
1898 IEEE TRANSACTIONS ON ELECTRON DEVICES, VOL. 47, NO. 10, OCTOBER 2000
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Abstract—A brief review of the semiclassical Monte Carlo (MC)
method for semiconductor device simulation is given, covering the
standard MC algorithms, variance reduction techniques, the self-
consistent solution, and the physical semiconductor model. A link
between physically based MC methods and the numerical method
of MC integration is established. The integral representations the
transient and the steady-state Boltzmann equations are presented
as well as the corresponding conjugate equations. The structure
of the iteration terms of the Neumann series and their evaluation
by MC integration is discussed. Using this formal mathematical
approach, the standard algorithms and variety of new algorithms
are derived. The basic ideas of the weighted ensemble MC and the
MC backward algorithms are explained.

Index Terms—Boltzmann transport equation, event biasing,
Monte Carlo algorithms, semiconductor device simulation, small
signal analysis.

I. INTRODUCTION

OVER the last three decades the Monte Carlo (MC) method
has evolved to a reliable and frequently used tool that

has been successfully employed to investigate a great variety
of transport phenomena in semiconductors and semiconductor
devices.

The method consists of a simulation of the motion of charge
carriers in the six-dimensional (6-D) phase space formed by the
position and wave vectors. Subjected to the action of an external
force, the pointlike carriers follow trajectories determined by
Newton’s law and the carrier’s dispersion relation. Due to im-
perfections of the crystal lattice, the drift process is interrupted
by scattering events, which are considered to be local in space
and instantaneous in time. The duration of a drift process and the
type of scattering mechanism are selected randomly according
to given probabilities that describe the microscopic process.

In principle, such a procedure yields the carrier distribution
in phase space. Integrating the distribution function over some
phase space volume gives a measure for the relative number
of carriers in that volume. Macroscopic quantities are obtained
as mean values of the corresponding single-particle quantities.
Moreover, the distribution function satisfies a Boltzmann equa-
tion (BE).

The method of generating sequences of drift and scattering
appears so transparent from a physical point of view that it is fre-
quently interpreted as a direct emulation of the physical process
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rather than as a numerical method. The main MC algorithms
used to date were originally devised from merely physical con-
siderations, viewing an MC simulation as a simulated experi-
ment. The proof that the used algorithms implicitly solve the
BE was carried out later.

The alternative way to use the BE explicitly and to formulate
MC algorithms for its solution was reported only one decade
ago in the literature [1], [2]. New MC algorithms are derived
which typically differ from the common ones by the fact that
additional statistical variables appear, such as weights, that do
not have a counterpart in the real statistical process.

II. A PPLICATION OF THEMC METHOD TO SEMICONDUCTOR

DEVICES

Based upon the physical picture of the MC technique, it has
been possible to apply the method to the simulation of a great
variety of semiconductor devices. When the need for variance
reduction techniques emerged, these have again been devised
from physical considerations, such as splitting a particle into
light ones by conserving the charge. For the MC simulation of
devices, there are two algorithms generally employed, known
as theensemble MC(EMC) and theone-particle MC(OPMC)
algorithms.

A. MC Algorithms

For a systematic description of the MC algorithms, let us
begin with the homogeneous case. Transient phenomena occur
when the carrier system evolves from an initial to some final
distribution. Accordingly, the evolution of an ensemble of test
particles is simulated starting from a given initial condition. The
physical characteristics are obtained in terms of ensemble aver-
ages, giving rise to the name “ensemble” MC [3], [4]. For ex-
ample, the distribution function in a given phase space point at
a given time is estimated by the relative number of particles in
a small volume around the point.

