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Two-Dimensional Simulation of Ferroelectric
Memory Cells
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Abstract—An approach to increase the capabilities of integrated
circuit nonvolatile memory is to take advantage of the hysteresis in
the polarization of ferroelectric materials. For a rigorous analysis
of the resulting devices, a suitable model for the ferroelectric effects
has been developed. We present this model and show the results
of its implementation into a device simulator. Although this model
was designed especially for analysis of ferroelectric materials, it is
also applicable to magnetic hysteresis phenomena.

Index Terms—Ferroelectric materials, hysteresis, nonvolatile
memory.

I. INTRODUCTION

T HE development of nonvolatile memory cells using ferro-
electric materials leads to designs with two-dimensional

(2-D) geometries like the finger structure outlined in Fig. 1.
The generic approach of MINIMOS-NT [1] makes it possible

to simulate structures with an arbitrary number of contacts on an
almost arbitrary configuration of different materials. To account
for the simulation of ferroelectric materials, a useful algorithm
has to consider not only the 2-D field distribution but also the
occurrence of field rotation.

Considering the fact that hysteresis depends on the previous
operating points, field rotation is a nontrivial problem, e.g., as
described by [2] and [3] in the context of magnetism, a constant
rotation of the electric field leads to a lag angle of the induction.

Aside from calculating the exact field distribution a simulator
for ferroelectric devices has to fulfill further requirements: To
allow the calculation of transfer characteristics it has to be in-
sensitive to the magnitude of the applied voltage steps. And, to
keep pace with future developments of ferroelectric devices, the
extension of the algorithm to three dimensions should be pos-
sible.

II. THE SIMULATION MODEL

Ferroelectric hysteresis influences the electric displacement
. We separate it into a linear and a nonlinear part:

(1)

The nonlinear part holds the hysteresis and is modeled by

(2)
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Fig. 1. Cross section of a finger structure.

The parameters and are necessary for the simulation
of the locus curves of the hysteresis, the functionis the shape
function for these locus curves, is the coercive field of the
material. We assume that on each grid point the hysteresis prop-
erties can be modeled with this macroscopic approach. This
might seem a big simplification because it does not consider the
well known domain structure of ferroelectric materials. How-
ever, a simulation including this effect would need a very ac-
curate description of the device, including parameters like the
exact contribution of the defects in the crystal lattice, which are
usually not available, or the grain distribution. Furthermore it
will only deliver the results for this special device. So the basic
aim of our approach is not the simulation of a singular device but
to approximate the average behavior of devices with the speci-
fied geometry.

Starting from (2) a 2-D algorithm had to be developed to cal-
culate the polarization vector and the resulting electric dis-
placement .

A. Polarization in an Orthogonal Direction

The basic key to develop a rigorous approach to 2-D hys-
teresis is to find a useful formulation for the following problem:
We assume a piece of ferroelectric material with a remanent po-
larization . Now an electric field is applied in the perpen-
dicular direction.

The newly applied electric field raises a polarization com-
ponent in the same direction, plotted in Fig. 2. Regarding
the fact that there was no polarization in this direction, an ini-
tial polarization curve (dashed line) is used. The limited number
of dipoles introduces the saturation polarization as a hard limit.
This means that it is not possible to achieve saturation in the
direction of the applied field without any consequence for the
initial component . So we can formulate

(3)
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Fig. 2. Construction of the polarization components.

as hard limit to the resulting polarization.
Regarding the domain structure of the material and assuming

the rotation of dipoles to be impossible, the sum of magnitudes
of the newly raised and the remanent component will not exceed
the saturation:

(4)

Note that even in the case that (4) does not fulfill the exact phys-
ical properties, a similar more general constraint of the form

(5)

must be satisfied.
For our model we assume, that, if the chosen constraint is not

fulfilled, the component will be reduced, due to the fact
that there is no field component in this direction. The resulting
polarization is plotted in Fig. 3.

B. General 2-D Algorithm

The basic principle of our model is to split the polarization
and the electric field of the previous operating point

into the components in the direction of the next applied elec-
tric field , leading to and as well as orthogonal

and (Fig. 4).
Making use of this projections, we separate the 2-D problem

into two one-dimensional (1-D) problems. The equation

(6)

denotes the problem in the direction of the electric field. The
second problem in the orthogonal direction can be described as

(7)

For each of these components a locus curve is calculated.
These are outlined in Fig. 5.

The component in the direction of the electric field is
calculated by entering the signed length of the electric field
vector into the equation of the locus curve. The actual algorithm
to achieve this quantity will be discussed in Section III-A. The
argument for the locus curve in the orthogonal direction is,
according to the geometrical properties, zero. Therefore we

Fig. 3. Construction of the lag angle.

Fig. 4. Splitting of the field vectors.

