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Abstract

A brief review of the semi-classical Monte Carlo method for semiconductor device simulation is given, covering
the standard Monte Carlo algorithms, variance reduction techniques, the self-consistent solution, and the physical
semiconductor modelincluding band structure and scattering mechanisms. The link between physically-based Monte
Carlo methods and the numerical method of Monte Carlo integration is considered. The integral representations and
the conjugate equations are presented for the transient and the steady-state Boltzmann equation. From these equations
the standard algorithms as well as a variety of new algorithms can be derived in a formal way. © 2001 IMACS.
Published by Elsevier Science B.V. All rights reserved.
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1. Introduction

Over the last three decades the Monte Carlo (MC) method has evolved to a reliable and frequently
used tool which has been successfully employed to investigate a great variety of transport phenomena in
semiconductors.

The method consists of a simulation of the motion of charge carriers in the six-dimensional phase space
formed by the position and wave vectors. Subjected to the action of an external force, the point-like carriers
follow trajectories determined by Newton’s law and the carrier’s dispersion relation. Due to imperfections
of the crystal lattice the drift process is interrupted by scattering events, which are considered to be local
in space and instantaneous in time. The duration of a drift process and the type of scattering mechanism
are selected randomly according to given probabilities which describe the microscopic process.

In principle, such a procedure yields the carrier distribution in phase space. Integrating the distribution
function over some phase space volume gives a measure for the relative number of carriers in that vol-
ume. Macroscopic quantities are obtained as mean values of the corresponding single-particle quantities.
Moreover, the distribution function satisfies a Boltzmann equation (BE).
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The method of generating sequences of drift and scattering appears so transparent from a physical
point of view that it is frequently interpreted as a direct emulation of the physical process rather than as a
numerical method. The main MC algorithms used to date were originally devised from merely physical
considerations, viewing a MC simulation as a simulated experiment. The prove that the used algorithms
implicitly solve the BE was carried out later.

The alternative way to use the BE explicitly and to formulate MC algorithms for its solution was
reported only one decade ago in the literature. New MC algorithms are derived which typically differ
from the common ones by the fact that additional statistical variables appear, such as weights, that do not
have a counterpart in the real statistical process.

2. Application of the MC method to semiconductor devices

Based upon the physical picture of the MC technique it has been possible to apply the method to the
simulation of a great variety of semiconductor devices. When the need for variance reduction techniques
emerged these have again been devised from physical considerations, like splitting a particle into light
ones by conserving the charge. For the MC simulation of devices there are two algorithms generally
employed, known as the ensemble MC (EMC) and the one particle MC (OPMC) algorithms.

2.1. MC algorithms

For a systematic description of the MC algorithms let us begin with the homogeneous case. Transient
phenomena are due to the evolution of the carrier system from an initial to some final distribution.
Accordingly, the evolution of an ensemble of test particles is simulated starting from a given initial
condition. The physical characteristics are obtained in terms of ensemble averages, giving rise to the
name Ensemble MC [1,2]. For example, the distribution function in a given phase space point at a given
time is estimated as the relative number of particles in a small volume around the point.

The EMC algorithm can also be applied under stationary conditions. In this situation, for large evolu-
tion times the final distribution approaches a steady-state, and the information introduced by the initial
condition is lost entirely. Alternatively, the ergodicity of the process can be exploited to replace the en-
semble average by a time average. Since it is sufficient to simulate one test particle for a long period
of time, the algorithm is called one-particle MC. The distribution function in a given phase space point
is estimated by the time spent by the particle in a fixed, small volume around the point divided by the
total time the trajectory was followed. The effect of the particle’s initial state vanishes for long simula-
tion times. Another method of obtaining steady-state averages has been introduced by Price [3]. With
the synchronous-ensembde before-scatteringnethod averages are formed by sampling the trajectory
at the end of each free flight, which is in many cases easier a task than evaluating a path integral over
each free flight. When the EMC algorithm is applied to the simulation of a stationary phenomenon, the
steady-state is reached after the initial transient has decayed. The ensemble average is taken at the end of
the simulation time, while, on the contrary, with the OPMC algorithm averages are recorded during the
whole time of simulation.