The EMC algorithm can also be applied under stationary con-
ditions. In this situation, for large evolution times the final distri-
bution approaches a steady state, and the information introduced
by the initial condition is lost entirely. Alternatively, the ergod-
icity of the process can be exploited to replace the ensemble av-
erage by a time average. Since it is sufficient to simulate one test
particle for a long period of time, the algorithm is called “one-
particle” MC. The effect of the particle’s initial state vanishes
for long simulation times. The distribution function in a given
phase space point is estimated by the time spent by the particle
in a fixed, small volume around the point divided by the total
time the trajectory was followed. Another method of obtaining
steady-state averages has been introduced by Price [5]. With the
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synchronous-ensemble or before-scattering method averages are
formed by sampling the trajectory at the end of each free flight,
which is in many cases easier a task than evaluating a path inte-
gral over each free flight. When the EMC algorithm is applied
to the simulation of a stationary phenomenon, the steady state is
reached after the initial transient has decayed. The ensemble av-
erage is taken at the end of the simulation time, while, on the con-
trary, with the OPMC algorithm averages are recorded during the
whole time of simulation.

For the inhomogeneous situation, the mathematical model
needs to be augmented by boundary conditions. A Neumann
type of boundary is simply realized by reflecting the particles at
the boundary. Physical models for ohmic contacts typically en-
force local charge neutrality [6]. The EMC and the OPMC algo-
rithms remain basically unchanged in the inhomogeneous case.
Whenever in an OPMC simulation a particle leaves the simu-
lation domain through an ohmic contact it is reinjected through
one of the contacts, selected according to the probabilities of the
underlying model.

It has been proven that the described algorithms yield a dis-
tribution function which satisfy the respective BE. Such proofs
have been given by Fawcettet al.for the homogeneous OPMC
algorithm and the steady-state BE [7], by Baccaraniet al.for the
inhomogeneous OPMC algorithm and the steady-state BE [8],
and by Reklaitis [9] for the EMC algorithm and the transient
BE. The latter proof can be found also in [10].

The established technique to study the small signal ac charac-
teristics of a device consists of an EMC simulation of the tran-
sient response. Elements of the impedance matrix are obtained
by applying a steplike voltage signal at a given port, and calcu-
lating the Fourier transform of the response currents through all
ports of interest. Since the EMC simulation captures the general
nonlinear behavior of a device, the voltage increment must be
sufficiently small in order to stay in the linear response regime.
An MC algorithm for the solution of the BE linearized with re-
spect to the field would have significant advantages over the
above described method. Yet, to date, such algorithms exist only
for the homogeneous case. MC algorithms for small signal anal-
ysis are reported in [11]–[15]. A review can be found in [16].

B. Physical Models

The work of Kurosawa in 1966 [17] is considered as the first
account of an application of the MC method to high-field trans-
port in semiconductors. The following decade has seen con-
siderable improvement of the method and application to a va-
riety of materials [6]. Early papers deal with gallium arsenide
[7] and germanium [18]. In the mid-1970s, a physical model
of silicon was developed, capable of explaining major macro-
scopic transport characteristics [19], [20]. The used band struc-
ture models were represented by simple analytic expressions
accounting for nonparabolicity and anisotropicity. With the in-
crease of the energy range of interest the need for accurate, nu-
merical band structure models arose [21]–[25]. For electrons in
silicon, the most thoroughly investigated case, it is believed that
only recently a satisfactory understanding of the basic scattering
mechanisms at high energies has been reached, giving rise to a
new “standard model” [26]. Various technologically significant
semiconductors and alloys are investigated in [27].

Several attempts were made to circumvent the usage of the
full, anisotropic band structure by employing simpler, analytic
band models whose free parameters are fixed by best fitting a
given density of states [28]–[30]. Although having such models
of intermediate complexity is very desirable, a comparative
study, however, revealed that they fail to reproduce the high
energy part of the distribution function [31].

The interaction of the carriers with the crystal imperfections
is generally considered as weak enough such as to allow a treat-
ment by first order perturbation theory. Dominant scattering
mechanisms are due to various modes of thermal lattice vibra-
tions, ionized impurities [32], [33], and at high energies impact
ionization [21], [34]–[36]. Other mechanisms, such as plasmon
scattering [37], [38] and carrier–carrier scattering [39], as well
as the Pauli exclusion principle [40], [41] make the transport
problem strongly nonlinear.

