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Abstract

The ensemble Monte Carlo algorithm (EMC) is the most frequently used tool for simulation of the transient
transport in semiconductors and structures. The common definition of the algorithm is of a procedure based on
imitation of the real transport phenomena. Often EMC is accepted as a simulated experiment rather than as a
numerical method. Recently it has been shown that the EMC can be obtained by an application of the numerical
Monte Carlo (MC) theory to the integral form of the Boltzmann equation (BE) [1-3]. The approach has been further
used to prove under a general condition the convergence of the algorithm [4]. In this work we utilize the approach
to investigate the variance of the EMC. It is proved that the algorithm has a finite variance and an analytical result
is derived. This allows to assign the precision estimates of the numerical MC method to the EMC. © 2001 IMACS.
Published by Elsevier Science B.V. All rights reserved.
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1. The ensemble Monte Carlo algorithm

Within the semi-classical concepts, the carrier transport in semiconductors is an alteration of elementary
events taking place in the six-dimensional phase sgaseR. These are the drift and scattering events
characterized below. The point-like particles drift along trajectories, defined by first order differential
equationst = F(r), 7 = v(k) (Newton’s law) whereF (r) = qE(r)/h, E is the electric fieldq is the
particle charge and the velocity. The time dependence of the electric field is not written explicitly. A
phase space poikt r at timet uniquely determines the solution of the Newton’s equatikis), R(t)
at some evolution time. Assume that a trajectory takes the valkgs, andk,, r;, at the times, < 1.

There are two ways to initialize the trajectory

K(0) = ke + / FR(y))dy = ky — f F(R(y))dy )
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R(7) =ra+/ v(K(y))dy=rb—/ )v(K(y))dy

That is, to choosg,, r,, t, so thatr > ¢, or to choos&,, r;, t, so thatr < 7,. At evolution timer the
reached phase space point is the same for both ways of initialization. We refer to the first initialization as
to a forward one and to the second as to a backward one.

The driftis interrupted by scattering events due to the lattice imperfections considered local in position
and instantaneous in time. They are accounted for by a fun&pnk’, r) dk’ giving the scattering
frequency fromk to dk’ aroundk’. The elementary events are described by theoretical models for the
energy dispersioa(k), the variety of scattering mechanisms include®and parameters typical for any
semiconductor. For a concrete semiconductor there could be a number of theoretical models reflecting on
different level of complexity the dispersion and interaction relations. The main quantity of interest is the
distribution functionf(k, r, t) giving the particle density at timee It provides the complete information
about the mean values of the single-particle physical characteristics. The distribution function is a solution
ofthe BE determined by the initial and/or boundary condition. In this work we consider evolution problems
determined by initial conditions only. The phenomenological derivation of the BE can be found in most
textbooks and includes two steps: the particle number in a small phase space domain is expressed as a
balance of the positive and negative contributions of the particles entering and leaving the domain due to
the drift and scattering processes. Finally the domain volume is let to zero (which means that the number
of all carriers is let to infinity), thus providing the common integro-differential form of the BE.

The idea of the EMC is very natural: it is to imitate the elementary transport events happening to the real
carriers. An ensemble of test particles is selected according the initial condition. A sequence of drift and
scattering events is simulated according to the theoretical model for any test particle. The particle number
atanytime in any phase space volume unitis built up in a natural way and gives an estimate for the solution
of the BE. The solution corresponds to the theoretical model which is supposed to describe adequately
the physical problem. In this sense the imitation EMC is another way of stating the BE. Moreover, MC
provides also information, related to the finite carrier number of the real processes. This information is lost
inthe BE [5]. EMC estimatesthe medp = [ f(k,r, )0, (k, r) dk dr of the BE solutionin a given phase
space sub-domaif (i.e. the realtive number of the carriers inside). The domain indiéatds unity if the
arguments belong t@ and zero otherwise. A test particle is followed by a generation of the probabilities
for the drift duration and the after scattering state which are obtained from the scattering frequency
functionS. The probability for a carrier to scatter frakrinto ck” aroundk’ is Sk, k', r) dk’/1(k, r) where
A(k,r) = [dk'S(k,k’,r). The probability for drift without scattering during the time interval {0is

given by exp(—fé (K (1), R(1)) dr). When multiplied by (K (t), R(t)) dt it becomes the probability for
scattering in time intervaltchfter a succesful drift (@). The main steps in the algorithm are the following

1. choose the evolution timeand placeN carriers at pointkg, ro, selected according to the initial
carrier distributiorfy(ko, o), assign ta2 a counten, begin the trajectory of every particular carrier
atks :k(),rs =Ty andts - 0,