For the inhomogeneous situation the mathematical model needs to be augmented by boundary condi-
tions. A Neumann type of boundary is simply realized by reflecting the particles at the boundary. Phys-
ical models for Ohmic contacts typically enforce local charge neutrality [4]. The EMC and the OPMC
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algorithms remain basically unchanged in the inhomogeneous case. Whenever in an OPMC simulation
a particle leaves the simulation domain through an Ohmic contact it is re-injected through one of the
contacts, selected according to the probabilities of the underlying model.

It has been proven that the described algorithms yield a distribution function which satisfy the respective
BE. Fawcett et al. have shown that the homogeneous OPMC leads to the steady-state BE [5], whereas
Baccarani et al. gave this proof for the inhomogeneous OPMC [6]. A proof originally given by Reklaitis
[7] and also reported in [8] demonstrates that the homogeneous EMC renders the transient BE.

The established technique to study the small signal AC characteristics of a device consists of an EMC
simulation of the transient response. Elements of the impedance matrix are obtained by applying a steplike
voltage signal at a given port, and calculating the Fourier transform of the response currents through all
ports of interest. Since the EMC simulation captures the general nonlinear behavior of a device the voltage
increment must be sufficiently small in order to stay in the linear response regime. A MC algorithm for the
solution of the BE linearized with respect to the field would have significant advantages over the above
described method. Yet to date such algorithms exist only for the homogeneous case. MC algorithms for
small signal analysis are reported in [9-12]. Reviews can be found in [13,14].

2.2. Physical models

The work of Kurosawa in 1966 [15] is considered as the first account of an application of the MC method
to high-field transport in semiconductors. The following decade has seen considerable improvement of the
method and application to a variety of materials [4]. Early papers deal with gallium arsenide [5] and germa-
nium [16]. In the mid 1970s a physical model of silicon has been developed, capable of explaining major
macroscopic transport characteristics [17,18]. The used band structure models were represented by simple
analytic expressions accounting for non-parabolicity and anisotropicity. With the increase of the energy
range of interest then the need for accurate, numerical band structure models arose [19—-22]. For electrons
in silicon, the most thoroughly investigated case, itis believed that only recently a satisfactory understand-
ing of the basic scattering mechanisms at high energies has been reached, giving rise to a new ‘standard
model’ [23]. Various technologically significant semiconductors and alloys are investigated in [24].

Several attempts were made to circumvent the usage of the full, anisotropic band structure by employing
simpler, analytic band models whose free parameters are fixed by best fitting a given density of states
[25-27]. Although having such models of intermediate complexity is very desirable, a comparative study,
however, revealed that they fall to reproduce the high energy part of the distribution function [28].

The interaction of the carriers with the crystal imperfections is generally considered as weak enough
such as to allow a treatment by the so-caligdden ruleof quantum mechanics, an outcome of first
order, time-dependent perturbation theory. Dominant scattering mechanisms are due to various modes of
thermal lattice vibrations, ionized impurities [29,30], and at high energies impact ionization [19,31-33].
Other mechanisms, such as plasmon scattering [34,35] and carrier—carrier scattering [36], as well as the
Pauli exclusion principle [37,38] make the transport problem strongly nonlinear.

2.3. Self-consistent coupling schemes
In a semiconductor device the particles move in an electric field that originates from fixed background

charges and from the charge carried by the particles themselves. In a simulation a self-consistent solution
of the transport problem and the Poisson equation is achieved by means of iteration. On each step the
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particle-mesh force calculation is carried out, consisting of four principal steps: (1) assign the charge to
the mesh, (2) solve the field equation on the mesh, (3) calculate the mesh-defined force field, and, (4)
interpolate to find forces on the particles [1]. Compared with OPMC, stability requirements for EMC are
more severe. Problems associated with self-consistent EMC simulation are the avoidance of self-forces
[1,39] and the proper choice of the field-adjusting time step. The latter needs to be in accordance with
the Nyquist theorem, where the highest frequency to be sampled is given by the plasmon frequency [20].
The high frequency of required field updates calls for fast Poisson solvers [1]. EMC is coupled with the
linear Poisson equation via the particle density.

