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Abstract — With the rapid feature size reduction
of modern semiconductor devices accurate descrip-
tion of hot-carrier phenomena is becoming very im-
portant. Frequently used carrier transport models
are the traditional drift-diffusion model and energy-
transport models which also consider the average car-
rier energy as an independent solution variable. Re-
cent results show, however, that the average energy
is in many cases not sufficient for accurate modeling.
Both the transport models themselves and the mod-
els for the physical parameters seem to be affected.
After a review of the conventional models we present
highly accurate impact ionization and gate current
models based on a six moments transport model.

I. INTRODUCTION

Numerical simulation of carrier transport in semi-
conductor devices dates back to the famous work of
Scharfetter and Gummel [1]. Since then the trans-
port models have been continously refined and ex-
tended to more accurately capture transport phe-
nomena occurring in modern semiconductor devices.
The need for refinement and extension is primarily
caused by the ongoing feature size reduction in state-
of-the-art technology. As the supply voltages cannot
be scaled accordingly without jeopardizing the cir-
cuit performance, the electric fields inside the devices
have increased. Large electric fields which rapidly
change over small length scales give rise to non-local
and hot-carrier effects which begin to dominate de-
vice performance. An accurate description of these
phenomena is required and is becoming a primary
concern for industrial applications.

Transport equations used in semiconductor device
simulation are normally derived from Boltzmann’s
transport equation which provides a semiclassical de-
scription of carrier transport. Boltzmann’s equa-
tion needs to be solved in the seven-dimensional
phase space which is prohibitive for engineering
applications. Monte Carlo simulations have been
proven to give accurate results but are restrictively
time consuming. Furthermore, if the distribution of
high-energetic carriers is relevant, or if the carrier

concentration is very low in specific regions of the de-
vice, Monte Carlo simulations tend to produce high
variance in the results. Therefore, a common simpli-
fication is to investigate only some moments of the
distribution function, such as the carrier concentra-
tion and the carrier temperature.

Beside the classic drift-diffusion model, moment
based transport models have been proposed which
consider the carrier energy an independent solution
variable [2], [3], [4], [5]. These models are capable
of describing non-local and hot-carrier effects to a
first order. Recent results, however, suggest that the
average energy is in many cases not sufficient for ac-
curate modeling. Even more important is the fact
that models based solely on the average carrier en-
ergy can give results worse than those obtained by
models that omit this effect. To solve this apparent
discrepancy it has been suggested to include the av-
erage square energy into the transport models [6], [7].
This results in a six moments transport model and
some of its benefits will be discussed in this article.

II. THE DRIFT-DIFFUSION MODEL

The drift-diffusion model is the simplest current
transport model which can be derived from Boltz-
mann’s transport equation by the method of mo-
ments [8] or from basic principles of irreversible ther-
modynamics [9]. It has been the working horse in
industrial applications for over thirty years. Within
the drift-diffusion model the well known continuity
and current equations have to be solved which read
in their static form

∇ · J = qR
J = qµnE + µkBTL∇n

Here, µ denotes the electron mobility, TL the lattice
temperature, E the electric field, and R the recom-
bination rate.

In the drift-diffusion approach the local tempera-
ture of the carrier gas can be estimated via the ho-
mogeneous energy balance equation

Tn = TL + 2
3

q
kB
τEµE2 (1)
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Fig. 1: The carrier temperature of comparable n+-
n-n+ test structures with varying channel lengths
where the spatial coordinates have been normalized
to get an overlapping electric field.

where τE is the energy relaxation time. However, for
rapidly increasing electric fields the carrier temper-
ature lags behind the electric field because it takes
the carriers some time to pick up energy from the
field. A consequence of the lag is that the local car-
rier temperature can be considerably smaller than
the one predicted by the homogeneous energy flux
equation. This non-locality of the carrier tempera-
ture is shown in Fig. 1 for n+-n-n+ test structures
with varying channel lengths. To facilitate compar-
ison the spatial coordinate has been normalized to
make the electric fields of all devices overlap. The
bias has been chosen to give a maximum electric field
of 300 kV/cm in all devices.

