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Variance of the ensemble Monte Carlo algorithm for
semiconductor transport modelingq
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Abstract

The ensemble Monte Carlo algorithm (EMC) is the most frequently used tool for simulation of the transient
transport in semiconductors and structures. The common definition of the algorithm is of a procedure based on
imitation of the real transport phenomena. Often EMC is accepted as a simulated experiment rather than as a
numerical method. Recently it has been shown that the EMC can be obtained by an application of the numerical
Monte Carlo (MC) theory to the integral form of the Boltzmann equation (BE) [1–3]. The approach has been further
used to prove under a general condition the convergence of the algorithm [4]. In this work we utilize the approach
to investigate the variance of the EMC. It is proved that the algorithm has a finite variance and an analytical result
is derived. This allows to assign the precision estimates of the numerical MC method to the EMC. © 2001 IMACS.
Published by Elsevier Science B.V. All rights reserved.

Keywords:Variance; Ensemble Monte Carlo algorithm (EMC); Semiconductors; Simulation

1. The ensemble Monte Carlo algorithm

Within the semi-classical concepts, the carrier transport in semiconductors is an alteration of elementary
events taking place in the six-dimensional phase spaceKKK ×RRR. These are the drift and scattering events
characterized below. The point-like particles drift along trajectories, defined by first order differential
equationṡk̇k̇k = FFF(rrr), ṙ̇ṙr = vvv(kkk) (Newton’s law) whereFFF(rrr) = qEEE(rrr)/~,EEE is the electric field,q is the
particle charge andvvv the velocity. The time dependence of the electric field is not written explicitly. A
phase space pointkkk, rrr at timet uniquely determines the solution of the Newton’s equationsKKK(τ ),RRR(τ )
at some evolution timeτ . Assume that a trajectory takes the valueskkka, rrra andkkkb, rrrb at the timesta < tb.
There are two ways to initialize the trajectory

KKK(τ) = ka +
∫ τ

ta

FFF(RRR(y))dy = kkkb −
∫ tb

τ

FFF(RRR(y))dy (1)
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RRR(τ) = rrra +
∫ τ

ta

vvv(KKK(y))dy = rrrb −
∫ tb

τ

vvv(KKK(y))dy

That is, to choosekkka, rrra, ta so thatτ > ta or to choosekkkb, rrrb, tb so thatτ < tb. At evolution timeτ the
reached phase space point is the same for both ways of initialization. We refer to the first initialization as
to a forward one and to the second as to a backward one.

The drift is interrupted by scattering events due to the lattice imperfections considered local in position
and instantaneous in time. They are accounted for by a functionS(kkk, kkk′, rrr) dkkk′ giving the scattering
frequency fromkkk to dk′ aroundkkk′. The elementary events are described by theoretical models for the
energy dispersionε(kkk), the variety of scattering mechanisms included inSand parameters typical for any
semiconductor. For a concrete semiconductor there could be a number of theoretical models reflecting on
different level of complexity the dispersion and interaction relations. The main quantity of interest is the
distribution functionf(kkk, rrr, t) giving the particle density at timet. It provides the complete information
about the mean values of the single-particle physical characteristics. The distribution function is a solution
of the BE determined by the initial and/or boundary condition. In this work we consider evolution problems
determined by initial conditions only. The phenomenological derivation of the BE can be found in most
textbooks and includes two steps: the particle number in a small phase space domain is expressed as a
balance of the positive and negative contributions of the particles entering and leaving the domain due to
the drift and scattering processes. Finally the domain volume is let to zero (which means that the number
of all carriers is let to infinity), thus providing the common integro-differential form of the BE.

