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Accurate description of nonlocal hot-carrier phenomena in modern semi-
conductor devices is becoming very important considering the rapid re-
duction of the feature size. Frequently used carrier transport models
are the traditional drift-diffusion model and extended models which also
consider the average carrier energy as an independent solution variable.
While the drift-diffusion model is not capable of handling nonlocal ef-
fects, the latter model group provides a more accurate description. Sev-
eral variants of hydrodynamic and energy-transport models have been
published so far. Recent results show, however, that the average energy
is in many cases not sufficient for accurate modeling. Both the transport
models themselves and the models for the physical parameters seem to

be affected.

Introduction

Numerical simulation of carrier transport in semi-
conductor devices dates back to the famous work of
Scharfetter and Gummel [1]. Since then the trans-
port models have been continously refined and ex-
tended to more accurately capture transport phe-
nomena occurring in modern semiconductor de-
vices. The need for refinement and extension is
primarily caused by the ongoing feature size reduc-
tion in state-of-the-art technology. As the supply
voltages cannot be scaled accordingly without jeop-
ardizing the circuit performance, the electric fields
inside the devices have increased. Large electric
fields which rapidly change over small length scales
give rise to nonlocal and hot-carrier effects which
begin to dominate device performance. An accu-
rate description of these phenomena is required and
is becoming a primary concern for industrial appli-
cations.

Traditionally, the drift-diffusion model [2] has been
used to describe carrier transport in semiconduc-
tor devices. However, the drift-diffusion model as-
sumes an equilibrium between carrier energy and
electric field, which is no longer valid in modern

devices. Extended models have been proposed
which consider the carrier energy an independent
solution variable [3, 4]. These models are capable
of describing nonlocal and hot-carrier effects to a
first order. Recent results, however, suggest that
the average energy is in many cases not sufficient
for accurate modeling. Both the transport mod-
els themselves and the models for the physical pa-
rameters are affected. In this article we review the
most commonly used transport models and point
out their most important limitations.

Boltzmann’s Transport Equation
Transport equations used in semiconductor device
simulation are normally derived from Boltzmann’s
transport equation which provides a semiclassical
description of carrier transport. For a general inho-
mogeneous material with arbitrary band structure
it reads [5]
A R A )
t h
Here, u is the group velocity, F the force exerted
on the particles, and C' the collision operator. For
inclusion of quantum effects equations based on the
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Fig. 1: The carrier temperature of comparable nt-n-nt
test structures with varying channel lengths where
the spatial coordinates have been normalized to get
an overlapping electric field.
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Wigner-Boltzmann equation have been considered
[6]. Boltzmann’s equation needs to be solved in the
seven-dimensional phase space which is prohibitive
for engineering applications. Monte Carlo simula-
tions have been proven to give accurate results but
are restrictively time consuming. Furthermore, if
the distribution of high-energetic carriers is rele-
vant, or if the carrier concentration is very low in
specific regions of the device, Monte Carlo simula-
tions tend to produce high variance in the results.
Therefore, a common simplification is to investigate
only some moments of the distribution function,
such as the carrier concentration and the carrier
temperature. These moments of the distribution
function are typically defined as

@) = 5 [ of ¢ )

with a suitable weight function ® = ®(k).

The Drift-Diffusion Model

The drift-diffusion model is the simplest current
transport model which can be derived from Boltz-
mann’s transport equation by the method of mo-
ments [2] or from basic principles of irreversible
thermodynamics [7]. It has been the working horse
in industrial applications for over thirty years.
Within the drift-diffusion model the well known
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Fig. 2: A comparison of the average carrier velocities of
comparable nt-n-nT test structures. The velocity
overshoot is caused by the nonlocality of the carrier
temperature.

continuity and current equations have to be solved
which read in their static form

V-J=qR (3)
J = quvE + pkgTy, Vv (4)

Here, p denotes the electron mobility, 71, the lat-
tice temperature, E the electric field, and R the
recombination rate. The average energy w can be
estimated via the local energy balance equation.
This neglects the lag between the electric field and
the average energy characterized by the energy re-
laxation time. One consequence of the lag is that
the maximum energy can be much smaller than the
one predicted by the local energy balance equation
(Fig. 1). Furthermore, this lag gives rise to an over-
shoot in the carrier velocity because the mobility
depends to first order on the energy and not on the
electric field as shown in Fig. 2.