An important consequence of this non-local behav-
ior of the carrier temperature is that the lag gives
rise to an overshoot in the carrier velocity as shown
in Fig. 2. Also shown is the saturation velocity vsat

which is the maximum velocity observed in station-
ary bulk simulations. The reason for the velocity
overshoot is that the mobility depends to first or-
der on the energy and not on the electric field. As
the mobility µ has not yet been reduced by the in-
creased energy but the electric field is already large,
an overshoot in the velocity v = µE is observed un-
til the carrier energy comes into equilibrium with the
electric field again. Thus, drift-diffusion simulations
predict the same velocity profile as for slowly vary-
ing fields which can dramatically underestimate the
carrier velocities.
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Fig. 2: A comparison of the average carrier veloci-
ties of comparable n+-n-n+ test structures. The ve-
locity overshoot is caused by the non-locality of the
carrier temperature.

Similar to the mobility, many other physical pro-
cesses like impact ionization are more accurately de-
scribed by a model based on moments of the dis-
tribution function rather than a local electric field
model. This is because the scattering operator in
Boltzmann’s transport equation depends on the dis-
tribution function and not on the electric field.

Altogether it can be noted that modeling of deep-
submicron devices is becoming more and more prob-
lematic. Although successful reproduction of ter-
minal characteristics of nano-scale MOS transistors
has been reported with the drift-diffusion model [10],
the values of the physical parameters used signifi-
cantly violate basic physical principles. In partic-
ular, the saturation velocity vsat had to be set to
more than twice the value observed in bulk measure-
ments. These solutions may provide short-term fixes
to available models but obtaining ’correct’ results
from the wrong physics is definitely unsatisfactory
in the long run.

III. ENERGY-TRANSPORT MODELS

In commercial device simulators several variants of
energy-transport models are available. These models
are either based on Stratton’s [2] or Bløtekjær’s [3]
approach. Energy-transport models can be derived
from Bløtekjær’s hydrodynamic model by applying
the diffusion approximation [11] which results in a
neglect of the convective terms and the time deriva-
tives in the flux relations. These models consider the
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Fig. 3: Electron temperature inside an n+-n-n+ test
structure with Lc = 200 nm.

first three or four moments of Boltzmann’s equation
and have typically the following form

∇ · J = qR
J = qnµE + µkB∇(nTn)

∇ · S = E · J− n 3
2kB

Tn − TL

τE
+GEn

S = − 5
2

µS
µ

kBTn
q

J− 5
2

µS
µ

(kB

q

)2

qµnTn∇Tn

The physical parameters are the mobility µ, the
energy flux mobility µS and the energy-relaxation
time τE . Normally, the ratio of the mobilities µS/µ
is modeled as a constant with values in the range
[0.8, 1]. R and GEn are the contributions due to gen-
eration and recombination processes.

One of the fundamental problems of energy-
transport models is that only the average energy is
available to model the shape of the distribution func-
tion. Therefore, a heated Maxwellian distribution is
frequently assumed for the closure of the equation
system and for the modeling of physical processes.
This assumption is significantly violated in modern
semiconductor devices. Monte Carlo simulation re-
sults of an n+-n-n+ test structure with a channel
length of Lc = 200 nm are shown in Fig. 3 and
Fig. 4. Even though the average energy is the same at
points A and C, the distribution function looks com-
pletely different in both cases [12], [13]. A heated
Maxwellian distribution, which gives a straight line
in a semi-logarithmic plot, is definitely a poor ap-
proximation throughout the whole device.
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Fig. 4: The distribution function at the four char-
acteristic points. The average energies at the points
A and C are the same whereas the distribution func-
tion looks completely different. At point D, where
the carrier temperature is 370 K, a significant high-
energy tail exists.