The idea of the EMC is very natural: it is to imitate the elementary transport events happening to the real
carriers. An ensemble of test particles is selected according the initial condition. A sequence of drift and
scattering events is simulated according to the theoretical model for any test particle. The particle number
at any time in any phase space volume unit is built up in a natural way and gives an estimate for the solution
of the BE. The solution corresponds to the theoretical model which is supposed to describe adequately
the physical problem. In this sense the imitation EMC is another way of stating the BE. Moreover, MC
provides also information, related to the finite carrier number of the real processes. This information is lost
in the BE [5]. EMC estimates the meanf

Ω
= ∫

f (kkk, rrr, t)θ
Ω
(kkk, rrr)dkkk drrr of the BE solution in a given phase

space sub-domainΩ (i.e. the realtive number of the carriers inside). The domain indicatorθΩ is unity if the
arguments belong toΩ and zero otherwise. A test particle is followed by a generation of the probabilities
for the drift duration and the after scattering state which are obtained from the scattering frequency
functionS. The probability for a carrier to scatter fromkkk into dkkk′ aroundkkk′ is S(kkk, kkk′, rrr) dkkk′/λ(kkk, rrr) where
λ(kkk, rrr) = ∫

dkkk′S(kkk,kkk′, rrr). The probability for drift without scattering during the time interval (0,t) is

given by exp
(
−∫ t0(KKK(τ),RRR(τ))dτ

)
. When multiplied byλ(KKK(t),RRR(t)) dt it becomes the probability for

scattering in time interval dt after a succesful drift (0,t). The main steps in the algorithm are the following

1. choose the evolution timet and placeN carriers at pointskkk0, rrr0, selected according to the initial
carrier distributionf0(kkk0, rrr0), assign toΩ a counterν, begin the trajectory of every particular carrier
atkkks = kkk0, rrrs = rrr0 andts = 0;

2. use the pointkkks ,rrrs , ts for a forward initialization of the Newton trajectoryKKK(t′),RRR(t′), with a probability

densityl(KKK(t′),RRR(t′)) exp
(
−∫ t ′

ts
λ(KKK(y),RRR(y))dy

)
generate the next scattering timet′;

3. if t ′ < t use the probability densityS(KKK(t′), kkk′, RRR(t′))/λ(KKK(t′), RRR(t′)) to generate the after-scattering
statekkk′, set the valueskkks = kkk′, rrrs = RRR(t′), ts = t ′ and repeat 2;

4. if t ′ > t incrementν by θΩ (KKK(t),RRR(t)) and begin with the next carrier from 1.
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After all N trajectories are followed,fΩ is given by the estimator value divided byN. The above consid-
erations introduce the EMC from a physical point of view. An analysis of the numerical properties of the
algorithm, such as convergence conditions, variance and probable error require to reformulate the EMC in
terms of the numerical MC methods. Relevant for this purpose will be the MC method for solving integrals.

2. Monte Carlo integration

We consider the task of evaluation of an integral

I =
∫ ∞

−∞
φ(x)dx =

∫ ∞

−∞
p(x)ψ(x)dx (2)

where the functionφ is absolute integrable. Suppose thatp is non-negative and
∫∞
−∞p(x)dx = 1, i.e.

p is a density function. Then the functionψ can be interpreted as a random variable with a mean value
E{ψ} = I and a varianceσ 2

ψ = E{ψ2} − E2{ψ}, supposed to be finite. We consider an experiment
of N independent, identically distributed (IID) (byp) random variablesψ i [6]. The random variable
ψ̄ = ∑N

i=1ψi/N is called sample mean and has the following properties:E{ψ̄} = E{ψ} = I and
σ 2
ψ̄

= σ 2
ψ/N . After the CLT, under a certain general conditions, the probabilityP {ψ̄ ≤ x} for ψ̄ to have

an value less or equal tox approaches the normal distribution with meanI and varianceσ 2
ψ̄

whenN tends
to infinity. This allows to estimate the precision by which the sample mean approaches the mean value.
We give two estimates, called ‘the rule of 3σ ’ and probable errorrN

P {|ψ̄ − I | ≤ 3σψ̄} ' 0.997; rN = 0.6745σψ̄ (3)

The concept of the Monte Carlo method for evaluating integrals is to generate numerically such IID
random variables. Note that the existence of the mean value is sufficient for the method to be applied [7].
But the method can be supplied by the above numerical characteristics only if the variance is finite.