2. usethe poirk;,r;,t; for aforward initialization of the Newton trajectoK(t’), R(t'), with a probability
densityA (K ('), R(1)) exp(—fti/A(K(y), R(y)) dy) generate the next scattering tite

3. if ¢/ < r use the probability densityK (t'), k', R(t))/L(K(t), R(t")) to generate the after-scattering
statek’, set the valueks = k', rs = R(t), ts = t’ and repeat 2;

4. if t' > r increment by 6, (K (t), R(t)) and begin with the next carrier from 1.
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After all N trajectories are followedg, is given by the estimator value divided by The above consid-
erations introduce the EMC from a physical point of view. An analysis of the numerical properties of the
algorithm, such as convergence conditions, variance and probable error require to reformulate the EMC in
terms of the numerical MC methods. Relevant for this purpose will be the MC method for solving integrals.

2. Monte Carlo integration

We consider the task of evaluation of an integral
1= [ sedi= [ pwweds @

where the functiorp is absolute integrable. Suppose thdas non-negative ang[fooop(x) dx =1, i.e.
p is a density function. Then the functiq[n can be interpreted as a random variable with a mean value
E{y} =1 and a variancerj = E{y?} — E?{y/}, supposed to be finite. We consider an experiment
of N mdependent identically distributed (IID) (k) random variables/; [6]. The random variable
v o= Z, 1¥i/N is called sample mean and has the following propert&{s&} E{y} = I and

2

o5 = "w/N After the CLT, under a certain general conditions, the probabflity: < x} for v to have

an value less or equal toapproaches the normal distribution with meamd varlancel/-/ whenN tends
to infinity. This allows to estimate the precision by which the sample mean approaches the mean value.
We give two estimates, called ‘the rule af 3and probable errory

P{l§ —I| < 305} ~ 0997, ry = 0.674%; 3)

The concept of the Monte Carlo method for evaluating integrals is to generate numerically such 11D
random variables. Note that the existence of the mean value is sufficient for the method to be applied [7].
But the method can be supplied by the above numerical characteristics only if the variance is finite.

A generalization to a multidimensional integral offers the following cases. XNsw multidimensional
point in given domairA.

e C1: The discussed case ¢fx) = vy (x)px), p(x) > 0 andep(x)dx = 1. Then the simplest
algorithm for calculating is very short: (1) with probabilityp(x) generateN trials pointsx;; (2)
calculate the estimatqgr; = ¥ (x;) and (3) calculate the sample megﬁvzlm/N According to the
CLT itis an estimate for the value tf

e C2: The functionyp is a product of two functiong (x) = ¥ (x) p(x), p(x) > 0 buthp(x) dx # 1.

@:IfJ = pr(x) dx is known the problem is reduced to the first case by ugitg = (Jy (x))
(p(x)/J). Now the probability functionp(x)/J is normalized to unity imA.

(b): When/, p(x)dx < 1, another possibility is to extrapolapeo a domairB, whereA € B such
thatJ = [, p(x) dx = 1 holds. The problem is related to C1 by settingc) = 0 whenx ¢ A and
generating points iB.

e C3: We can choose an arbitrary dengifx) such thatp(x) # 0 if g(x) # 0. Then we can write
¢ (x) = (p(x)/p(x))p(x) and refer to C1.

To investigate the variance of the EMC, it is necessary to determine the density function and the random
variable of the carrier evolution process. For this purpose the algorithm must be associated to an integral
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according to Clf, = [ f(k,r,1)0g(k,r)dk dr provides a starting expression which must be further
processed sindds unknown.

3. Integral equations related to the Boltzmann equation

The distribution functiorf can be expressed as a solution Fredholm integral equation of second kind
[8,9]

fk,r, 1) :/Oodt’/dk’/dr’f(k’,r’, t’)S(k’,K(t’),r’)exp(—/ LMK (), R(y)) dy)
0 t

x§(r' — ROt — 1) + fo(K(0), R(O))eXIO</O ALK (y), R(y)) dy) 4)

here a backward initialization is used, determinedkby, t. The common integro-differential form of
the BE is recovered if thé andé functions are accounted by the integration, the identki€s = k,
R(t) = r are used on the left and a differentiation with respect to the timperformed.