Therefore, modeling deep-submicron devices is be-
coming more and more problematic. Although suc-
cessful reproduction of terminal characteristics of
nano-scale MOS transistors has been reported [§],
the values of the material parameters used signifi-
cantly violate basic physical principles. In partic-
ular, the saturation velocity vs; had to be set to
more than twice the value observed in bulk mea-
surements.
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The Full Hydrodynamic Model
The full hydrodynamic model was first derived by

Blgtekjeer [4]. In its original form the first three
moments of Boltzmann’s transport equation were
considered. Closure was obtained by applying a
heuristic model for the heat flux Q using Fourier’s
law. Furthermore, the band structure was assumed
to be parabolic and the tensor quantities were ap-
proximated by scalars. The resulting equation set
reads [4]

V.-J=qR (5)

Tm Jy
1=y (e ﬁ) = qnuE + pkpV(nT,)  (6)

V.S=E.J—npZ %0

(7)

TE
1
K(Tn)VT,

where 7, is the momentum relaxation time. The
additional parameters are the energy relaxation
time 7¢ and the thermal conductivity . For
the latter an empirical relation in analogy to the
Wiedemann-Franz law is used with a correction fac-
tor p.

2
K(Th) = (3 —p)<q) qunTy (9)
This equation system is similar to the Euler equa-
tions of gas dynamics with the addition of a heat
conduction term and the collision terms. Thus, the
electron gas has a sound speed and the electron
flow may be either subsonic or supersonic [9]. In
the case of supersonic flow, electron shock waves
will in general develop inside the device. These
shock waves occur at either short length scales or
at low temperatures. Furthermore, the tradition-
ally applied Scharfetter-Gummel [1] discretization
scheme and its extensions cannot be used for this
type of equation, which makes handling of the full
hydrodynamic model quite difficult [9, 10].

The Energy-Transport Model

As the closure of the full hydrodynamic model has
been shown to be problematic, the fourth moment
of Boltzmann’s equation is added to give a more

accurate description for the energy flux S. For the
closure of the equation system a heated Maxwellian
distribution is generally assumed [11]. Since the re-
sulting equation system is difficult to handle, sim-
plifications are generally considered. The four-
moments energy-transport model is obtained by the
simplification of the four-moments hydrodynamic
model: The convective term
g (1e i) (10)
q n
in the current relation, the corresponding convec-
tive term in the energy flux relation, and the con-
tribution of the kinetic energy to the total carrier
energy are neglected.

mv2

3 3

This gives the four-moments energy-transport
model which reads

V-J=qR (12)
J=qnuE + ukBV(nT,L) (13)
T, — T,
V-S=E-J-—ndkg—"—L 1 G, (14)
TE
kg T, kg \ 2
S — _%’U_SB_J _ %’U_S(—B) qunT, VT,
Looq o\ q

(15)

Here the energy flux mobility pg appears instead
of the thermal conductivity in (8). Considering the
different definitions for the mobilities the energy-
transport model is equivalent to the energy-balance
model proposed by Stratton [3], see for example
[12].

A comparison of the energy flux equation of the
hydrodynamic model and the four moments energy
transport model shows that the correction factor p
in the thermal conductivity has to be set to zero to
obtain a consistent equation set. Furthermore, the
ratio of the mobilities pg/u is assumed to be unity
in the hydrodynamic model.

Fundamental Problems

During the derivation of the models given above
various approximations of different severity have
been employed. The most important approxima-
tions will be summarized in the following.
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Fig. 3: Electron temperature inside an nt-n-n test struc-
ture with Lo = 200 nm.