C. Self-Consistent Coupling Schemes

In a semiconductor device, the particles move in an electric
field that originates from fixed background charges and from
the charge carried by the particles themselves. In a simulation a
self-consistent solution of the transport problem and the Poisson
equation is achieved by means of iteration. On each step the
particle-mesh force calculation is carried out, consisting of the
following four principal steps:

1) assign the charge to the mesh;
2) solve the field equation on the mesh;
3) calculate the mesh-defined force field;
4) interpolate to find forces on the particles [3].

Compared with OPMC, stability requirements for EMC are
more severe. Problems associated with self-consistent EMC
simulation are the avoidance of self-forces [3], [42] and the
proper choice of the field-adjusting time step. The latter needs
to be in accordance with the Nyquist theorem, where the highest
frequency to be sampled is given by the plasmon frequency
[22]. The high frequency of required field updates calls for fast
Poisson solvers [3]. EMC is coupled with the linear Poisson
equation via the particle density.

In case of OPMC, a stable, self-consistent iteration scheme
is obtained by using the quasi-Fermi level and the carrier tem-
perature from the MC simulation in the Poisson equation, which
is nonlinear in this case due to the chosen variable set [43]. The
so-called MC–drift-diffusion coupling technique provides an-
other scheme for self-consistent iteration [44]. From the particle
simulation transport coefficients are extracted, which are then
used ina drift-diffusionlikecurrent relation. Ineach iterationstep
the coupled set of semiconductor equations is solved, consisting
of the Poisson and the carrier continuity equations [45].

In surface inversion layers or channels formed by hetero-
junctions, the motion of the carriers normal to the interface
is quantized and thus governed by the Schrödinger equation
[46]. The coupled solution of MC transport parallel to the in-
terface, Poisson equation, and Schrödinger equation needs to
be sought. Self-consistency has to be achieved for the poten-
tial, the eigenenergies, and subband populations. The strengths
of the scattering mechanisms are modified through the overlap
integrals [47]–[50].
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D. Variance Reduction Techniques

The large variations of the carrier density within a realistic de-
vice impose severe problems upon the common MC algorithms.
Statistical enhancement methods are required to reduce the vari-
ance in rarely visited phase space regions of interest. Trajectory
multiplication schemes used in various MC device simulators
[51], [52], [45] are extensions of the method of Phillips and
Price [53]. Several variable-weight or population control tech-
niques have been developed for the EMC method [54]–[57]. A
comparison of statistical enhancement methods is given in [58].

III. MC A LGORITHMS FOR THESOLUTION OF THE

BOLTZMANN EQUATION

The alternative way, namely, to state the transport equation
first and to formulate then an MC algorithm for its solution, was
reported only one decade ago [1], [2]. A link between physically
based MC methods and numerical MC methods for solving in-
tegrals and series of integrals has been established.

In [1], the BE is transformed into an integral equation, which
is then iteratively substituted into itself. The resulting iteration
series is evaluated by a new MC technique, calledMC back-
ward (MCB) since the trajectories are followed back in time.
All trajectories start from the chosen phase space point, and their
number is freely adjustable and not controlled by the physical
process. The MCB method allows the evaluation of the distri-
bution function in a given point with a desired precision. The
algorithm offers advantages when rare events have to be simu-
lated or when the distribution function is needed only in a small
phase space domain.

Theweighted ensemble MC(WEMC) method allows the use
of arbitrary probabilities for trajectory construction, such that
particles can be guided toward a region of interest [59], [60].
The method evaluates the iteration series of an integral form
of the BE. The unbiased estimator for the distribution function
contains a product of weights which are given by the ratio of the
real and the modified probabilities of the selected events.

With the iteration approach introduced in [2], the MCB and
the WEMC algorithms are stated in an unified way. The con-
cept of numerical trajectories is introduced. The common EMC
algorithm is obtained as a particular case, in which the numer-
ical trajectories coincide with the physical carrier trajectories,
for homogeneous [62] and inhomogeneous [63] conditions.

A. Integral Equations

The semiclassical transport problem is described by a Fred-
holm integral equation of the second kind for the distribution
function .