The EMC simulate$, by using a forward initialization so that our further steps are directed to reverse
the initialization used in (4). We write (4) in a short notationfd®)) = [ dQ’ f(Q)K(Q’, Q) + fo(Q)
and introduce an conjugate equatigfQ’) = [ dQg(Q)K (Q’, Q) + go(Q"), [3]. If the equation foff is
multiplied byg(Q) and integrated oveD, the equation fog is multiplied byf(Q') and integrated ovey
and the two equations are subtracted, the result is

/f(Q)go(Q)dQ =/8(Q)fo(Q)dQ ®)

In this way the task to calculate a functionalfaé transformed into a task to calculate a functional of
the solution of the conjugate equation. The free term of the conjugate equation is the figgatibich
determines the concrete functionalfof

The conjugate equation of (4) is obtained by a replacement of the primed with the unprimed integration
variables

gk',r' 1) = /Oodt/dk/ drg(k,r, t)S(k',K(t’),f)exp(—/ AMK(y), R(y)) dy)
0 "
x8(r' — ROt — 1) + gok',r', 1) (6)

By using a Liouville transform, the integration variables: can be changed tK (t'), R(t'). Further
K(t) is denoted byk* and R(t') with r”’. This allows to obtairk = K () andr = R(¢) in a forward
initialization with k¢, r”” att. Further thes andé functions are taken into account in the integration.
Additionally, the variable of time integration is renamed froto <.

gk, r' 1) :/ dr/dk“S(k’,k“,r’, t’)exp(—/rA(K(y),R(y))dy)
xg(K(v), R(1), ) + gok',r', 1) (7)

The trajectoryK (y), R(y) appears in a forward initialization, given &y, r’ att’. The explicit form of
Qo is determined by our concrete task to calcufgteThe expression fd, must be augmented in order
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to include all relevant integration variablgs = [, dt’' [dk’ [dr' f(k',r',1)8(t — t')0o k', r'). This
definesgo(k’,r’, ') = 8(t — t")0o k', r"). According to (5)f, becomes

fo =/0 dt//dk’/dr/fo(K(O),R(O))exp<—/0 A(K(y),R<y))dy> gk, r' 1)

Using again the Liouville transform we change the backward initializatiot’at( t') to a forward
initialization at &g, ro, 0).

fo = fo dr’ f dko / drofo<ko,ro)exp<— fo /\(K(y),R(y),y)dy> K@ RO (8

4. Variance of the EMC

The resolvent series of (7) gives the solutipn= Y > ¢ as a sum of the successive iterations

g(Q) = [dOK(Q', 0)g?(Q) with g©@ = go. Accordingly, (8) becomeg, = Y700 5. It has

been shown that the resolvent series of the conjugate equation converges [4]. Hence for any evolution
timet we can choose the orderlarge enough, such thit:° Y becomes less than a desired sraall

The finite sumf[”] =Y "0 ;;) which approachef, for largen will be further analyzed. We consider

2 which is obtained as

P = [Con [ de [ as [k [ ke [ ko [ arotsatko.ron
0 f 7}

X {eXIO(—/O 1)»(Ko(y), Ro(y)) dy) S(Ko(11), ka, Ro(tl))}

X {exp(—/ A(K1(y), R1(y)) dy) S(K1(12), k2, Rl(tz))}

153

13
eXp(—/ MK 2(y), Ra(y)) dy) §(t — 13)02 (K (13), R(t3)) 9)
2
The terms eclosed in curly brackets are those probability densities used in thdEMBe initial carrier
distribution, normalized to unity and can be used to generate initial pajntg as required by step 1 of
the EMC.
Following C2(a), we can rewrite the next term as a product of densities

S(Ko(t1), k1, Ro(11)) }
A(Ko(11), Ro(11))

They appear as the densities for the first free flight duration and after scattering state in the steps 2 and
3 of the EMC. The initialization of the free-flight trajectory is givenkayr at 0 and the after-scattering
state is chosen by the densi, determined by the end flight coordinat€g(t1), Ro(t1). This means
that we deal with a conditional probabilities. The order they are applied is opposite to the order of the
integrals, providing the normalization. Integration okerand then integration ovey of the above term

{exp(—/o A(Ko(y), Ro(y)) dy) A(Ko(11), Ro(11))
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gives unity. The term has the meaning of a probability density for a transition Egomy at O tok,,
Ro(ty) att;. We use the locality of the scattering in the real spRgé&,) = R1(f1) to denote the term by:
P(ko, ro, Ok1, R (1), t1). The next term in (9) in curly brackets has an equivalent interpretation and is
accordingly written a®(k1, R1 (t1), t1Jk2, R(t2), t2). We conclude that the densities in (9) coincide with
the EMC densities, generating the real carrier trajectories of the first two flight-scattering events.