IV. SIX MOMENTS MODEL

By considering the first six moments of Boltz-
mann’s transport equation a macroscopic transport
model can be derived without making any assump-
tion on the shape of the distribution function [7] ex-
cept that the diffusion approximation holds. The
static flux and balance equations of the six moments
model for electrons read:

∇ · J = qR
J = qnµE + µkB∇(nTn)

∇ · S = E · J− n 3
2kB

Tn − TL

τE
+GEn

S = − 5
2

k2
B

q
µS
µ
µ
( q

kB
EnTn +∇(nT 2

n βn)
)

∇ ·K = 2 q E · S− 15
4 k2

B n
T 2
n βn − T 2

L

τβ
+Gβn

K = − 35
4

k3
B

q
µK
µ
µ
( q

kB
EnT 2

n βn +∇(nT 3
n β

3
n)
)

The additional parameters are the kurtosis relax-
ation time τβ and the kurtosis flux mobility µK . The
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Fig. 5: The kurtosis of different n+-n-n+ test struc-
tures. Note the strong deviation from unity after the
second junction.

unknowns of the six moments model are defined as

n = 〈1〉, Jn = −q〈u〉 (2)

Tn =
2

3 kB

〈E〉
n
, Sn = 〈u E〉 (3)

βn =
3
5
〈E2〉
〈E〉2

, Kn = 〈u E2〉 (4)

These are the carrier concentration n, the carrier
temperature Tn, the kurtosis of the distribution func-
tion βn, the current density Jn, the energy flux den-
sity Sn, and the kurtosis flux density Kn. The sta-
tistical average is defined as

〈Φ〉 =
1

4π3

∫
Φf d3k (5)

where f is the distribution function and Φ the weight
function.

The first four equations are the same as for the
energy-transport model, except that the kurtosis βn
appears in the energy flux equation. As a conse-
quence, the energy flux equation cannot be writ-
ten in the form frequently used for energy-transport
models as proportional to the current density with-
out producing additional terms. This modification
makes the coupled equation system difficult to solve
and approximations have been used [6], [7]. Note,
that the six moments model reduces to a standard
energy-transport model when the equations for K
are dropped and a value of unity is assumed for βn.

A. Properties of the Kurtosis

For a heated Maxwell distribution and parabolic
bands βn = βM = 1. Thus a βn 6= 1 quantifies the
deviation from the Maxwellian shape in the parabolic
case. When nonparabolicity is taken into account,
the value of βM depends on the energy but stays
close to unity. Note, however, that a Maxwellian
shape is never observed in Monte Carlo simulations,
except for the contact regions where the carriers are
still cold.

Typical values of the kurtosis βn are in the range
[0.75, 3] which indicates a strong deviation from
a heated Maxwellian distribution. In addition, as
shown in Fig. 5, the kurtosis behaves fundamentally
differently than in bulk [14] where a unique relation-
ship βBulk(Tn) exists. Especially at the drain side
of the structures we observe a strong deviation from
the Maxwellian shape. This deviation corresponds
to the high-energy tail in Fig. 4.

V. APPLICATIONS

Despite the modified description of carrier trans-
port the six moments model provides the kurtosis of
the distribution function. This parameter is essential
and can be used to formulate an accurate analytical
model of the distribution function [15], [14]. In par-
ticular, the following model for the symmetric part
of the distribution function has been proposed in [14]

f(E) = A
{

exp
[
−
( E

kBTref

)b]
︸ ︷︷ ︸

f1(E)

+c exp
[
− E

kBT2

]
︸ ︷︷ ︸

f2(E)

}
(6)

The parameters Tref , b, and c are determined in such
a way that (6) selfconsistently reproduces Tn and
βn. With reasonable accuracy the temperature of
the cold Maxwellian distribution T2 can be assumed
to equal the lattice temperature [14]. Many mod-
els given in literature violate the important issue of
selfconsistency [16] which introduces unpredictable
errors.