(1)

The kernel and the free term are given functions. The
multi-dimensional variable stands for in the transient
case and for in the steady state. The iteration

(2)

with gives a formal solution to (1), known as
the Neumann series [64].

(3)

The integral equation conjugate to (1) is defined by

(4)

To evaluate a linear functional of, one can either use directly
the solution of the integral equation or as an alternative the so-
lution of the conjugate equation due to the following equality:

(5)

Here, a scalar product of the form is
used.

The link with the MC method is established by approaching
the terms of the Neumann series by MC integration. Consider
the task of evaluating an integral

(6)

where is absolutely integrable. Suppose that , where
is nonnegative and , which means that
is a density function. Then is the expectation value of a

random variable with respect to the density: .
An MC estimate for is obtained by generating a sample

from the density , and taking the sample mean
. After the central limit theorem, the

sample mean approaches for .

B. Integral Form of the BE

The BE describes carrier transport by using a semiclassical
approach. For device simulation the time- and position-depen-
dent BE needs to be considered.

(7)
The force field takes into account electric and magnetic fields.
If only an electric field is present, is given by

, where is the charge of the carrier. The carrier’s
group velocity is related to the band energy by

. The scattering operator consists of
a gain term and a loss term . In the following the nonde-
generate case is considered. If the carrier concentration is small
enough, the Pauli exclusion principle has a negligible effect and
the scattering operator is linear.

(8)

(9)

Here, denotes the scattering rate from a state
to states in around , and
is the total scattering rate.
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The phase space trajectory , is a solution of the
equations of motion. Assuming the initial condition ,

the formal solution can be written as

(10)

The left-hand side of (7) represents the total time derivative of
. In this way, (7) can be rewritten as an ordi-

nary first-order differential equation (11), that has the solution
(12)

(11)

(12)

denotes the initial condition at time. Remembering that
in (12) every time argument, say, stand for ,
and by setting , one obtains the integral form of the BE.

(13)

This equation represents the generalized form of Chamber’s
path integral [61].

C. MC Algorithms for Transient Carrier Transport

To complete the set of basic equations for the transient
problem the conjugate equation has to be found. The derivation
begins with a transformation of (13) into the standard form (1)
by augmenting the kernel.

(14)

(15)

(16)

denotes the unit step function andthe initial distribution.
The integral form (13) is immediately recovered from (14) by

performing the integration and replacing the upper bound of
the time integral by, thus eliminating the unit step function.

Using the kernel (15) in the defining equation (4) the conju-
gate equation evaluates to

(17)

To obtain this equation, in (15) variables are changed,
, . According to the Liouville theorem the

volume element does not change over a trajectory such that
. The integration is then carried out with

the help of the -function.
The solution for free term

represents the Green’s function of the BE. From (5), it follows
that the solution of (14) is given by the scalar product

(18)

1) EMC Method: Assume we are interested in the integral
of over some phase space sub-domainat time :

(19)

where denotes the indicator function of the subdomain. Con-
sidering this integral as scalar product , it fol-
lows that . Using the Neumann series
of (17), , we obtain

(20)

The meaning of the iteration terms can be understood from their
structure. The second iteration term, for example, can be ex-
pressed as

(21)

Initial conditions for the -space trajectories are given first by
and then by the after-scattering states

and . The real space trajectory starts initially
from and is continuous at the time of scattering:

, .
The iteration term (21) describes the contribution of all par-

ticles that undergo two scattering events when they propagate
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from time zero to . At time , we find the particles on their
third free flight path. Analogously, represents the contribu-
tion of all particles that propagate without scattering from zero
to , the contribution of all particles that propagate with one
scattering event, and so forth.

The next task is to separate the integrand in (21) into a prob-
ability density and a random variable according to (6). To
accomplish this task the integrand is augmented in two steps.
First, the term , which represents the probability that
the particle drifts without scattering from to , is expressed as
an integral over the corresponding probability density. For the
sake of brevity the time and position-dependence of the scat-
tering rates is not written explicitly.