A generalization to a multidimensional integral offers the following cases. Nowx is a multidimensional
point in given domainA.

• C1: The discussed case ofφ(x) = ψ(x)p(x), p(x) > 0 and
∫
A
p(x)dx = 1. Then the simplest

algorithm for calculatingI is very short: (1) with probabilityp(x) generateN trials pointsxi ; (2)
calculate the estimatorµi = ψ(xi) and (3) calculate the sample mean

∑N
i=1µi/N According to the

CLT it is an estimate for the value ofI.
• C2: The functionφ is a product of two functionsφ(x) = ψ(x)p(x), p(x) ≥ 0 but

∫
A
p(x)dx 6= 1.

(a): If J = ∫
A
p(x)dx is known the problem is reduced to the first case by usingφ(x) = (Jψ(x))

(p(x)/J ). Now the probability functionp(x)/J is normalized to unity inA.
(b): When

∫
A
p(x)dx < 1, another possibility is to extrapolatep to a domainB, whereA ∈ B such

thatJ = ∫
B
p(x)dx = 1 holds. The problem is related to C1 by settingψ(x) = 0 whenx /∈ A and

generating points inB.
• C3: We can choose an arbitrary densityp(x) such thatp(x) 6= 0 if g(x) 6= 0. Then we can write
φ(x) = (φ(x)/p(x))p(x) and refer to C1.

To investigate the variance of the EMC, it is necessary to determine the density function and the random
variable of the carrier evolution process. For this purpose the algorithm must be associated to an integral
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according to C1.fΩ = ∫
f (kkk, rrr, t)θΩ(kkk, rrr)dkkk drrr provides a starting expression which must be further

processed sincef is unknown.

3. Integral equations related to the Boltzmann equation

The distribution functionf can be expressed as a solution Fredholm integral equation of second kind
[8,9]

f (kkk, rrr, t) =
∫ ∞

0
dt ′
∫

dkkk′
∫

drrr ′f (kkk′, rrr ′, t ′)S(kkk′,KKK(t ′), rrr ′)exp

(
−
∫ t

t ′
λ(KKK(y),RRR(y))dy

)

×δ(rrr ′ −RRR(t ′))θ(t − t ′)+ f0(KKK(0),RRR(0))exp

(∫ t

0
λ(KKK(y),RRR(y))dy

)
(4)

here a backward initialization is used, determined bykkk, rrr, t. The common integro-differential form of
the BE is recovered if theδ andθ functions are accounted by the integration, the identitiesKKK(t) = kkk,
RRR(t) = rrr are used on the left and a differentiation with respect to the timet is performed.

The EMC simulatesfΩ by using a forward initialization so that our further steps are directed to reverse
the initialization used in (4). We write (4) in a short notation asf (Q) = ∫

dQ′f (Q′)K(Q′,Q)+ f0(Q)

and introduce an conjugate equationg(Q′) = ∫
dQg(Q)K(Q′,Q)+ g0(Q

′), [3]. If the equation forf is
multiplied byg(Q) and integrated overQ, the equation forg is multiplied byf(Q′) and integrated overQ′

and the two equations are subtracted, the result is∫
f (Q)g0(Q)dQ =

∫
g(Q)f0(Q)dQ (5)

In this way the task to calculate a functional off is transformed into a task to calculate a functional of
the solution of the conjugate equation. The free term of the conjugate equation is the functiong0 which
determines the concrete functional off.

