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ABSTRACT

Conventional macroscopic impact ionization models
which use the average carrier energy as main parameter can-
not accurately describe the phenomenon in modern miniatur-
ized devices. Here we present a new model which is based on
an analytic expression for the distribution function. In partic-
ular, the distribution function model accounts explicitly for a
hot and a cold carrier population in the drain region of MOS
transistors. The parameters are determined by three even mo-
ments obtained from a solution of a six moments transport
model. Together with a nonparabolic description of the den-
sity of states accurate closed form macroscopic impact ion-
ization models can be derived based on familiar microscopic
descriptions.

Keywords: impact ionization modeling, moment equations,
BOLTZMANN equation, distribution function model.

1 INTRODUCTION

Accurate calculation of impact ionization rates in macro-
scopic transport models is becoming more and more impor-
tant due to the ongoing feature size reduction of modern
semiconductor devices. Conventional models which use the
average carrier energy as main parameter fail because im-
pact ionization is very sensitive to the shape of the distribu-
tion function, in particular to the high-energy tail. The aver-
age energy is not sufficient for obtaining this information and
higher order moments of the distribution function have to be
considered. We favor a local description because the scatter-
ing operator in Boltzmann’s equation is a functional of the
local distribution function which should be reflected by the
model.

2 PREVIOUS MODEL

Here we present a refined version of a previously pub-
lished model [1] developed for the use with a six moments
transport model [2] which also accounts for the kurtosis of
the distribution function,
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〈E2〉
〈E〉2 (1)

in addition to the carrier temperature. Sofar, we have used
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for the symmetric part of the distribution function and
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√
E
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for the nonparabolic density of states, respectively. The pa-
rameters Eref = Eref(Tn, βn) and b = b(Tn, βn) are func-
tions of the carrier temperature and kurtosis and are deter-
mined in such a way that f(E) reproduces the given moments
Tn and βn [1]. The parameters η and ζ of (3) are determined
by a fit to either Kane’s dispersion relation [3] or to pseudo-
potential data [1]. Due to the form of the fit expression for
the density of states (3) it is possible to give algebraic expres-
sions for the moments of (2) using Gamma functions. With
the parameter values η = 1.4 eV−1 and ζ = 1.08 the error in
the first three even moments was found to be smaller than 1%

when compared to the results obtained from Kane’s relation.
Expression (2) is accurate inside the channel of MOS

transistors with values of b > 1. Although (2) gives rea-
sonable approximations for the distribution function inside
the drain region (b < 1) there are two problems: Firstly, the
high-energy tail is overestimated and secondly, during the
transition from the channel to the drain region, the exponent
b assumes the value 1 which corresponds to a Maxwellian
distribution function, a result not confirmed by Monte Carlo
simulations. This error is amplified when for instance impact
ionization rates are calculated where only the high-energy
tail of the distribution function is required [1].

3 DISTRIBUTION FUNCTION MODEL

To improve the model we note that at the drain junction
the hot carriers from the channel meet a large pool of cold
carriers and two populations coexist. We account for this
fact by using a superposition of two distributions, similar to
the work of Sonoda et al. [4]
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(4)
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We now have to determine the five parameters A, Eref , b,
c, and T2 which describe the distribution function, that is,
we need two heuristic relations in addition to the three pa-
rameters n, Tn, and βn provided by the six moments model.
To get an idea about the behavior of the distribution func-
tion in the drain region we look at the second order moment
T1 and the fourth order moment β1 of the hot distribution
f1(E) only (Fig. 1) which was extracted from the total dis-
tribution function obtained by a Monte Carlo simulation in a
post-processing step. The kurtosis of the hot distribution is
defined as

β1 = 3
5

∫
f1g dE

∫
E2f1g dE

(
∫
Ef1g dE)2

(5)

Additional simulations show that the temperature T2 of the
cold Maxwellian distribution function f2(E) rapidly relaxes
to the lattice temperature TL and will be modeled as T2 =

TL in this work. The kurtosis β1, however, is crucial for an
accurate description of the high-energy tail. Interestingly, β1

can be modeled accurately via the bulk relation βBulk(Tn)

which can be derived from the homogeneous six moments
model [2] as

βBulk(Tn) =
T 2

L

T 2
n

+ 2
τβ

τE

µS

µn

(

1 − TL

Tn

)

(6)

where τE , τβ , µn, and µS are the energy relaxation time, the
kurtosis relaxation time, the electron mobility, and the energy
flux mobility, respectively.

A comparison of the model β1 = βBulk(T1) with Monte
Carlo data is shown in Fig. 1, where the temperature of the
high-energy tail T1 has been taken as the argument. Note that
βBulk(Tn) approaches unity too quickly which underlines the
idea of modeling the hot and cold electrons as separate pop-
ulations.