(22)

Second, products of the form in (21) are multiplied
by . These changes yield the following expression for the
second iteration term:

(23)

Probability densities assigned to elementary events, such as gen-
eration of an initial state, of a free flight time or an after scat-
tering state are enclosed in curly brackets for easier recognition.
Note that is the normalized distribution of the after-scat-
tering states, since , for all . The free
flight time distributions are normalized on semi-infinite time in-
tervals. For instance, for we get

(24)

None of the distributions for , , is normalized in the time
intervals given in (23) which reflects the simple fact that
does not represent the whole solutionbut only a partial con-
tribution.

When the multiple integrals of the iteration terms are evalu-
ated by MC integration the well-known EMC algorithm is re-

covered. The separation of the integrand intoand follows
quite naturally from (23).

(25)

(26)

(27)

To evaluate (23) by MC integration one has to generatereal-
izations of the multidimensional variable, which are referred
to as numerical trajectories. The factors in (26) denote condi-
tional probability densities, except, which is unconditional.
Therefore, one would first generate a phase space point
from the initial distribution , then choose from the free
flight time distribution, select with density , and so
forth. Finally, at time the indicator function , which plays
the role of in (6), needs to be evaluated. The result will be
simply one or zero. Doing so for trajectories corresponds to
counting the number of particles found inat time .

The generated times are of ascending order,
, which means that the trajectory is followed forward in time.

With a forward algorithm it is only possible to evaluate an av-
erage of the distribution function over some subdomain, but not
the exact value in a given point.

2) Weighted EMC Method:In the WEMC method, instead
of the physical densities in (23), which follow in a natural way
from the kernel, arbitrary densities are used for numerical tra-
jectory construction. The ratio of the physical density over the
numerical density determines the weight of the numerical trajec-
tory. The basic ideas can be explained by rewriting the random
variable , the density , and the dependent random variable

for the th iteration term in a formal way as

(28)

(29)

(30)

where stands for the kernel of the conjugate equation. One
can now choose an arbitrary initial distributionand arbitrary
transition probabilities for numerical trajectory construction.
Since the product has to remain unchanged, the random vari-
able has to compensate for the changes in the density.

(31)

(32)

The numerical initial distribution and the numerical tran-
sition probability have to be nonzero where the physical
counterparts are nonzero, i.e., if
and if . Furthermore, only
normalized densities are considered, and

for all .
Consequently, whenever in the process of numerical trajec-

tory construction a random variable is selected from a numer-
ical density rather than from a physical density, the weight of
the trajectory changes by the ratio of the two densities.
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Fig. 1. Electron energy distribution functions obtained by the EMC and
WEMC algorithms forE = 30 kV/cm.

As an example, the WEMC method is applied to compute the
energy distribution of electrons in Si. The used semiconductor
model accounts for the phonon spectrum described in [6] and
for an analytical, nonparabolic band-structure characterized by

, eV . To increase the probability for
electrons to gain energy and thus to populate the high energy
tail, the probability for phonon absorption has been increased
at the expense of phonon emission. Fig. 1 shows the result of a
simulation of electrons at kV/cm for ps.
The initial distribution is a Maxwellian at lattice temperature,
chosen as K. For the given particle number, the EMC
method can resolve not more than seven decades of the energy
distribution, while the WEMC method gives reasonable accu-
rate results within 17 decades. However, it is to note that the
variance of the WEMC method increases with increasing evo-
lution time. The dashed line in Fig. 1 represents the distribution
of the endpoints of the numerical trajectories.

3) MCB Method: In the previous sections, forward algo-
rithms were formally derived from the Neumann series of
the conjugate equation. If the Neumann series of the integral
form of the BE is approached by the MC method, backward
algorithms will be obtained.

As an instructive example, we consider the term of the
Neumann series of (13).

(33)

Final conditions for the -space trajectories are given first by
and then by the before-scattering states

and . The real space trajectory ends at final time
in the given point and is continuous at the time of

scattering: , .
As in the forward case, the integrand of (33) is augmented in

two steps. The probability is expressed as an inte-
gral over the corresponding density.