Closure

The method of moments transforms Boltzmann’s
equation into an equivalent, infinite set of equa-
tions. One of the severest approximation is the
truncation to a finite number of equations (nor-
mally three or four). The equation of highest order
contains the moment of the next order which has
to be suitably approximated using available infor-
mation, typically the lower order moments. Even
though no form of the distribution function needs
to be assumed in the derivation, an implicit cou-
pling of the highest order moment and the lower
order moments is enforced by this closure. One
approach to derive a suitable closure relation is to
assume a distribution function and calculate the
fourth order moment, where a heated Maxwellian
shape is almost exclusively used. Ramaswami and
Tang [13] gave a comparison of different closure re-
lations available in literature.

In commercially available simulators, a heated
Maxwellian shape is assumed for the distribution
function to close the equation system. This as-
sumption has been shown to be significantly vio-
lated in modern semiconductor devices. In gen-
eral, the average carrier energy or carrier temper-
ature is the only parameter that determines the
shape of the heated Maxwellian distribution func-
tion. Monte Carlo simulation results of an n*-n-n™
test structure with L. = 200 nm are shown in Fig. 3

=
o,
&

=
o,

=)
™ TTIT

N
o|
X

=
o,
o

Distribution Function [a.u.]

=
o,
©

ST I T [ VM RPN BRI
1079 05 1 15 2 25
Energy [eV]

Fig. 4: The distribution function at the four characteris-
tics points. Note that the average energies at the
points A and C are the same whereas the distribu-
tion function looks completely different. Note the
high-energy tail at point D where the carrier tem-
perature is 370 K.

and Fig. 4. Even though the average energy is the
same at points A and C, the distribution function
looks completely different in both cases. A heated
Maxwellian distribution, which gives a straight line
in a semi-logarithmic plot, is definitely a poor ap-
proximation throughout the whole device.

This error in the closure relation is one reason for
the spurious overshoots observed in the velocity
profiles obtained by energy-transport models [14].
As shown in Fig. 5, there is a spurious peak in the
velocity profile which does not exist in the Monte
Carlo simulation. For these simulations the relax-
ation times and mobilities have been taken from a
coupled Monte Carlo simulator in a self-consistent
manner to rule out any errors introduced by these
models. When the order of the transport model is
increased to include six moments of Boltzmann’s
equation [15], the spurious peak is reduced. When
in addition to the relaxation times also the closure
is taken from the Monte Carlo simulation, the spu-
rious peaks dissappear.

Tensor Quantities

An issue which has only been vaguely dealt with is
the approximation of the tensors by scalar quan-
tities, such as the trace of the tensors. For
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Fig. 5: Comparison of velocity profiles delivered by two
transport models with Monte Carlo data. Both
transport models use relaxation times and mobil-
ities from the Monte Carlo simulation. In addition,
when the energy-transport (ET) model is closed
with the data from the Monte Carlo simulation, the
spurious velocity overshoot disappears.

example, the carrier mass and the carrier tempera-
ture are approximations introduced that way. One-
dimensional simulations show [16] that the longi-
tudinal temperature component is larger than the
transverse temperature component. This indicates
that the distribution function is elongated along the
field direction and thus that the normally assumed
equipartition of the energy is invalid. A rigorous
approach has been taken by Pej¢inovié et al. [17]
who model four components of the temperature
tensor. They observed no significant difference be-
tween the scalar temperature and the trace of the
temperature tensor for ballistic diodes and bipolar
transistors but a 15 % difference for aggressively
scaled MOSFETs in the linear region of the trans-
fer characteristics.

Drift Energy versus Thermal Energy

Another common approximation is that the contri-
bution of the drift energy to the total carrier en-
ergy is neglected [18]. As has been pointed out
by Baccarani and Wordeman [19], the convective
energy can reach values comparable to thermal en-
ergy. The error introduced by this approximation
can be significant in the beginning of the channel
where the carrier temperature is still low and a
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Fig. 6: Effect of approximation (11) on the carrier temper-
ature and the deviation introduced by it obtained
by a MC simulation of nt-n-nt test structures.

velocity overshoot is observed (Fig. 6). This effect
has been studied in detail in [20].