Fig. 5. Calculation of the initial guess.

achieve a remanent polarization for the component
into that direction. These two polarization components are
forming a primary guess for the next polarization, plotted
in Fig. 6.

Due to the vanishing electric field in the normal direction we
apply the criterion (4): Component is reduced appropriately
with respect to this limit. This is shown schematically in Figs. 7
and 6 and leads to the actual polarization vectorand the lag
angle .
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Fig. 6. Calculation of the polarization.

Fig. 7. Reduction of the orthogonal component.

As a first approach to the upper limit in the available number
of switching dipoles the saturation polarization was consid-
ered, but the simulator is already prepared to use any function of
the magnitude of the applied electric field . The algorithm
to handle field rotation is also applicable for the nontrivial anal-
ysis of 3-D problems.

III. N UMERIC IMPLEMENTATION

Using the algorithm outlined above the box integration
method is applied and Poisson’s equation

(8)

is solved. As a consequence of the general approach, the fol-
lowing numerical aspects have to be considered in order to allow
a 2-D simulation:

• nonsymmetry of the locus curves;
• influence of previous operating points;
• selection of the shape of the hysteresis curve;
• detection of the correct locus curve.

A. Nonsymmetry of the Locus Curves

In the last section we outlined a method to reduce the 2-D
problem into two one-dimensional ones. But still the 1-D repre-
sentations of the field quantities have to be found. This demands
an extension to common discretizations, because in contrast to
most of the functions used in device simulation, the locus curves
of the hysteresis are nonsymmetric functions. The mere calcu-

lation of the vector length is not sufficient, also a criterion for
the sign has to be established. Accordingly, the orientation of
the field vector compared with the box boundary becomes de-
cisive for the sign of the function argument. Furthermore, as a
consequence of the hysteresis properties, it cannot be assumed
that the sign of the resulting flux of the electric displacement is
the same as for the applied electric field.

B. Influence of the Previous Operating Points

The calculation of the current locus curves uses the parallel
and orthogonal component of the previously applied fields in
respect to the current electric field. This is a major difference
to 1-D simulation which only requires the storage of selected
turning points [4]. In order to deal with this information in a
suitable way, it is necessary to make adjustments to the field
discretization. It is intuitive that the history information is re-
quired on the box boundary and that it cannot be derived from
a representation in the grid points alone, as it is suitable for non
hysteretic properties [5].

C. Selection of the Shape of the Hysteresis Curve and History
Management

For a general approach to two-dimensional hysteretic effects
an inhomogeneous field distribution has to be assumed. There-
fore, a different locus curve has to be calculated on each box
boundary. To keep the computational effort reasonable, it is nec-
essary to chose analytic functions. By now two different types of
shape functions have been investigated, the and the
function. The first implementation is

(9)

is a shape parameter and the same for each locus curve.
This function is a good approach for the simulation of
PZT(Pb(Zr,Ti)O ). The second is the shaped function

Again, is the shape parameter. The function covers
the physical properties of SBT(SrBiTa O ) in a very accurate
way. It has to be noted that the locus parameters have to be
calculated numerically, which leads to higher numerical effort.

Using these locus curves, the whole history of the ferroelec-
tric material is simulated. The parameters of the locus curves are
calculated according to Preisach hysteresis [6]. This includes the
simulation of the following effects.

• Locus curves hit last turning point: This allows the simu-
lation of closed subcycles.

• Memory wipe out: Turning point erases all information of
previous smaller turning points.

A complete set of locus curves is plotted in the example Sec-
tion IV-A, in Fig. 12, and the following. The figures show the
simulation results for a planar capacitor.

D. Detection of the Locus Curve

A sophisticated task is to calculate the locus curves for a new
operating point. As outlined in Fig. 8 one of two possible locus
curves has to be chosen at each operating point, depending on
the history of the electric field [4].

As a consequence of the 2-D algorithm the common starting
point of these two branches will move during the nonlinear
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Fig. 8. Possible locus curves in an operating point.

Fig. 9. Detection of the change of the electric field, electric field decreases.

iteration. In fact, it highly depends on the assumed electric field.
Therefore, it cannot be guaranteed that the same branch is se-
lected at each iteration step. Regarding the different derivatives
of the two functions this will lead to poor convergence and in
worst case to oscillations of the nonlinear iteration.

As practice shows a preselection of the correct branch is nec-
essary to achieve good convergence, especially for the simula-
tion of complex structures. A suitable approach to detect the di-
rection of the change of the electric field is to solve a linearized
equation system. In this system the nonlinear part of the dis-
placement is kept constant and only the linear part is modified.
Using this method an approximation to the electric field in the
new operating point is derived.