The conjugate equation of (4) is obtained by a replacement of the primed with the unprimed integration
variables

g(kkk′, rrr ′, t ′) =
∫ ∞

0
dt
∫

dkkk
∫

drrrg(kkk, rrr, t)S(kkk′,KKK(t ′), rrr ′)exp

(
−
∫ t

t ′
λ(KKK(y),RRR(y))dy

)
×δ(rrr ′ −RRR(t ′))θ(t − t ′)+ g0(kkk

′, rrr ′, t ′) (6)

By using a Liouville transform, the integration variableskkk, rrr can be changed toKKK(t′), RRR(t′). Further
KKK(t′) is denoted bykkka andRRR(t′) with rrr ′′. This allows to obtainkkk = KKK(t) andrrr = RRR(t) in a forward
initialization with kkka , rrr ′′ at t. Further theδ andθ functions are taken into account in the integration.
Additionally, the variable of time integration is renamed fromt to τ .

g(kkk′, rrr ′, t ′) =
∫ ∞

t ′
dτ
∫

dkkkaS(kkk′, kkka, rrr ′, t ′)exp

(
−
∫ τ

t ′
λ(KKK(y),RRR(y))dy

)
×g(KKK(τ),RRR(τ), τ )+ g0(kkk

′, rrr ′, t ′) (7)

The trajectoryKKK(y), RRR(y) appears in a forward initialization, given bykkka , rrr ′ at t′. The explicit form of
g0 is determined by our concrete task to calculatefΩ . The expression forfΩ must be augmented in order
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to include all relevant integration variablesfΩ = ∫∞
0 dt ′

∫
dkkk′ ∫ drrr ′f (kkk′, rrr ′, t ′)δ(t − t ′)θΩ(kkk′, rrr ′). This

definesg0(kkk
′, rrr ′, t ′) = δ(t − t ′)θΩ(kkk′, rrr ′). According to (5)fΩ becomes

fΩ =
∫ ∞

0
dt ′
∫

dkkk′
∫

drrr ′f0(KKK(0),RRR(0))exp

(
−
∫ t ′

0
λ(KKK(y),RRR(y))dy

)
g(kkk′, rrr ′, t ′)

Using again the Liouville transform we change the backward initialization at (kkk′, rrr ′, t′) to a forward
initialization at (kkk0, rrr0, 0).

fΩ =
∫ ∞

0
dt ′
∫

dkkk0

∫
drrr0f0(kkk0, rrr0)exp

(
−
∫ t ′

0
λ(KKK(y),RRR(y), y)dy

)
g(KKK(t ′),RRR(t ′), t ′) (8)

4. Variance of the EMC

The resolvent series of (7) gives the solutiong = ∑∞
i=0g

(i) as a sum of the successive iterations
g(i+1)(Q′) = ∫

dQKKK(Q′,Q)g(i)(Q) with g(0) = g0. Accordingly, (8) becomesfΩ = ∑∞
i=0f

(i)
Ω . It has

been shown that the resolvent series of the conjugate equation converges [4]. Hence for any evolution
time t we can choose the ordern large enough, such that

∑∞
i=nf

(i)
Ω becomes less than a desired smallε.

The finite sumf [n]
Ω = ∑n

i=0f
(i)
Ω which approachesfΩ for largen will be further analyzed. We consider

f
(2)
Ω which is obtained as

f
(2)
Ω =

∫ ∞

0
dt1

∫ ∞

t1

dt2

∫ ∞

t2

dt3

∫
dkkk1

∫
dkkk2

∫
dkkk0

∫
drrr0{f0(kkk0, rrr0)}

×
{

exp

(
−
∫ t1

0
λ(KKK0(y),RRR0(y))dy

)
S(KKK0(t1),kkk1,RRR0(t1))

}

×
{

exp

(
−
∫ t2

t1

λ(KKK1(y),RRR1(y))dy

)
S(KKK1(t2),kkk2,RRR1(t2))

}

exp

(
−
∫ t3

t2

λ(KKK2(y),RRR2(y))dy

)
δ(t − t3)θΩ(KKK(t3),RRR(t3)) (9)

The terms eclosed in curly brackets are those probability densities used in the EMC.f0 is the initial carrier
distribution, normalized to unity and can be used to generate initial pointskkk0, rrr0 as required by step 1 of
the EMC.