A comparison of (6) with Monte Carlo data is
given in Fig. 6 for two critical regions of an n+-n-n+

test structure with Lc = 200 nm. In the channel re-
gion, the high-energy tail is much less populated than
would be predicted by a heated Maxwellian distribu-
tion. This is accounted for by f1 and c is assumed to
be zero. In the drain region, the cold carriers from
the drain appear clearly in the distribution function
which is modeled via f2. Note that models based
solely on the average energy cannot predict this tail
because the average energy is dominated by the cold
carriers. Information about the high energy tail is
available in the kurtosis (cf. Fig. 5).
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Fig. 6: The analytic distribution function inside the
’channel’ and the ’drain-region’ of an n+-n-n+ test
structure with Lc = 200 nm. The spacing between
the DFs is given as ∆x.

A. Impact Ionization

For reliability issues and for the calculation of sub-
strate currents an accurate model for impact ioniza-
tion is required. The analytic distribution function
(6) can be used to transfer microscopic impact ion-
ization rates into macroscopic models. A comparison
with Monte Carlo data is shown in Fig. 7 where the
analytical models have been evaluated using values
from the Monte Carlo simulation. The model based
on (6) delivers highly accurate results for both de-
vices. It is important to note, that when a heated
Maxwellian is assumed instead of (6), the results

0.2 0.3 0.4 0.5 0.6
Distance  [µm]

10
2

10
3

10
4

10
5

10
6

10
7

10
8

10
9

10
10

10
11

10
12

10
13

G
II
/n

  [
1/

s]

MC

ADF(SM)

ADF(HM)

LE

LF

L
C
 = 200 nm

0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
Distance  [µm]

10
2

10
3

10
4

10
5

10
6

10
7

10
8

10
9

10
10

10
11

10
12

10
13

G
II
/n

  [
1/

s]

MC

ADF(SM)

ADF(HM)

LE

LF

L
C
 = 50 nm

Fig. 7: Analytical impact ionization rates in com-
parison with Monte Carlo data for two n+-n-n+ test
structures. The ADF models use analytical mod-
els for the distribution function, either based on six
moments (SM) or a heated Maxwellian distribution
(HM). Also shown are the empirical models based on
the local field (LF) and the local energy (LE).

deteriorate. This is frequently done in physics based
models [17]. Also shown are the results obtained by
two commonly used empirical fit models [18]

GLF
II = n gII exp

(
−EC
|E|

)
(7)

GLE
II = n gII exp

(
− EC

kB Tn

)
(8)



0.200.150.100.050.00
x [um]

−
0.

15
−

0.
10

−
0.

05
0.

00
y 

[u
m

]

1e27 OxideGate 1e26
1e25

SM

LE

Fig. 8: Comparison of the impact ionization rate as
predicted by a local energy model (LE) and by a six
moments model (SM). Also shown is the metallurgic
junction (fat line).

These models are based on the local field (LF) and
on the local energy (LE). To match the Monte Carlo
results the LF and LE models have been calibrated,
whereas the same parameters as in the Monte Carlo
simulation where used for the models based on the
analytical distribution function.

For the purpose of demonstration we considered
two MOSFETs with gate-lengths Lg = 1.0µm and
Lg = 0.25µm [19]. A comparison of the impact ion-
ization rate predicted by a local energy model and
by a six moments model is given in Fig. 8 for the
short-channel device. Also shown is the metallur-
gic junction (fat line). For the local energy model
the maximum impact ionization rate occurs at the
junction where the average energy rapidly decreases
because the hot carriers from the channel meet the
large pool of cold carriers in the drain. In the case of
the six moments model, the maximum is inside the
drain region which is in agreement with Monte Carlo
simulations.

Simulated substrate currents for both devices are
given in Fig. 9. Both characteristics were calcu-
lated using the same parameter values. The local
energy model had to be calibrated for these devices.
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Fig. 9: Comparison of simulated substrate currents
and measurements for the two MOS transistors.