In case of OPMC a stable, self-consistent iteration scheme is obtained by using the quasi-Fermi level
and the carrier temperature from the MC simulation in the Poisson equation, which is nonlinear in this
case due to the chosen variable set [40]. The so-cMEedrift-diffusioncoupling technique provides
another scheme for self-consistent iteration [41]. From the particle simulation transport coefficients are
extracted, which are then used in a drift-diffusion like current relation. In each iteration step the coupled set
of semiconductor equations is solved, consisting of the Poisson and the carrier continuity equations [42].

In surface inversion layers or channels formed by hetero junctions the motion of the carriers normal to
the interface is quantized and thus governed by the Schrédinger equation [43]. The coupled solution of
MC transport parallel to the interface, Poisson equation, and Schrodinger equation needs to be sought.
Self-consistency has to be achieved for the potential, the eigen-energies, and sub-band populations. The
strengths of the scattering mechanisms are modified through the overlap integrals [44—47].

2.4. Variance reduction techniques

The large variations of the carrier density within a realistic device impose severe problems upon the
common MC algorithms. Statistical enhancement methods are required to reduce the variance in rarely
visited phase space regions of interest. Trajectory multiplication schemes used in various MC device
simulators [42,48,49] are extensions of the method of Phillips and Price [50]. Several variable-weight
or population control techniques have been developed for the EMC [51-54]. A comparison of statistical
enhancement methods is given in [55].

3. MC algorithms for the solution of the Boltzmann equation

The alternative way, namely to state the transport equation first and to formulate then a MC algorithm
for its solution, was reported only one decade ago [56,57]. A link between physically-based MC methods
and numerical MC methods for solving integrals and series of integrals could be established.

In [56] the BE is transformed into an integral equation which is then iteratively substituted into itself.
The resulting iteration series is evaluated by a new MC technique, called MC Backward (MCB) since the
trajectories are followed back in time. All trajectories start from the chosen phase space point, and their
number is freely adjustable and not controlled by the physical process. MCB allows for the evaluation
of the distribution function in a given point with a desired precision. The algorithm can be useful when
simulating rare events or when the distribution function is needed only in a small phase space domain.

The weighted ensemble MC (WEMC) method allows the use of arbitrary probabilities for trajectory
construction, such that particles can be guided toward to a region of interest [58,59]. The method evaluates
the iteration series of an integral form of the BE originally given by Chambers [60]. The unbiased estimator
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for the distribution function contains a product of weights which are given by the ratio of the real and the
modified probabilities of the selected events.

With the iteration approach presented in [57] the MCB and the WEMC algorithms are stated in an unified
way. The concept of numerical trajectories is introduced. The common EMC algorithm is obtained as
a particular case, in which the numerical trajectories coincide with the physical carrier trajectories, for
homogeneous [61] and inhomogeneous [62] conditions.

3.1. Introduction to integral equations

The semi-classical transport problem in semiconductors can be formulated in terms of a Fredholm
integral equation of the second kind for the distribution funcfion

fx) = / FONK G, x)dx' + folx) 1)

The kernelK and the free ternfy are given functions. The multi-dimensional variakleill denote
(k, r, t) in the transient case ankl, ¢) in the steady state. The iteration

O = fox) @

70 = [ FOK G 0 3)
gives a formal solution to Eq. (1), known as tNheumann series

f= f(O) + f(l) + f(z) N 4)

For our purposes it will be convenient to consider also the integral equation conjugate to Eq. (1)
60 = [ g@KG 0 dr+ got) (5)

It can be easily shown, that the following relation holds, where a scalar praduct = [ u(x)v(x) dx
is used:

(f, o) = (g, fo) (6)

The link with the MC method is established by approaching the terms of the Neumann series by MC
integration. Consider the task of evaluation of an integral

1= [ pmar= [ pwycd @)
whereg is absolutely integrable. Suppose tlat= pyr, wherep is nonnegative angff‘;op(x) dx =1,
which means that is a density function. Thehis the expectation value gf with respect to the density
p: I = E,{y}. A MC estimate forl is obtained by generating a samlg, ..., xy} from the density
p, and taking the sample megn = N*lzi’ilw(xi). After the central limit theorem the sample mean
approachesfor N — oo.