(34)

Second, the normalization of the distribution of the before-scat-
tering states has to be introduced.

(35)

From (35), it follows that , for all .
Products of the form in (33) are augmented using
both and , as shown in the following expression:

(36)

Writing the position and time-dependence of the scattering rates
has been omitted for the sake of brevity.

To evaluate (36) by MC integration the integrand is separated
into and .

(37)

(38)

(39)

realizations of the multidimensional variablehave to be
generated. Since are given, the construction of the nu-
merical trajectory starts at this point by choosing a random vari-
able , which obviously is less than. The next random variable
to be chosen is , a before-scattering state, and so forth. The se-
lected times are of descending order, , which
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Fig. 2. Electron energy distribution functions obtained by the WEMC and
MCB algorithms forE = 10 kV/cm.

means that the numerical trajectory is followed back in time.
During trajectory construction the product has
to be recorded. At time zero, the product is multiplied by the ini-
tial distribution evaluated at the reached phase space point to
give the random variable. After construction of numerical
trajectories, the sample mean ofis formed.

(40)

The MCB method allows to evaluate the distribution function at
given phase space points with desired accuracy.

In analogy with the forward case event biasing can be applied
leading to weighted backward algorithms.

Fig. 2 compares the energy distributions of electrons in Si
as computed by the MCB and the WEMC methods. Conditions
assumed are kV/cm and ps. The initial distri-
bution and the number of particles for the WEMC simulation
are as in Fig. 1. The MCB method is used to evaluate the energy
distribution at discrete points above 800 meV. The statistical un-
certainty of the result is controlled by the number of numerical
trajectories starting from each point. In the simulation 10back-
ward trajectories are computed for each point. Using the MCB
method the high energy tail is obtained with high precision, as
shown in Fig. 2. The depicted range of 30 decades is out of reach
even for the here considered variant of WEMC method.

D. MC Algorithms for Steady-State Carrier Transport

In the steady state the Boltzmann equation is given by

(41)

The applied field and all material properties are independent
of time rendering the system time invariant. Equation (41) de-
scribes an open system that exchanges particles with one or
more reservoirs. The latter provide a stationary boundary con-
dition for the distribution function.

Fig. 3. Illustration of the functionst (kkk; rrr) andt (kkk; rrr)which give the time
at a trajectory’s entry point and exit point, respectively. Ifkkk ; rrr is the initial
point of a closed trajectory, the times aret (kkk ; rrr ) = �1.

The integral form of (41) is derived by using the same ap-
proach as in the transient case. The analysis is carried out for
a phase space trajectory , with the initial conditions

, , where , is a given point at which the
value of is sought. In the steady state, the lower bound of the
time integration in (12) is chosen as that time at which the con-
sidered trajectory enters the simulation domain. This treatment
ensures that the given boundary distributionappears in the
free term. The resulting integral equation is posed in the 6-D
phase space. The real space coordinate is restricted to the sim-
ulation domain .

(42)

For the kernel and the free term the following expressions
are found:

(43)

(44)

Since the time integral, which originates from the solution of the
differential equation (11), cannot stay in the integral equation
(42), it has to be assigned to the kernel (43).

Two functions and are introduced, de-
noting the times when the trajectory enters, respectively leaves,
the simulation domain (see Fig. 3). If the considered point is
the initial point of a closed trajectory, the times are .
This means that a particle moving on such a trajectory has been
scattered onto this trajectory at some time between .
The particle can leave the closed trajectory again only by
scattering at some time between .



KOSINA et al.: SEMICONDUCTOR DEVICE SIMULATION 1905

For the formal derivation of the steady-state forward algo-
rithms, the conjugate equation is required. This equation results
from (42) by applying similar steps as in the transient case.

New algorithms for the steady state, such as the weighted and
the backward OPMC algorithms, are currently under investiga-
tion are not yet reported in the literature.