Modeling of the Physical Parameters

The relaxation times have traditionally been de-
rived from homogeneous field measurements or
Monte Carlo simulations. For homogeneous fields
there is a unique relationship between the electric
field and the carrier temperature via the local en-
ergy balance equation which can be used as a def-
inition for 7¢. From Boltzmann’s equation it is
clear, however, that the relaxation times depend
on the distribution function through the collision
operator. Since the distribution function is not
uniquely described by the average energy, models
solely based on the average energy are bound to
fail.

Mobility

Two models for the energy dependence of the mo-
bility are frequently used, the model after Bac-
carani and Wordeman [19]

(1) _ E
Mo Tn

(16)
and the model after Hansch [21, 22]

3 _to (kBqTL+§§))71 (17)

() (1

140 2 Tev?
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Fig. 7: Comparison of the mobility models data for an nt-
n-nt test structure with L. = 200 nm.
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Fig. 8: Ratio of the mobilities obtained by Monte Carlo
simulations for four nT-n-nt test structures.

For homogeneous materials S/J = 5kpT,/(2q)
which can be used to simplify (17) as

T, k -1
w(Tn) _ <1+§M0 BQ(Tn_TL>)
Ho 2qTevs

A comparison of these three expressions with
Monte Carlo simulation results for an n*-n-n™ test
structure with channel length L, = 200 nm is given
in Fig. 7. The analytical expressions were evaluated
using the data from the Monte Carlo simulation.
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Fig. 9: Error in the analytical mobility models for an n*t-
n-nt test structure with Le = 1000 nm.
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Fig. 10: Error in the analytical mobility models for an n*-
n-nt test structure with L = 200 nm.

Note that the temperature dependence of the in-
verse mobility is frequently plotted because of the
expected linear dependence (16). The small hys-
teresis in the simplified Hansch model and the Bac-
carani model is due to the doping dependence of the
zero-field mobility .

The ratio of the mobilities pg/p as a function of
the carrier temperature is shown in Fig. 8 for four
nt-n-nT test structures. To obtain comparable
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behavior the same doping profile has been used for
all structures and the bias condition has been cho-
sen to give a maximum electric field of 300kV /cm.
Note that in commercial device simulators the mo-
bility ratio is normally assumed to be unity.

In Fig. 9 and Fig. 10 the error of the analytical
models is shown for the two n™-n-n* test struc-
tures. As has been pointed out in [16] expression
(17) is the only expression which gives reasonable
results in both increasing and decreasing field re-
gions. However, at the beginning of the channel
where the carrier temperature is still low, the mo-
bility is considerably over- or underestimated. Fur-
thermore, due to the quotient of the two vector
quantities S and J, (17) is rather difficult to han-
dle in a multidimensional device simulator.

Impact Ionization

Impact ionization is poorly described by models
which use the local average energy as only param-
eter. In general, ionization rates obtained by local
energy models start rising too early and fall off too
sharply. Furthermore, local energy models consid-
erably overestimate the ionization rates if not cal-
ibrated for the investigated device. In particular,
local energy models cannot capture impact ioniza-
tion caused by hot electrons in the drain because

there the cold carriers dominate the average en-
ergy which is close to the equilibrium value. This
is shown in Fig. 11 for an n*t-n-n™ test structure
with L. = 200nm. In addition, simulation results
obtained from a six moments transport model [15]
are shown which considerably improve the accuracy
of the model.

Several nonlocal models have been proposed [23]
which are, however, both difficult to implement
in a conventional device simulator and difficult to
justify on a theoretical basis, especially for multi-
dimensional problems.

Conclusions

Various transport models have been considered
so far. Apart from the drift-diffusion model
higher-order models based on either Stratton’s or
Blgtekjeer’s approach have been considered. De-
spite its well known limitations, the drift-diffusion
model is still predominantly used in engineering ap-
plications. The need for higher-order models is well
understood and these models have delivered excel-
lent results in carefully setup simulations. However,
handling of higher-order models still requires a lot
of fine-tuning and a detailed understanding of the
underlying physical phenomena.
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