Based on this information, it has to be decided whether the
electric field was increased or not. The straightforward approach
to compare the absolute values of the old and the new electric
field will obviously fail, even if the two field vectors are parallel.
For the applied algorithm the parallel component of the old field
vector is calculated, and the result is interpreted in dependence
of the orientation of the new field vector as outlined in Figs. 9
and 10. With this information it is now possible to select the
correct branch of the hysteresis curve. The complete scheme is
outlined in Fig. 11.

Fig. 10. Detection of the change of the electric field, electric field increases.

Fig. 11. Modified trivial iteration scheme.

IV. SIMULATION RESULTS

In order to check the abilities of our model, several devices
have been simulated. The first two of the following examples
were calculated with shape functions. The ferroelectric
memory field effect transistor (FEMFET) was analyzed with

functions.

A. Simulation of a Simple Capacitor

To allow the comparison with existing simulators, which use
a compact model, a 1-D example has been calculated. The 1-D
behavior of the device is a consequence of its planar structure
and the applied boundary condition, which does not allow any
field components outside of the device.

The resultingQ–Vcharacteristics are plotted above in Fig. 12.
Figs. 13 and 14 show the current response of the device and
the actually applied input voltage. As expected, the 2-D algo-
rithm of MINIMOS-NT is able to reproduce the one-dimen-
sional properties correctly.

B. Simulation of a Finger Structure

C. Simulation of a FEMFET

The finger structure, outlined in Fig. 1 shows properties and
effects that exceed the one-dimensional case. As a result of the
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Fig. 12. Q–VCharacteristics of a planar “1-D” capacitor.

Fig. 13. Applied voltage to the “1-D” capacitor.

well known edge effect of the electric field, the polarization will
be near saturation in these areas, even if small voltages are ap-
plied. For our first simulation we reduced the scope to the area
marked in Fig. 15. Fig. 16 shows the simulatedQ–V charac-
teristic of this 2-D device and compares it to the result of the
simple 1-D structure. With these simulation results it is possible
to extract new hysteresis parameters for a compact model which
allow the appropriate simulation of this 2-D structure. The re-
sulting Q–V characteristics of this calibration are outlined in
Fig. 17.The FEMFET is a device based on the hysteretic prop-
erties of the polarization and the displacement of a ferroelectric
material. The FEMFET was constructed by inserting a ferro-
electric segment in the subgate area of an NMOS, as outlined
in Fig. 18. The threshold voltage of the NMOS was 0.7 V, its
gate length was 0.18m. In consequence to the higher polar-
ization, the threshold voltage of the FEMFET was reduced to
0.6 V. According to Poisson’s equation the displacement influ-
ences the charge at the surface of the substrate. The ferroelec-
tric polarization increases the displacement and leads to a sig-

Fig. 14. Current response of the “1-D” capacitor.

Fig. 15. Cross section of a finger structure and simulated area.

Fig. 16. ”One-dimensional” capacitor versus finger structure.

nificantly higher space charge density in the channel area. The
different contributions of the space charge density of the NMOS
transistor and the FEMFET were calculated and are plotted in
Figs. 19 and 20, respectively. This causes a higher drain current
of the FEMFET for the same gate voltage. As a result of the the
hysteretic behavior of the polarization the drain current of the
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Fig. 17. Comparison of the transfer characteristics of a finger structure and the
“1-D” capacitor with fitted hysteresis parameters.

Fig. 18. Ferroelectric nonvolatile memory field effect transistor.

device does not only depend on the gate voltage but also on the
history of the gate voltage. So the current–voltage (I–V) char-
acteristics of the transistor show also a hysteresis which allows
the use of the device as a nonvolatile memory. Fig. 21 shows the
simulatedI–V characteristics for NMOS and FEMFET received
by sweeping the gate voltage from zero to saturation and vice
versa. The bulk voltage was set to 0.5 V, the drain voltage to 0.1
V. With a flat hysteresis curve we received a voltage shift of 0.1
V. Caused by the device’s built-in potential, the initial polariza-
tion for the increasing branch was not zero at gate voltage 0 V,
but was pointing into the negative direction. For the decreasing
branch the simulation started at the highest applied voltage, so
this initial condition was not considered. The hysteresis param-
eters were selected in a way that saturation was not reached
during the simulation, so the up and down curves do not merge
in this plot as might be expected.

V. CONCLUSION

We presented a new algorithm for solving 2-D hysteresis
problems, which allows the simulation of devices with arbitrary
geometry. This algorithm is capable to reproduce rotational
effects and allows the calculation of transfer characteristics.

Fig. 19. Space-charge density of the NMOS.

Fig. 20. Space-charge density of the FEMFET.

Fig. 21. I–V characteristic of FEMFET and NMOS.

Furthermore, it allows the extraction of effective material
parameters for a new class of nonvolatile memory cells.
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