Although reasonable substrate currents are delivered
by the local energy model, the calculated ionization
profiles inside the devices are at the wrong position
and have a wrong shape which requires individual
calibration.

B. Hot-Carrier Gate Currents

For the design of sub-micron devices with gate ox-
ide thicknesses around or below 2 nm, accurate pre-
diction of gate oxide tunneling currents is of increas-
ing importance. Thermionic emission based mod-
els are frequently used for this purpose [16]. These
models require detailed knowledge of the distribution
function. Frequently, a heated Maxwellian distribu-
tion is assumed which leads to erroneous results. In
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particular, such models lead to a massive overesti-
mation of gate currents especially for devices with
small gate lengths.

Following [16], the gate current density is given as

Jg =

∞∫
0

f(E) g(E) v⊥(E)T (E) dE (9)

where f(E) is the electron energy distribution func-
tion, g(E) the density of states, v⊥(E) the electron
velocity perpendicular to the interface, and T (E)
the tunneling probability. A simple model for the
tunneling probability T (E) can be derived using the
WKB approximation [20] for trapezoidal and trian-
gular barriers:

T (E) = exp
{
−4
√

2mox

3~qFox
· φ
}

(10)

The barrier φ is given as

φ =

{
(Φ− E)3/2 Φ0 < E < Φ

(Φ− E)3/2 − (Φ0 − E)3/2 E < Φ0

where Φ and Φ0 are the upper and lower barrier
height, and Fox is the electrostatic field in the ox-
ide layer. As a first order correction to the single
parabolic band model, we use Kane’s dispersion re-
lation [21] for the density of states g(E). For the
distribution function, (6) is used. The velocity per-
pendicular to the interface can be derived from [22]
as v⊥(E) = (∂E/∂p)/4.
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For the evaluation of the tunnel currents (9) we
solve the six moments model for several MOS tran-
sistors with varying gate lengths and oxide thick-
nesses. In Fig. 10 the effect of the drain voltage on
the gate current is shown for a MOS transistor with
Lg = 0.4µm and an oxide thickness of 1.8 nm. The
measured data was taken from [23] and compared to
the analytic expression (9). To estimate the influence



of the distribution function, (9) was evaluated us-
ing three different analytic models. When a heated
Maxwellian distribution is assumed a spurious gate
current is obtained for higher drain voltages. Inter-
estingly, a cold Maxwellian distribution gives much
better results but systematically underestimates the
gate current. The analytic distribution function (6)
exactly reproduces the measurements.

The error obtained from the heated Maxwellian
distribution is due to the overestimation of the high-
energy tail of the distribution function. Even though
the effect is relatively small in Fig. 10, it becomes
more pronounced when the gate length is reduced.
This is shown in Fig. 11 where the error reaches four
orders of magnitude for a gate length of 100 nm. The
bias voltages were not scaled and all devices where
biased with Vgs = 1 V and Vds = 1 V. Therefore, the
maximum temperatures occurring inside the devices
increase when the gate length is reduced. An esti-
mation shows that these spurious gate currents occur
when the temperature in the channel reaches approx-
imately 1000 K, a value easily exceeded in state-of-
the-art devices.

In Fig. 12 the influence of the distribution function
model on the gate current is shown where the gate
length and the oxide thickness have been varied. For
the Maxwellian approximation Ig/Lg becomes even
independent of the oxide thickness which seems ques-
tionable.

VI. CONCLUSION

Various transport models have been considered
so far. Apart from the drift-diffusion model
higher-order models based on either Stratton’s or
Bløtekjær’s approach have been considered. How-
ever, the examples presented here indicate that the
average energy is not sufficient for an accurate de-
scription of hot-carrier phenomena. We present a
particular solution using a six moments transport
models which also includes the kurtosis of the distri-
bution function. The kurtosis allows for a significant
improvement in the accuracy of hot-carrier models.
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