None of the distributions fofy, ¢1, ¢, is normalized in the time normalized densities are considergdpo(xo) dzo = 1 and
intervals given in (23) which reflects the simple fact tbféﬁ) J P(xi, zj)dx; = 1 forall z;.
does not represent the whole solutifinbut only a partial con-  Consequently, whenever in the process of numerical trajec-
tribution. tory construction a random variable is selected from a numer-

When the multiple integrals of the iteration terms are evalical density rather than from a physical density, the weight of
ated by MC integration the well-known EMC algorithm is rethe trajectory changes by the ratio of the two densities.
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. Final conditions for thek-space trajectories are given first by
Ko(t) = k and then by the before-scattering stal€gt;) =
k1 andK,(t2) = ko. The real space trajectory ends at final time
t in the given pointRy(t) = r and is continuous at the time of
Scatteringﬂl (tl) = Ro(tl), RQ(tQ) =R; (tg).

As in the forward case, the integrand of (33) is augmented in
two steps. The probabilityxp(— fotz) is expressed as an inte-
gral over the corresponding density.

o (- [ At

= / (Ko (ts)) exp (— / A(KQ(y))dy> dts. (34)

distribution function (a.u.)

— EMC mlg
——- num. particles

T o T Y T T TN TR N A NN TN N T

107 O Weighted EMC -0 ta
102 . . Second, the normalization of the distribution of the before-scat-
0 500 1000 1500  tering states has to be introduced.
energy (meV) .
(k) = / S(K, k) dK (35)

Fig. 1. Electron energy distribution functions obtained by the EMC and
WEMC algorithms for> = 30 kv/em. From (35), it follows thatf \*(k)~'S(K', k) dk’ = 1 for all k.
Products of the fornt exp(— [) in (33) are augmented using
As an example, the WEMC method is applied to compute thoth A andA*, as shown in the following expression:
energy distribution of electrons in Si. The used semiconductor
model accounts for the phonon spectrum described in [6] anﬂ@) k,r t) / dtl/ dt2/
for an analytical, nonparabolic band-structure characterized by

m¥ = 0.32mg, o = 0.5 eV, To increase the probability for / dkl/ dks fi (K 2(0), R2(0))

electrons to gain energy and thus to populate the high energy .

tail, the probability for phonon absorption has been increased ) { (K(ts)) exp <_/ AKoa(y)) dy)}

at the expense of phonon emission. Fig. 1 shows the result of a ts

simulation of4 - 107 electrons a2 = 30 kV/cm for¢ = 1 ps. MK 1(t2)) [ S(ka, K1(t2))

The initial distribution is a Maxwellian at lattice temperature, TAK L () { A (K1 (t2)) }

chosen ag;, = 300K. For the given particle number, the EMC t

method can resolve not more than seven decades of the energy { (K1(t2))exp < / AK L () du>}

distribution, while the WEMC method gives reasonable accu- t2

rate results within 17 decades. However, it is to note that the . A" (Ko(t1)) { Sk, Ko(tl))}

variance of the WEMC method increases with increasing evo- A(Ko(t1) | A*(Ko(t1))

lution time. The dashed line in Fig. 1 represents the distribution '

of the endpoints of the numerical trajectories. : { (Ko(t1)) exp < /t A(Ko(y)) dy) } :
3) MCB Method: In the previous sections, forward algo- ' (36)

rithms were formally derived from the Neumann series of N _ _
the conjugate equation. If the Neumann series of the integhlriting the position and time-dependence of the scattering rates
form of the BE is approached by the MC method, backwafths been omitted for the sake of brevity.