In the following sections the linear BE is considered. The integral forms and the conjugate equations
are given both for the transient and the steady-state problem. Examples for the iteration terms of the
Neumann series are shown.
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3.2. The initial value problem

In the inhomogeneous, transient case the distribution function depends on the seven-dimensional vari-
able &, r,t). The commonly used integral form of the BE (see, e.qg. [62]) transforms after a straight-forward
augmentation into the standard form (1):

fk,r, 1) 2/ dt’/dk’/dr’f(k/,r’, K&, r', t' k,r,t)+ folk,r, 1) (8)
0

The kernel and the free term are defined as follows:

KK r' t krt)=SkK K()r. 1) exp(—/ MK ), R(), y) dy) 8(r' — ROt — 1)
©)

Jolk,r, 1) = fi(K(0), R(0)) exp(—/o MK (y), R(y). y) dy) (10)

whereSdenotes the differential scattering rate dnthe initial distribution function.
The trajectory K, R) is a solution of the equations of motion with the initial conditi&rir) = k,
R(t) =r:

Ko =k+ [ FRODD. RO =r+ [ &) dy (11)
t t

The force fieldiF can be due to electric and magnetic fields. The carrier’s group velo@tyelated to

the band energy(K) by v = h~1V,e(k).

The common integro-differential form of the BE is recovered from Eq. (8) by performing tinée-
gration, replacing the upper bound of the time integrat thyus eliminating the unit step function, and
taking the total time derivative.

As an example, we explicitly write the terft® of the Neumann series (4)

FO®k,r 1) = f dn f ks f dry / dk2ﬁ<Kz<0>,Rz<0>>exp(— / MKz(y),Rz(y),y)dy)
0 0 0

xS(ko, K1(t2), R1(t2), 12) exp(—/ AMK1(y), R1(y), y) dy>

7}

xS(k2, K (11), R(12), 11) exp(—/ MK (y), R(y). y) dy) (12)

14

The real space trajectory is continuous at the time of scatteringRe(g) = R1(r2), and the initial
conditions for thé&-space trajectories are given by the before-scattering statek,@y~= k. Evaluation

of iteration terms of the form (12) by MC integration leads to the MCB algorithm. Sineg are given,
the construction of the numerical trajectory starts at this point by choosing a random végiaidéech
obviously is less thah The next random variable to be choseitisa before-scattering state, and so
forth. This means that the numerical trajectory is followed back in time.



H. Kosina, M. Nedjalkov / Mathematics and Computers in Simulation 55 (2001) 93-102 99

With the kernel (9) the conjugate Eq. (5) becomes

gk, r', 1) =f df/dka Sk’ ka1, 1) exp<—f /\(K(y),R(y),y)dy) g(K (1), R(7), 1)
+gok', r', 1) (13)

To obtain this result, in the kernel (9) variables are changgd= K ('), r” = R(¢'). According to
the Liouville theorem the volume element does not change over a trajectody: € dk, dr”. Ther”
integration is then carried out with the help of #éunction.

For a particular choice of the free tergs, = §(k —k')(r —r")5(t —1t'), g represents the Green function.
Using Eg. (6) the solution of Eqg. (8) is obtained by the scalar product

flk,r, t)= /oodt//dk’/dr/g(k’,r/, ) folk',r',t) (14)
0

Assume that we are interested in the integraf ofer some subdomaif? at timet: fo(r) = ]O"Odt/
Jdk" [dr' fk' 1, )8t — t')0o(k',r"), wheref, denotes the indicator function of the subdomain.
From fo(t) = (f, go) the free term is obtained ag = §(r — )0 (k’, r’). Using the Neumann series

of Eq. (13),g = Y 5 g(i), we obtainfe (1) = (fo, ) = > o fo ) After some algebra the second order
term can be written as

@ _ /da/ dn/ o [ s [ okt [ ks [ eritsichsr)
S(K 2(t2), k3, Ra(t2), t2) }

MK 2(12), Ro(12), 12) exp( / L(K2(y), Ra(y), y)dy>}{ " Kan). Raln). 12)

)} { S(K1(t1), k7, R1(t1), t1) }
MK 1(t1), Ri(11), 11)

x 1 A(K (1), R(10), t0) exp(—/ MK (y), R(y), y)dy> } O (K (1), R(1)) (15)

