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Abstract

The optimization of computationally expensive objective functions requires ap-
proximations that preserve the global properties of the function under investigation.
The RSM approach of using multivariate polynomials of degree two can only pre-
serve the local properties of a given function and is therefore not well-suited for
global optimization tasks. In this paper we discuss generalized Bernstein polyno-
mials that provide faithful approximations by converging uniformly to the given
function. Apart from being useful for optimization tasks, they can also be used for
solving design for manufacturability problems.

1 Introduction
Automated TCAD optimization is difficult since the evaluation of the objective function
is usually very computationally expensive. There are two main approaches: the first is
to optimize the given objective function, and the second is to optimize an approximation
of the objective function. Both approaches are implemented in theSIESTA (Simulation
Environment for Semiconductor Technology Analysis) framework [1, 2]. The second
approach relies on how good an approximation was chosen, and that it can be evalu-
ated much faster than the original objective function so that conventional optimization
algorithms requiring many more evaluations can be applied.

In the RSM (response surface methodology) [3] almost exclusively polynomials of de-
gree two (or less) are used. This method, however, suffers from the fact that there is no
reason why such an approximation should preserve the global properties of the given
function: the set of of all polynomials of degree two or less is not dense inC(X),
X ⊂ Rp compact. Moreover, evaluating the objective function at more and more points
does generally not improve the RSM approximation – these evaluations are wasted. A
simple example for this fact are the functionseλ : x 7→ eλx which are ubiquitious in
TCAD applications. Other examples are functions containing transitions from expo-
nential to linear behavior.

Although the RSM approach can be improved by transforming the variables before
fitting the polynomials, it has to be known a priori which transformations are useful and
should be considered. If this knowledge is available, it can of course be applied to other
optimization approaches as well.

To overcome the shortcoming of the RSM approach, we propose using generalized
Bernstein polynomials for approximating objective functions.

We also note that a good approximation resembling the global properties of the ob-
jective function can be used for solving design for manufacturability problems. Fur-
thermore, this method of computing approximations evidently gives rise to a recursive
optimization algorithm. After a first approximation either further approximations of
interesting areas are computed, or – if needed – the first approximation is refined using
additional points.
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2 Properties of Bernstein Polynomials
In this section we discuss some important properties of (generalized) Bernstein polyno-
mials. In order to keep the formulas simple we will concern ourselves with functions
defined on the (multidimensional) intervals[0, 1] × · · · × [0, 1]. Using affine transfor-
mations it is straightforward to apply the results to arbitrary intervals.

The following theorem is due to Sergei N. Bernstein.

2.1 Theorem Let f : [0, 1]→ R be a continuous function. Then the Bernstein polyno-
mials

Bf,n(x) :=
n∑
k=0

f

(
k

n

)(
n

k

)
xk(1− x)n−k

converge uniformly to f for n→∞.

A proof can be found in [4, p. 339]. Iff even satisfies a Lipschitz condition, a stronger
result can be shown giving an error bound.

2.2 Theorem If f additionally satisfies a Lipschitz condition |f(x)−f(y)| < L|x−y|,
then the inequality

|Bf,n(x)− f(x)| < L

2
√
n

holds.

Additional to uniform convergence, also the derivatives of the approximation converge
to those of the given function.

2.3 Theorem If f has a continuous i-th order derivative f (i)(x) on (0, 1), thenB(i)
f,n(x)

converges uniformly to f (i)(x) on (0, 1).

The proof for this theorem is still elementary but requires more careful analysis.

The generalization for a function of two variables is obtained by first approximating
one variable and then the second. But using this straightforward method we can only
prove pointwise convergence.

2.4 Theorem Let f : [0, 1] × [0, 1] → R be a continuous function. Then the two-
dimensional Bernstein polynomials

Bf,n(x, y) :=
n∑
k=0

n∑
`=0

f

(
k

n
,
`

n

)(
n

k

)(
n

`

)
xk(1− x)n−ky`(1− y)n−`

converge pointwise to f for n→∞.

This method can of course be applied recursively.
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2.5 Theorem Let f : [0, 1]× · · · × [0, 1]→ R be a continuous function of m variables
x1,. . . ,xm. Then the multi-dimensional Bernstein polynomials

Bf,n(x1, . . . , xn) :=
n∑

k1,...,km=0

f

(
k1

n
, . . . ,

km
n

) m∏
j=1

((
n

kj

)
x
kj
j (1− xj)n−kj

)

converge pointwise to f for n→∞.

3 Examples
In this section we discuss two examples illustrating the properties of Bernstein polyno-
mials, namely an analytical function and a two-dimensional inverse modeling example.

The example of the functionf : [0, 1]× [0, 1]→ R,

f(x, y) := (1/2)e−10((x−1/2)2+(y−1/2)2) + e−50((x−1)2+(y−1)2)

shows that approximation using generalized Bernstein polynomials resembles the global
properties of a given function better than using multivariate polynomials of degree 2 or
less, even when using a small number of lattice points. The two approaches are com-
pared in Fig. 1. In the left hand figure,f is plotted at the11 · 11 lattice points that
were used for calculating the two-dimensional Bernstein polynomialBf,10(x, y) and
the least squares fitrsm(x, y) of degree 2.f andBf,10 have two local maxima on
[0, 1]× [0, 1], whereasrsm has only one. Their respective values are (up to six digits):
f(0.5, 0.5) = 0.5, f(0.999661, 0.999661) = 1.00338; Bf,10(0.500674, 0.500674) =
0.331634,Bf,10(1, 1) = 1.00337; rsm(0.696706, 0.696706) = 0.283076.
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Fig. 1: Comparison of11 · 11 lattice points off (left), the Bernstein approximationBf,10

(middle, the variables have been scaled to the interval[0, 1]), and the RSM approximationrsm
(right) as found by MATHEMATICA ’s Fit function.

The second, real world example stems from minimizing the leakage current of a novel
SRAM storage cell [5]. First, we extracted seven parameters from the drain currents of
the select transistor of the storage cell and tried to fit two transfer characteristics (two
bulk voltages, two times 27 points). The seven variables wereew, the work function of
the gate material,sr , the source resistance,f , a parameter controlling the doping, and
four variables pertaining to the Shockley–Read–Hall model [6, page 71]. In the second
step the extracted values were used when minimizing the leakage current.

In the course of the inverse modeling task it was found that two variables, namely the
parameter of the gate material (ew) and the parameter controlling the doping (f ), have a
major influence on the result. For further investigations, these remaining variables were
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Fig. 2: Comparison of the computed lattice points (left), the Bernstein approximation (middle),
and the RSM approximation (right) as found by MATHEMATICA ’s Fit function.

then fixed at the values of the minimum found, and the objective function was evaluated
at 11 · 11 lattice points with these two most sensitive parameters (cf. Fig. 2, left).
Using these points, two approximations were calculated: the two-dimensional Bernstein
polynomial (where the variables were scaled to the interval[0, 1]), and the least squares
approximation from the set of all polynomials of degree two or less (cf. Fig. 2). Again
the RSM approximation is misleading.

4 Conclusion
For optimization tasks involving computationally expensive functions, we propose us-
ing multivariate Bernstein polynomials for approximating objective functions instead
of the conventional RSM approach of using polynomials of degree two or less. We
show that this approach is mathematically sound and present two examples illustrating
its advantages.
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