algorithms will be obtained. To evaluate (36) by MC integration the integrand is separated
As an instructive example, we consider the teff® of the into p and.
Neumann series of (13). © = (t1, ky, ta, ko, t3) 37)

o / dtl/dkl/ dtQ/de "o {AeXp <_/>} 15 {AeXp <_/>}

fi(K2(0), R -{S/A*} {)\exp <— /)} (38)
t2
" €xXp <—/ AMK2(y), Ra(y), v) dy) P = A(t1) A(t2) f; (39)
0 Altr) Alt2) °"
S(kz, K1(t2), Ri(t2), t2) o - . .
H N realizations of the multidimensional variabhtehave to be
- exp <—/ MK (), Ri(y), v) dy) generated. Sinck, r, ¢ are given, the construction of the nu-
2 merical trajectory starts at this point by choosing a random vari-
- S(k1, Ko(t1), Ro(t1), t1) ablet;, which obviously is less than The next random variable
t . .
to be chosen ik, a before-scattering state, and so forth. The se-
"exXp <_ /t1 AMEo(y). Bo(). ) dy) - 33 |ected times are of descending ordek ¢, < t» < ts, which



1904 IEEE TRANSACTIONS ON ELECTRON DEVICES, VOL. 47, NO. 10, OCTOBER 2000

1 _:H_ T T T
107 T thbqu
4 T = ]
10 t +++tF 1
7 [ + N
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— C . ]
S 00 +++ b
;107 -
L’g _13 L +*+¢ ]
107 *, N
2 C , ]
210" | K ]
c = ﬂ-_*,. |
S C .. ]
2107 ¢ T, ]
= » f e ] Fig. 3. lllustration of the functions, (k, r) andt; (k, ) which give the time
5107 ¢ . ] at a trajectory’s entry point and exit point, respectivelykf r, is the initial
102 [ . 1 point of a closed trajectory, the times aé’e(kl, ri) = too.
= * Backward MC . 7]
102 [ + Weighted EMC .
- F ] The integral form of (41) is derived by using the same ap-
10 0 500 1000 1500 2000 proach as in the transient case. The analysis is carried out for
energy (meV) a phase space trajectal§(7), R(7) with the initial conditions

K(0) = k, R(0) = r, wherek, = is a given point at which the
Fig. 2. Elgctron energy distribution functions obtained by the WEMC anglg|ye Off is sought. In the steady state, the lower bound of the
MCB algorithms forE = 10 kV/cm. . . L . . .

time integration in (12) is chosen as that time at which the con-

sidered trajectory enters the simulation domain. This treatment
means that the numerical trajectory is followed back in timensures that the given boundary distributifnappears in the
During trajectory construction the produck A*(¢;)/A\(¢;) has free term. The resulting integral equation is posed in the 6-D
to be recorded. At time zero, the product is multiplied by the inphase space. The real space coordinate is restricted to the sim-
tial distribution f; evaluated at the reached phase space pointulation domainD.
give the random variableé. After construction ofV numerical

trajectories, the sample meanmpfs formed. flk, )= /dk’/dr’f(k’, KK, 7, k, 1)+ folk, 7).
1 (42)
flle .ty <= D 0 (40)
j=1 For the kerneK and the free ternf, the following expressions

o . are found:
The MCB method allows to evaluate the distribution function at

given phase space points with desired accuracy.

/ !
In analogy with the forward case event biasing can be applied K(k, TO’ k, )
leading to weighted backward algorithms. _ / Sk, K{t), )
Fig. 2 compares the energy distributions of electrons in Si t; (k1)
as computed by the MCB and the WEMC methods. Conditions 0
assumed ar& = 10 kV/cm and¢ = 3 ps. The initial distri- “exp <— y MK(y), R(y)) dy)

bution and the number of particles for the WEMC simulation
are as in Fig. 1. The MCB method is used to evaluate the energy
distribution at discrete points above 800 meV. The statistical un-
certainty of the result is controlled by the number of numerical
trajectories starting from each point. In the simulatiof hck-
ward trajectories are computed for each point. Using the MCBJ/o(k: 7) = fu(K(t; ), R(t,))
method the high energy tail is obtained with high precision, as 0
shown in Fig. 2. The depicted range of 30 decades is out of reach I /t
even for the here considered variant of WEMC method.