L4

X )»(Kl(tl),Rl(ll),ll)eXp<—/ AMK1(y), R1(y), y)dy

17}

This term describes the path of a particle that undergoes two scattering events within the given time
interval (0,t) and hence passes timen its third free flight. In Eq. (15) the expressions enclosed in
curly brackets match exactly those probability densities used in the EMC algorithm. Note 1Ba the
normalized distribution of the after-scattering stajes (k) S (k, k') dk’ = 1. To evaluate Eq. (15) by MC
integration one have to generdeealizations of the multi-dimensional varialile, r;, 12, k5, t1, k7, to}

which is termed a numerical trajectory. One would first generate a phase spacekpaintfom the

initial distributionf;, then choosé, from the free flight time distribution, selek§ with densityr~1S,

and so forth. Finally, at timéthe indicator functior®, which plays the role ofy in Eqg. (7), needs to

be evaluated. The result will be simply 1 or 0. Doing so NKbirajectories corresponds to counting the
number of particles found if at timet.

The generated times are of ascending ordet,® < t; < fo, and the generated wave vectors are after
scattering states, which means that the trajectory is followed forward in time. With a forward algorithm it
is possible only to evaluate the average of the distribution function over some subdomain rather than the
exact value in a given point. Only the MCB algorithm is capable of evaluating the distribution function
point-wise.
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Fig. 1. lllustration of the functiong, (k,r) and# (k,r), which give the time at the trajectory’s entry point and exit point,
respectively. If 1, r1) is the initial point of a closed trajectory, the times gfek,, r;) = +oo.

In the Weighted EMC technique instead of the physical densities in Eq. (15), which follow in a natural
way from the kernel, arbitrary densities are used for numerical trajectory construction. The ratio of the
physical density over the numerical density appears in the integrand.

3.3. The boundary-value problem

In the inhomogeneous, steady-state case the integral equation is defined in the six-dimensional phase
space. The position vector is restricted to the simulation dolain

fk,r)= /dk’/dr’f(k’,r’)K(k/,r’,k,r) + folk,r) (16)

The kernel and the free term are defined as follows, whgdenotes the distribution function at the
boundary:

0

0
K(k’,r/,k,r)zf dt’S(k’,K(t’),r/)eXp<—/ A(K(y),R(y))dy> s(r' — R(1) 17)
ty (k,r) t
0
Jolk,r) = fo(K (1), R(1,)) exp (—/(k )/\(K(y), R(y)) dy) (18)

The trajectory K, R) is a solution of the equations of motion with the initial conditiKr{0) = k,
R(0) = r. The functionsy (k,r) andtg(k, r) denote the times when the trajectory enters and leaves,
respectively, the simulation domain (see Fig. 1).

From the Neumann series of Eq. (16) it is possible to derive a steady-state, backward MC algorithm.
First results show, that both the before-scattering and the time-recording method for average recording,
known from the (forward) OPMC, are also available. Details of the new algorithm will be published in
forthcoming paper.

The formal derivation of the forward, steady-state algorithm (OPMC) starts from the conjugate equation:

1 (ka.r') T
g(k’,r’)=/dka/0 dr S(k', K1,1") eXD(—/O LK (), R(y))dy> g(K (1), R(x))+gok',r")
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Itis possible to express the iteration terms in such a form that the probability densities used in the OPMC
appear. The before-scattering and the time recording methods for average recording are obtained in a very
natural way. The initial points of the trajectories have to generated with a velocity-weighted boundary
distribution,v, fy,, wheref, is given andv, is the component of the velocity normal to the boundary.

4. Conclusion

As of to date the two standard Monte Carlo algorithms, which are widely used for Monte Carlo device
simulation on a semi-classical level, are the ensemble and the one-particle algorithms. The insight in the
physics of the transport process has improved tremendously. From the Boltzmann equation represented as
an integral equation, generalized Monte Carlo algorithms can be derived, as has been demonstrated by the
weighted ensemble and the backward algorithms. Although these algorithms have the potential to solve
problems occurring in device simulation, such as coping with rare events, moving carriers over retarding
energy barriers, or avoiding the simulation of too many trajectories in equilibrium regions where the
distribution function is known, they have not been applied to realistic structures yet. The great freedom in
choosing density functions for numerical trajectory construction opens a wide field for the development
of new algorithms.
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