1) OPMC Algorithm: The formal derivation of the OPMC
algorithm is based on the Neumann series of the conjugate equa-
tion. Due to the boundary condition, the transformations in-
volved in the derivation of the iteration terms are more compli-
cated than those involved in the pure initial value problem. One
result of such a calculation is that the initial points of the trajec-
tories have to be generated with the velocity-weighted boundary
distribution, , where is the compo-
nent of the velocity normal to the boundary. The total incident
flux appears as a normalization constant.

(45)

Assume we are interested in the average ofover some subdo-
main .

(46)

For example, might denote a cell of the spatial mesh. The
iteration terms can be formulated in two slightly different ways
leading to the before-scattering and the time recording methods
for average recording, given by (47) and (48), respectively.

(47)

(48)

In the simulation, an initial state is generated from the velocity-
weighted boundary distribution [55], [65], and the trajectory is
followed through the device. When an absorbing boundary is
encountered another initial state is generated and a new trajec-
tory is followed. In (47) denotes the before-scattering state
and the position of the particle when theth scattering event
takes place. In (48) stands for the duration and , for
the phase space trajectory of theth free flight. The sum (48)
simply gives the time the particle has spent in. The counter
is incremented whenever a scattering event is processed, regard-
less of the trajectory count. This is possible since in the OPMC
algorithm all trajectories have equal weight.

The normalization constant needs not be evaluated from the
theoretical definition (45). The normalization ofis given by

the total number of particles or by the amount of mobile charge
in the device. For example, for one obtains

, , which gives as function of
and the recorded sum. The finite sum recorded during the

simulation is an unbiased estimate of the total time the particle
path is followed.

As in the transient case event biasing can be used in the steady
state as well leading to weighted OPMC algorithms.

2) One-Particle Backward MC Algorithm:Approaching the
Neumann series of (42) by the MC method yields steady-state
backward algorithms. Two algorithms are found. The first one
allows to evaluate the distribution function at given points and is
basically identical with the transient backward algorithm (Sec-
tion III-C-3) with the only difference that the numerical trajec-
tory is followed in a variable time interval rather
than in a predefined one.

Let us consider the problem of injection of channel hot car-
riers into the gate oxide. Using a backward algorithm, carriers
are launched at the semiconductor/oxide interface only at ener-
gies above the relevant energy threshold. In other words, only
the rare events are simulated. Each high energetic carrier is fol-
lowed back in time until it reaches an equilibrium region such as
source or drain, where the distribution function is known. Since
each trajectory is of different duration, a steady-state formula-
tion employing a variable time and a boundary distri-
bution appears appropriate.

The second algorithm can be viewed as the backward version
of OPMC algorithm (Section III-D-1). Trajectories are con-
structed starting from an absorbing boundary. The weight of the
particle changes by at each scattering event, however, the
weight remains undeterminated with respect to a scaling factor.
Both the before-scattering and the time-recording method for
average recording are available, yet the current weight of the
particle has to be taken into account. The particle weights are fi-
nally determined when the trajectory terminates at an injecting
boundary, where the boundary distributionevaluated at the
reached phase space point gives the scaling factor.

E. Small-Signal MC Algorithms

Understanding the MC method as a versatile tool to solve in-
tegral equations enables its application to a class of problems
which are not accessible by purely physically based, imitative
MC methods. In electrical engineering the linear small-signal
analysis of nonlinear systems plays an important role. Whether
the linearized system is analyzed in the frequency or time do-
main is just a matter of convenience since the system responses
obtained in either domain are linked by the Fourier transform.

At present, linear small-signal analysis of semiconductor de-
vices by the MC method is beyond the state of the art. However,
recently progress has been made in performing MC small signal
analysis of bulk carrier transport [15]. Choosing a formulation
in the time domain, a small perturbation is superimposed
to a stationary field . The stationary distribution function
will thus be perturbed by some small quantity.