-6(r' — R(t'))0p(r) (43)

MK (), R(y))dy>- (44)
, (km)

i . Since the time integral, which originates from the solution of the
D. MC Algorithms for Steady-State Carrier Transport differential equation (11), cannot stay in the integral equation
In the steady state the Boltzmann equation is given by ~ (42), it has to be assigned to the kernel (43).
Two functionst, (k, r) and ¢} (k, r) are introduced, de-
(v(k) -V +F(r) Vi) f(k, r) = Q[f|(k, r). (41) noting the times when the trajectory enters, respectively leaves,
the simulation domain (see Fig. 3). If the considered point is
The applied field and all material properties are independeht initial point of a closed trajectory, the times az"ez +o0.
of time rendering the system time invariant. Equation (41) dé&his means that a particle moving on such a trajectory has been
scribes an open system that exchanges particles with onescattered onto this trajectory at some time betwgerc, 0).
more reservoirs. The latter provide a stationary boundary coflle particle can leave the closed trajectory again only by
dition for the distribution function. scattering at some time betweéh o).
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For the formal derivation of the steady-state forward algahe total number of particles or by the amount of mobile charge
rithms, the conjugate equation is required. This equation resutisthe device. For example, fd2 — D one obtainsfp =
from (42) by applying similar steps as in the transient case. N = I'p > " A"L(ks;, 7,), which givesI'p, as function of

N and the recorded sum. The finite sum recorded during the
. ty (ka,1’) , , simulation is an unbiased estimate of the total time the particle
gk, 7') = / dka/ drS(K', ka, ') path is followed.
R As inthe transient case event biasing can be used in the steady
- exp <—/ MK (y), R(y)) dy) g(K (), R(t)) state as well leading to weighted OPMC algorithms.
y ,0 2) One-Particle Backward MC AlgorithmApproaching the
+g90(K', 7). Neumann series of (42) by the MC method yields steady-state
) . backward algorithms. Two algorithms are found. The first one
New algorithms for the steady state, such as the weighted aljh s 1o evaluate the distribution function at given points and is
the backward OPMC algorithms, are currently under investiggajcally identical with the transient backward algorithm (Sec-

tion are not yet fePOfte_d in the literature. tion 111-C-3) with the only difference that the numerical trajec-
1) OPMC Algorithm: The formal derivation of the OPMC v is followed in a variable time intervat, (k, r), 0) rather
algorithm is based on the Neumann series of the conjugate eqyay, in a predefined one.

tion. Due to the boundary condition, the transformations in- Let us consider the problem of injection of channel hot car-

volved in the derivation of the iteration terms are more complize, g intg the gate oxide. Using a backward algorithm, carriers
cated than those involved in the pure initial value problem. Onge |5 nched at the semiconductor/oxide interface only at ener-
res_ult of such a calculation is fchat the mmgl pom_ts of the traje%ﬂes above the relevant energy threshold. In other words, only
tque§ he}ve to be generated with the veIOC|ty-we|ghted boundemé rare events are simulated. Each high energetic carrier is fol-
distribution, —v, H(~v ) f,, wherev, = v - n is the compo- |,yeq hackin time until it reaches an equilibrium region such as
nent of the velocity normal to the boundary. The total incidelfy ,ce or drain, where the distribution function is known. Since
flux appears as a normalization constant. each trajectory is of different duration, a steady-state formula-
tion employing a variable timg (&, r) and a boundary distri-
I'p = —j{ da('r‘)/ dkvy (k) fo(k, 7). (45) bution appears appropriate.
oD v (k)<0 The second algorithm can be viewed as the backward version
of OPMC algorithm (Section 11I-D-1)/N Trajectories are con-
structed starting from an absorbing boundary. The weight of the
particle changes by* /A at each scattering event, however, the
weight remains undeterminated with respect to a scaling factor.
fa= / dk/ dr f(k, 7)0q(k, 7). (46)  Both the before-scattering and the time-recording method for
average recording are available, yet the current weight of the
For example 2 might denote a cell of the spatial mesh. Thearticle has to be taken into account. The particle weights are fi-
iteration terms can be formulated in two slightly different wayaally determined when the trajectory terminates at an injecting
leading to the before-scattering and the time recording methdstaindary, where the boundary distributignevaluated at the
for average recording, given by (47) and (48), respectively. reached phase space point gives the scaling factor.