For the calculation of the parameters Eref , b, and c we
have to detect the regions where a cold population exists.
Monte Carlo simulations show that inside the channel the tail
of the distribution function is always less populated than in
the bulk case. Therefore we detect the drain region when
βn > βBulk(Tn) is fulfilled. Inside the channel we assume
c = 0 because no cold subpopulation exists. Inside the drain
region, however, we need to determine c and T2 to explicitly
allow for two separate populations.

Thus nonlinear equation system is solved using Newton’s
method




Tn(Eref , b, c)

βn(Eref , b, c)

β1(Eref , b, c)



 =




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n

βBulk(T1(Eref , b, c))



 (7)

Tn, βn, and β1 are analytic expressions derived from the mo-
ments of (4) and T MC

n and βMC
n were taken from Monte
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Figure 1: Comparison of βMC
1 with two analytical mod-

els. When the temperature of the hot distribution function
T1 is used in the bulk characteristic, accurate results are ob-
tained for n+-n-n+ test-structures with LC = 200 nm and
LC = 50 nm. Note that βBulk(Tn) does not properly de-
scribe the behavior of β1. Also shown is the kurtosis of the
total distribution function βn.

Carlo simulations. In the channel c = 0 is assumed and
the last row of (7) is dropped. Since there is no cold pop-
ulation T1 = Tn holds inside the channel. This also holds
at the transition point which guarantees a continuous transi-
tion between the two regions. A comparison with distribution
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Figure 2: Comparison of analytical expressions for the dis-
tribution function with Monte Carlo results at different posi-
tions inside an n+-n-n+ test-structure with LC = 200 nm.
Note the error in the tail when a constant value for β1 is as-
sumed (bottom figure).

functions obtained by Monte Carlo simulations is shown in
Fig. 2. Note that a constant value for β1 = βh as used in [4]
underestimates the tail of the distribution function and thus
the associated impact ionization rate. Furthermore, an ap-
proach based on a constant β1 works only for the high field
case because otherwise βn will never reach βh and the model
erroneously creates a cold population throughout the whole

device. For intermediate bias conditions a spurious cold pop-
ulation would be predicted in the larger part of channel.

4 IMPACT IONIZATION MODEL

A closed form macroscopic impact ionization rate is then
obtained by integrating Keldysh’s expression [5]

PII(E) = P0

(E − Eth

Eth

)2

(8)

with (2) and (3) as

GII,l =

∞∫
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where Γ(a, z) is the incomplete Gamma function and

Γj,l = Γ
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b
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)
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Equation (14) is an approximation of the high-energy region
of the density of states (EC = 0.35 eV and λ = 1.326), based
on Cassi and Riccò’s [6] model, which has been introduced
to simplify the final expression. Furthermore, it is assumed
that only f1(E) contributes to the impact ionization rate. In
(11) l = 0, 1, 2 and denotes the entries for the continuity,
energy balance, and kurtosis balance equations, respectively.

5 COMPARISON

The final expression (11) is equivalent to the expression
given in [1], but the parameters Eref and b are now calcu-
lated in a different way. We use the same parameter values
as in the Monte Carlo simulation (P0 = 4.18 × 1012 s−1,
Eth = 1.12 eV), values which fit available experimental data
for bulk. The accuracy for the bulk case is the same as in
[1] as there is no cold population (c = 0). A comparison
with Monte Carlo simulations for n+-n-n+ test-structures is
shown in Fig. 3 where the improvement to the model of [1]
is obvious. In addition, the results obtained by assuming a
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constant β1 and the results obtained by a Maxwellian distri-
bution function (Eref = kBTn, b = 1, and c = 0) are shown
which underline the importance of an accurate distribution
function model for impact ionization rate modeling.

6 CONCLUSIONS

The new macroscopic impact ionization model has been
proven to deliver accurate results for the homogenous case
[1] and inhomogeneous cases down to nanoscale devices. In
particular, the tail of the impact ionization rate inside the
drain area is correctly predicted which is not possible with
models based on the average carrier energy only. The addi-
tional accuracy is provided by the kurtosis of the distribution
function which can be obtained via a six moments transport
model, that is, a model which is one order higher than con-
ventional energy-transport models. It is important to point
out that the same parameters as in the Monte Carlo simula-
tion were used to evaluate the model, so no fitting has been
performed. Although we have taken a rather simple expres-
sion for the microscopic scattering rate which is known to be
not very accurate for energies close to the threshold energy,
an extension to more accurate models is straightforward. As
the model involves only state variables of the equation sys-
tem it is well suited for the implementation into conventional
numerical device simulators.
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