Following C2(a), we can rewrite the next term as a product of densities{
exp

(
−
∫ t1

0
λ(KKK0(y),RRR0(y))dy

)
λ(KKK0(t1),RRR0(t1))

S(KKK0(t1),kkk1,RRR0(t1))

λ(KKK0(t1),RRR0(t1))

}

They appear as the densities for the first free flight duration and after scattering state in the steps 2 and
3 of the EMC. The initialization of the free-flight trajectory is given bykkk0, rrr0 at 0 and the after-scattering
state is chosen by the densityS/λ, determined by the end flight coordinatesKKK0(t1), RRR0(t1). This means
that we deal with a conditional probabilities. The order they are applied is opposite to the order of the
integrals, providing the normalization. Integration overkkk1 and then integration overt1 of the above term
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gives unity. The term has the meaning of a probability density for a transition fromkkk0, rrr0 at 0 tokkk1,
RRR0(t1) at t1. We use the locality of the scattering in the real spaceRRR0(t1) = RRR1(t1) to denote the term by:
P(kkk0, rrr0, 0|kkk1,RRR1 (t1), t1). The next term in (9) in curly brackets has an equivalent interpretation and is
accordingly written asP(kkk1,RRR1 (t1), t1|kkk2,RRR2(t2), t2). We conclude that the densities in (9) coincide with
the EMC densities, generating the real carrier trajectories of the first two flight-scattering events.

The integration overt3 of the last line term in (9) in the limitst2 and∞ gives exp(−∫ t
t2
λ(KKK2(y),RRR2(y))

dy)θ(t−t2)θΩ(KKK(t),RRR(t)). The exponential function is a probability which can be expressed as an integral
over a probability density

exp

(
−
∫ t

t2

λ(KKK2(y),RRR2(y))dy

)

=
∫ ∞

t2

dt3

{
exp

(
−
∫ t3

t2

λ(KKK2(y),RRR2(y))dy

)
λ(KKK2(t3),RRR2(t3))

}
θ(t3 − t)

Theθ function has been introduced according to C2(b) to augment the time interval so that the term
in the curly brackets becomes equivalent to the density for the third free flight. Further we complete the
term in the curly brackets byS(KKK2(t3),kkk3,RRR2(t3))/λ(KKK2(t3),RRR2(t3)) and obtain exactlyP(kkk2, RRR2(t2),
t2|kkk3,RRR3(t3), t3). Additionally, an integration overkkk3 must be included in order to keep the value off (2)

unchanged

f
(2)
Ω =

∫ ∞

0
dt1

∫ ∞

t1

dt2

∫ ∞

t2

dt3

∫
dkkk1

∫
dkkk2

∫
dkkk3

∫
dkkk0

∫
drrr0

× {f0(kkk0, rrr0)P (kkk0, rrr0,0|kkk1,RRR1(t1), t1)P (kkk1,RRR1(t1), t1|kkk2,

×RRR2 ((t2), t2)P (kkk2,RRR2(t2), t2|kkk3,RRR3(t3), t3)} θ(t − t2)θΩ(KKK(t),RRR(t))θ(t3 − t) (10)

indeed, theθ functions do not depend onkkk3 and thekkk3-integration can be carried out explicitly to give
unity.

In (10) f (2) is expressed as a mean value of the random variableθ (·)θΩ (·)θ (·), having a density func-
tion p(2) given by the term enclosed in curly brackets. We further extendp(2) to p(n) by a multiplica-
tion with P(kkk3,RRR3(t3), t3|kkk4,RRR4(t4), t4) . . . P (kkkn,RRRn(tn), tn|kkkn+1,RRRn+1(tn+1), tn+1) and introducing in-
tegrations overt4. . . tn+1, kkk3. . . kkkn+1 in order to keep the value off (2)Ω unchanged. Any term in the
series off [n]

Ω can be processed in the same way. After summing up all terms we obtain the desired
expression

f
[n]
Ω (t) =

∫ ∞

0
dt1 . . .