Assume we are interested in the averag¢ offer some subdo-
main 2.

o~ faky, ) E. Small-Si i
=T ’ 47 . ignal MC Algorithms
fa=Tn Ak, 75) *7)

j=1 Understanding the MC method as a versatile tool to solve in-

> [t tegral equations enables its application to a class of problems
fa=Tp Z/O Oa(K (), By(T))dr. (48) " \hich are not accessible by purely physically based, imitative
j=1

MC methods. In electrical engineering the linear small-signal

In the simulation, an initial state is generated from the veIocitﬁ:ln"j‘l}’S'S of nonlinear systems plays an important role. Whether
weighted boundary distribution [55], [65], and the trajectory i e_Imegnzed system Is analy_zed in t_he frequency or time do-
followed through the device. When an absorbing boundary T&iN is just a matter of convenience since the system responses
encountered another initial state is generated and a new tra| tained in elther domain a-re linked by .the FOUI’I.eI‘ transform.
tory is followed. In (47)ks; denotes the before-scattering state At Present, linear small-signal analysis of semiconductor de-
andr; the position of the particle when thiéh scattering event ViceS by the MC methad is beyond the state of the art. However,
takes place. In (48); stands for the duration anki;, R; for recentl_y progress ha_s been made in performlng MC small S|gnal
the phase space trajectory of tt free flight. The sum (48) f';\naly5|_s of bulk carrier transport [15]. _Chopsmg a f_ormulat|on
simply gives the time the particle has spenfinThe countej I the time domain, a small perturbatidsy is superimposed
is incremented whenever a scattering event is processed, regitdt Stationary field,. The stationary distribution functiofy
less of the trajectory count. This is possible since in the opmill thus be perturbed by some small quantty.
algorithm all trajectories have equal weight.

The normalization constant needs not be evaluated from the E(t)=E, + E\(t) (49)
theoretical definition (45). The normalization ¢fis given by [k, t) =fs(k)+ fi(k, t) (50)
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5KkViem |

Inserting this Ansatz into the transient BE and retaining onl 25 T
first order perturbation terms yield a Boltzmann-like equatio /N 1
for f1 which is linear in the perturbatioB';, as follows: LN ; | - 10 KV/iem

o | . ; ,,,,,,,,,,,, 20 kV/em
t | [
% + 3 B, - Viik 1) T

= QUAlk. 1) = 3 Ex(t) - VI(K).  (51)

_
;]

;]

Compared with the common BE, (51) has an additional term «
the right-hand side, which contairfs, the solution of the sta- }

tionary BE. The integral form of (51) is found by the methoc |

pointed out in Section IlI-B. Assuming an impulselike excita |

tion E;(t) = 6(t)E;y, results in the following integral equation 0 1 2 3
for the impulse responsA [15]: time (ps)

diff. energy (1 0° eVem/Vs)
/s

Fig. 4. Impulse response of the differential energy.

fi(k, t):/o dt’/dk’fl(k’,t’)S(k’,K(t’))

800 ‘

(= [ 3w ) + 6o
exp (— / MK W) dy) (52)

— —— 5 kV/cm

——- 10KkV/em L\
600 — —_—

== N 20 kV/cm
—-— 40 kV/em \

Gk) = —L By - V5.(k). (53) s
k //
The free term of (52) is formally equivalent to (16), the free ter ; W
of the BE. The only difference is thét takes on also negative ~  |-—-—-—-cofimm—-—- -
values, and can therefore not be interpreted as an initial dis
bution. In [15] G is expressed as a difference of two positivi 0 = G T H
: . 10 10 10 10

functions,G = Gt — G, an Ansatz which decomposes (52 frequency (s”)
into two common BE for the unknowngt and f. The initial
conditions of this BE are §c1i(kv 0) = G*(k) > 0. In this Fig. 5. Real part of the differential velocity.
way, the impulse response is understood in terms of the concur-
rent evolution of two carrier ensembles. 400 |