(49)

(50)
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Inserting this Ansatz into the transient BE and retaining only
first order perturbation terms yield a Boltzmann-like equation
for which is linear in the perturbation , as follows:

(51)

Compared with the common BE, (51) has an additional term on
the right-hand side, which contains, the solution of the sta-
tionary BE. The integral form of (51) is found by the method
pointed out in Section III-B. Assuming an impulselike excita-
tion results in the following integral equation
for the impulse response [15]:

(52)

(53)

The free term of (52) is formally equivalent to (16), the free term
of the BE. The only difference is that takes on also negative
values, and can therefore not be interpreted as an initial distri-
bution. In [15] is expressed as a difference of two positive
functions, , an Ansatz which decomposes (52)
into two common BE for the unknowns and . The initial
conditions of this BE are s . In this
way, the impulse response is understood in terms of the concur-
rent evolution of two carrier ensembles.

Using different methods to generate the initial distributions
of the two ensembles gives rise to a variety of MC algorithms.
Both existing and new MC algorithms are obtained in a unified
way, and a transparent, physical interpretation of the algorithms
is supported.

For electrons in Si the impulse response of mean energy and
mean velocity has been calculated. Fig. 4 shows the response
of the differential energy in the time domain for dif-
ferent field strengths. The frequency-dependent differential ve-
locity obtained by a Fourier transform of the impulse response

is plotted in Figs. 5 and 6. The low frequency limit of
the real part tends to the static differential mobility .

IV. OPEN PROBLEMS AND OUTLOOK

The MC method has traditionally been used to study hot
carrier effects in semiconductors and semiconductor devices.
The involved physical processes have been studied extensively
and sophisticated models have been developed. However,
when using the MC method for TCAD purposes, additional
requirements arise. It should be possible to analyze a device
in all operating conditions with one numerical method. Using
different methods, such as moment equations for conditions
close to equilibrium and the MC method for conditions far

Fig. 4. Impulse response of the differential energy.

Fig. 5. Real part of the differential velocity.

Fig. 6. Imaginary part of the differential velocity.

from equilibrium, has severe drawbacks. First, one had to
maintain both macroscopic and microscopic models, such as
mobility and scattering models, and to ensure that both models
give consistent results in conditions where they can be applied
simultaneously. Especially in view of the ever increasing
complexity of the considered effects, development and main-
tenance of two kinds of models appears very uneconomical.
Second, using two completely different numerical methods in a
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simulator makes the software more complex and increases the
number of parameters that control the simulation. The criterion
for switching between the methods will remain empirical, and
some discontinuity in the result at the switching point is likely
to appear.

To date, the two standard algorithms that are widely used for
MC device simulation on a semiclassical level are the ensemble
and the one-particle algorithms. An inherent peculiarity of these
algorithms is that the computational efficiency depends on the
physical conditions in the device. In particular they may become
prohibitively time consuming if regions with retarding electric
field are included. Such a situation occurs in any semiconductor
device in which transport is controlled by one or more energy
barriers. On the other hand, these algorithms let the simulated
particle spend too much time in highly doped contact regions
where no events of interest occur and simply the equilibrium
distribution is recovered.

From the BE represented as an integral equation, generalized
MC algorithms can be derived, as has been demonstrated by the
WEMC and the MCB algorithms. Although these algorithms
have the potential to solve various problems occurring in device
simulation, they have not yet been applied to realistic structures.
The great freedom in choosing density functions for numerical
trajectory construction opens a wide field for the development
of new algorithms. Backward and forward algorithms can be
combined. For example, at an artificial boundary located on top
of an energy barrier backward and forward trajectories can be
linked allowing a direct control of the number of numerical par-
ticles moving across the barrier.

With the WEMC method, the variance of the particle weights
increases with time. Hence a robust, weighted algorithm will be
likely to include some kind of weight control technique possibly
realized by one of the established variable-weight methods [58].

Furthermore, an MC algorithm for linear small signal analysis
of semiconductor devices is desirable. From our experience with
small signal algorithms for bulk semiconductors (Section III-E)
we conclude that an algorithm in the time domain will be more
efficient than one in the frequency domain. In the former case,
the Fourier transform is carried out as a postprocessing step in
order to obtain the admittance matrix of the device.

A class of problems not considered in this work are related to
the nonlinear BE (Section II-B). MC methods for integral equa-
tions with a polynomial nonlinearity do exist. Their applicability
to the semiconductor transport problem has to be investigated.
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