∫ ∞

tn

dtn+1

∫
dkkk1 . . .

∫
dkkkn

∫
dkkk0

∫
drrr0p

(n)(kkk0, rrr0, kkk1, . . . kkkn, t1, . . . tn+1)

×
n∑
i=0

θΩ(KKKi(t),RRRi(t))θ(t − ti)θ(ti+1 − t)

Now we are ready to analyze the EMC for simulation off
[n]
Ω in terms of the numerical Monte Carlo for

evaluating integrals. The density function isp(n). One trial ofp(n) consists of consecutive realizations of
the conditional densitiesP. Any such realization requires a set of random numbers. The consecutive sets
form a sequence of random numbers. We say that the process builds up a numerical trajectory, assigned
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to this sequence which presents a possible real trajectory. The random variable is

ψ =
n∑
i=0

θΩ(KKKi(t),RRRi(t))θ(t − ti)θ(ti+1 − t) (11)

Only the coordinates at timet remain relevant. Due to theθ functions in time, the terms of the sum
are mutually complementary. If during given trial the timet ∈ (tj , tj+1) is reached, the process can be
interrupted since all terms withi 6= j are zero. Then the value of the domain indicator is evaluated for
the obtained phase space point at timet. N trials provideN independent values 0 or 1. According to C1,
their sample mean gives the Monte Carlo estimate forf

[n]
Ω .

There is a finite probability fortn+1 < t . This probability tends to zero withn → ∞ because the
resolvent series converges. Formally we may thinkn infinite, so thatt is reached at any trial. This is
consistent since the random variable is zero over the infinite part of numerical trajectory after the timet.
Thus, the conclusions forf [n]

Ω are valid also forfΩ which leads to the EMC algorithm.
We note that C3 is given not only for completeness. It is the base for extension of the EMC to the

weighted EMC algorithm [1,2].
The formulation of the EMC experiment is very short. The outcomes of our experiment areN indepen-

dent, infinite sequences of random numbers. To any outcome the random variable being the phase space
coordinates at timet is assigned by a rather complicated but well defined rule. Further, the functionθΩ (KKK,
RRR) defined in the phase space is given. This function determines another random variableψ = θΩ(KKK(t),
RRR(t)) assigned to the outcomes of the experiment. In this way the EMC provides the sample meanψ̄ of
N IID variablesψi . They have mean valueE{ψi} = E{ψ} = fΩ . They have equal varianceσ 2

ψi
= σ 2

ψ

which can be obtained analytically. Indeed, as seen from (11)ψ2 = ψ , such thatE{ψ2} = fΩ . We obtain
for the variance

σ 2
ψ = fΩ(1 − fΩ) (12)

This equation proves that the random variable of the EMC has a finite variance and the precision estimate
(3) holds with

σ 2
ψ(N) = fΩ(1 − fΩ)

N
(13)

5. Conclusions

The EMC has been formulated in terms of a combined experiment.fΩ has been expressed as an
multidimensional integral of the form

∫
p(x)ψ(x)dx wherep(x) appears to be the density function used

in the EMC for the particle trajectory construction.ψ is the corresponding random variable, having
expectation valuefΩ . It has been proved that the variance ofψ is finite and given by the expression (12).
It further allows to express the variance of the EMC in terms offΩ and the number of the simulated
particlesN.

Since EMC is a simulated experiment, (13) can be applied to the real transport phenomena with
N = Nphys carriers. This can be a useful estimate in the case of small devices where the number of the
carriers decreases to the limit where a statistical approach is possible.
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