The integration ovel; of the last line term in (9) in the limitls andoo gives exr(—ft:A(Kz(y), R>(»))
dy)o(t—12)0o (K (1), R(t)). The exponential function is a probability which can be expressed as anintegral
over a probability density

exp(—/ MK 2(y), Ra(y)) dY>

7}

00 13
= / drs {exp(—/ MK 2(y), Ra(y)) dy) A(K o(t3), R2(¢3))} O(t3 — 1)
2 [7)

The# function has been introduced according to C2(b) to augment the time interval so that the term
in the curly brackets becomes equivalent to the density for the third free flight. Further we complete the
term in the curly brackets b§(K(t3), k3, Ro(t3)) /A (K 2(t3), Ro(t3)) and obtain exactly(k,, Ro(to),
tolks, Ra(ts), t3). Additionally, an integration oveks must be included in order to keep the value 8f
unchanged

_((22):/ dtl/ dtz/ dl‘g/dkl/de/dkiS/dkO/drO
0 n 2

x { fo(ko, ro) P(ko, ro, Olk1, R1(t1), t1) P (k1, R1(t1), t1]k>,
XR3 ((t2), t2) P(k2, Ro(12), t2lks, R3(t3), 13)} 0(t — 12)0 (K (1), R(1))0(t3 — 1) (10)

indeed, the functions do not depend i and theks-integration can be carried out explicitly to give
unity.

In (10)f@ is expressed as a mean value of the random var&bie, (-)8(-), having a density func-
tion p® given by the term enclosed in curly brackets. We further exg@fdto p™ by a multiplica-
tion with P (k3, R3(t3), t3lka, R4(ts), t4) ... P(k,, R, (1), tulkni1, Ryi1(ths1), tiy1) @nd introducing in-
tegrations ovety. . .t,. 1, k3...k,.1 in order to keep the value ofs(f) unchanged. Any term in the
series offg[z"] can be processed in the same way. After summing up all terms we obtain the desired
expression

_([Zn](l‘) :/ dl‘l.../ dln+1/dk1.../dkn/dko/drop(n)(ko,ro,kl,...kn,tl,...ln+1)
0 ty

XY 0o (Ki(1), Ri())0( — 1)0 (11 — 1)

i=0

Now we are ready to analyze the EMC for simulationfé"li in terms of the numerical Monte Carlo for
evaluating integrals. The density functiorpié’. One trial ofp"™ consists of consecutive realizations of
the conditional densitieB. Any such realization requires a set of random numbers. The consecutive sets
form a sequence of random numbers. We say that the process builds up a numerical trajectory, assigned
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to this sequence which presents a possible real trajectory. The random variable is

Y= 0o(Ki(), Ri(1)0(t — t:)0(ti11 — 1) (11)

i=0

Only the coordinates at timeremain relevant. Due to the functions in time, the terms of the sum
are mutually complementary. If during given trial the time (¢;, ¢;11) is reached, the process can be
interrupted since all terms with# j are zero. Then the value of the domain indicator is evaluated for
the obtained phase space point at tine trials provideN independent values 0 or 1. According to C1,
their sample mean gives the Monte Carlo estimatq‘gﬁ]r.

There is a finite probability for,,; < 7. This probability tends to zero with — oo because the
resolvent series converges. Formally we may thinkfinite, so thatt is reached at any trial. This is
consistent since the random variable is zero over the infinite part of numerical trajectory after the time
Thus, the conclusions qug’] are valid also fofg which leads to the EMC algorithm.

We note that C3 is given not only for completeness. It is the base for extension of the EMC to the
weighted EMC algorithm [1,2].

The formulation of the EMC experiment is very short. The outcomes of our experimediraepen-
dent, infinite sequences of random numbers. To any outcome the random variable being the phase space
coordinates at timeis assigned by a rather complicated but well defined rule. Further, the fufgtiQki,

R) defined in the phase space is given. This function determines another random varialsle (K (¢),
R(t)) assigned to the outcomes of the experiment. In this way the EMC provides the samplé okan
N 1ID variablesy;. They have mean valuB{y;} = E{y/} = fo. They have equal varianegﬁi = 05
which can be obtained analytically. Indeed, as seen fromy2 5 v, such thai& {2} = f,. We obtain
for the variance

of = fo(l— fo) (12)

This equation proves that the random variable of the EMC has a finite variance and the precision estimate
(3) holds with

fe@— fo)

oy (N) = ———

(13)

5. Conclusions

The EMC has been formulated in terms of a combined experinfignhas been expressed as an
multidimensional integral of the forri p(x)y (x) dx wherep(x) appears to be the density function used
in the EMC for the particle trajectory constructiog. is the corresponding random variable, having
expectation valug&;. It has been proved that the variance/ois finite and given by the expression (12).
It further allows to express the variance of the EMC in termé$oaind the number of the simulated
particlesN.

Since EMC is a simulated experiment, (13) can be applied to the real transport phenomena with
N = Npnys carriers. This can be a useful estimate in the case of small devices where the number of the
carriers decreases to the limit where a statistical approach is possible.
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