Using different methods to generate the initial distribution 5 Kv/em A\_\
of the two ensembles gives rise to a variety of MC algorithm __ ] ——- 10kV/iem | /

diff. velocity) (cm®/Vs)
N

Both existing and new MC algorithms are obtained in a unifieﬁ ------------ 20 kv/em

way, and a transparent, physical interpretation of the algorithi § 200 [~ =~ 40kViem

is supported. / /|
For electrons in Si the impulse response of mean energy ¢

mean velocity has been calculated. Fig. 4 shows the respo

of the differential energye); /Fiy, in the time domain for dif- )

ferent field strengths. The frequency-dependent differential v £ T~ el

locity obtained by a Fourier transform of the impulse respon: il

(v)1/ Eim is plotted in Figs. 5 and 6. The low frequency limit of 200

the real part tends to the static differential mobility) , /O E;. 10° 10° 10" 10"
frequency (s™)

velocity)

£ 0 e

m(diff

/
T

f

f

\

\

N
.

V. OPEN PROBLEMS AND OUTLOOK Fig. 6. Imaginary part of the differential velocity.

The MC method has traditionally been used to study hot

carrier effects in semiconductors and semiconductor devick®m equilibrium, has severe drawbacks. First, one had to
The involved physical processes have been studied extensivalgintain both macroscopic and microscopic models, such as
and sophisticated models have been developed. Howeweability and scattering models, and to ensure that both models
when using the MC method for TCAD purposes, additionglive consistent results in conditions where they can be applied
requirements arise. It should be possible to analyze a devémultaneously. Especially in view of the ever increasing

in all operating conditions with one numerical method. Usingomplexity of the considered effects, development and main-
different methods, such as moment equations for conditiotenance of two kinds of models appears very uneconomical.
close to equilibrium and the MC method for conditions faBecond, using two completely different numerical methods in a
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simulator makes the software more complex and increases thg]
number of parameters that control the simulation. The criterion
mrQMmhmgbawea1menwﬂmdswmremmnenmhmaLandB]
some discontinuity in the result at the switching point is likely
to appear.

To date, the two standard algorithms that are widely used for
MC device simulation on a semiclassical level are the ensembl0]
and the one-particle algorithms. An inherent peculiarity of thes?n]
algorithms is that the computational efficiency depends on the
physical conditions in the device. In particular they may become
prohibitively time consuming if regions with retarding electric
field are included. Such a situation occurs in any semiconductor
device in which transport is controlled by one or more energy
barriers. On the other hand, these algorithms let the simulated’]
particle spend too much time in highly doped contact regionsi4]
where no events of interest occur and simply the equilibrium
distribution is recovered.

From the BE represented as an integral equation, generalizgrs)
MC algorithms can be derived, as has been demonstrated by the
WEMC and the MCB algorithms. Although these algorithmsig;
have the potential to solve various problems occurring in device
simulation, they have not yet been applied to realistic structure
The great freedom in choosing density functions for numerica
trajectory construction opens a wide field for the developmenii8]
of new algorithms. Backward and forward algorithms can be
combined. For example, at an artificial boundary located on top
of an energy barrier backward and forward trajectories can bg9]
linked allowing a direct control of the number of numerical par-
ticles moving across the barrier.

With the WEMC method, the variance of the particle weights
increases with time. Hence a robust, weighted algorithm will bd?
likely to include some kind of weight control technique possibly
realized by one of the established variable-weight methods [58]22]

Furthermore, an MC algorithm for linear small signal analysis
of semiconductor devices is desirable. From our experience witf23]
small signal algorithms for bulk semiconductors (Section IlI-E)
we conclude that an algorithm in the time domain will be moreyp4
efficient than one in the frequency domain. In the former case,
the Fourier transform is carried out as a postprocessing step in
order to obtain the admittance matrix of the device. [25]

A class of problems not considered in this work are related to
the nonlinear BE (Section 11-B). MC methods for integral equa—[ZG]
tions with a polynomial nonlinearity do exist. Their applicability
to the semiconductor transport problem has to be investigated.
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