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ABSTRACT

Etching and deposition of Silicon trenches is an important
semiconductor manufacturing step for state of the art mem-
ory cells and other semiconductor devices like, e.g., Power
MOSFETs. Understanding and simulating the transport of
gas species and surface evolution enables to achieve void-
less filling of deep trenches, to predict the resulting profiles,
and thus to optimize the process parameters with respect to
manufacturing throughput and the resulting memory cells.

An accurate and fast method for surface evolution has
been combined with the simulation of the transport of gas
species above the wafer surface and applied to a SiO2 deposi-
tion process. In experiments a SiO2 layer was deposited into
trenches roughly4µm deep and2µm wide, where the final
layer thickness was in the range of1µm for the flat wafer sur-
face. Simulation results are discussed and compared to scan-
ning electron microscope pictures, where all effects were re-
produced in the simulation and good quantitative agreement
was achieved as well.

INTRODUCTION

When simulating etching and deposition processes for
semiconductor manufacturing, an accurate description of
moving boundaries is crucial in addition to proper treatment
of the chemical and physical processes. In these applications
the moving boundaries usually are the surface of a wafer or
the surfaces between wafers and deposited layers. One ap-
proach is to use a cellular format, where the simulation do-
main is divided into cubic or cuboid cells and each cell either
belongs to the exterior vacuum above the wafer or to its inte-
rior (Pyka 2000, Pyka et al. 2001). One disadvantage of this

method is that computing surface normals and tangents leads
to accuracy problems. Surface normals are, e.g., crucial for
computing fluxes to the surface for simulating transport phe-
nomena via the radiosity approach.

The level set method (Sethian 1999b) provides an inter-
esting alternative and a solution to the above mentioned prob-
lem. This method is a relatively new method for describing
boundaries, i.e., curves, surfaces or hypersurfaces in arbi-
trary dimensions, and their evolution in time. Applying this
method means solving a certain partial differential equation
and extracting the zero level set of its solution.

Firstly, the basic ideas of the level set method are pre-
sented. Next extending the so called speed function and a
narrow banding algorithm for accelerating simulations are
discussed. The two seemingly unconnected concepts are
combined in our implementation in order to enable efficient
surface evolutions. For the case of radiosity simulations
an algorithm for coalescing certain surface elements is pre-
sented. Its purpose is to increase accuracy where it is needed
most and reduce simulation time by reducing the size of the
radiosity matrix.

Secondly, mass transport in the diffusion and radiosity
regimes above the wafer is shortly discussed and the mod-
eling approach is described.

Finally, an example where SiO2 is deposited fromTEOS

(Tetraethoxysilane) is presented. Simulation results are
shown and discussed comparing withSEM (scanning electron
microscope) pictures of fabricated test structures. In the ex-
periments a SiO2 layer was deposited into trenches roughly
4µm deep and2µm wide, where the final layer thickness was
in the range of1µm for the flat wafer surface. Simulation re-
sults for the diffusion and the radiosity regime are presented
and discussed, and the algorithms mentioned at the beginning
of the paper are illustrated as well.
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THE LEVEL SET METHOD

The level set method (Sethian 1999a, Sethian 1999b)
provides means for describing boundaries, i.e., curves,
surfaces or hypersurfaces in arbitrary dimensions, and
their evolution in time, where the evolution is caused
by forces or fluxes normal to the surface. The ba-
sic idea is to view the curve or surface in question at
a certaim timet as the zero level set (with respect to
the space variables) of a certain functionu(t,x), the so
called level set function (Adalsteinsson and Sethian 1995,
Adalsteinsson and Sethian 1999, Sethian 1996). Thus the
initial surface is the set{x | u(0,x) = 0}.

Each point on the surface is moved with a certain speed
normal to the surface and this determines the time evolution
of the surface. The speed normal to the surface will be de-
noted byF (t,x). For points on the zero level set it is usually
determined by physical models and in our case by the etch-
ing and deposition processes, or more precisely by the fluxes
of certain gas species and subsequent surface reactions. The
speed functionF (t,x) generally depends on time and the
space variables, and we assume for now that it is defined on
the whole simulation domain and for the time interval con-
sidered.

The surface at a later timet1 shall also be considered
as the zero level set of the functionu(t,x), namely{x |
u(t1,x) = 0}. This leads to the level set equation

ut + F (t,x)‖∇xu‖ = 0,

u(0,x) given

in the unknown variableu, whereu(0,x) determines the ini-
tial surface. Having solved this equation the zero level set of
the solution is the seeked curve or surface at all later times.

Now in order to apply the level set method a suitable ini-
tial functionu(0,x) has to be determined first. There are two
requirements: first it goes without saying that its zero level
set has to be the surface given by the application, and sec-
ond it should essentially be a linear function so that in the
final surface extraction step linear interpolation can be ap-
plied. A beneficial choice is the signed distance function of
a point from the given surface. This function is the common
distance function multiplied by minus or plus one depending
on which side of the surface the point lies in. The common
distance function of a pointx from a setM is then defined
by d(x, M) := infy∈M d(x, y), whered is a metric, usually
the Euclidean distance.

In summary, first the initial level set grid is calculated
as the signed distance function from a given initial surface.
Then the speed function values on the whole grid are used

to update the level set grid in a finite difference or finite el-
ement scheme. Usually the values of the speed function are
not determined on the whole domain by the physical models
and therefore have to extrapolated suitably from the values
provided on the boundary, i.e., the zero level set. This will
be discussed in the next section. In the last step, the surface
extraction step, the curve or surface is reconstructed from
the function values on the grid, where the zero level set is
approximated by lines or triangles using linear interpolation
along grid lines.

Of course the use of linear interpolation seems arbitrary
and must be justified. It can be shown that if the extension ve-
locity F satisfies∇F · ∇u = 0, then the level set functionu
remains the signed distance function for all time. Hence it
has to be ensured that the speed function used fulfills this
condition. This is the case with the implementation devel-
oped. Now sinceu remains the signed distance function,
which is essentially a linear function, linear interpolation is
indeed the best method. Consequently, small changes in the
level set function result in small movements of the surface,
whereas in the case of a cellular format a cell is either part
of the material or not. Thus, although in the numerical ap-
plication the level set function is eventually calculated on a
grid, the resolution achieved is in fact much higher than the
resolution of the grid, and hence higher than the resolution
achieved using a cellular format on a grid of same size.

The advantages of the level set method are twofold:
the resolution achieved is higher than the resolution of the
grid where the calculations take place (cf. (Pyka et al. 2000,
Hössinger et al. 2001)) and calculating surface normals, cru-
cial for radiosity simulations, is straightforward and much
more precise than when using a cellular format.

EXTENDING THE SPEED FUNCTION AND
NARROW BANDING

Before discussing the details of the various simulation
steps, the outline of topography simulations for semiconduc-
tor processes is given in Figure 1.

In applications linking to physical models the speed func-
tion is not known on the whole simulation domain, but only
at the surface. In order to use the level set method it has to be
suitably extended from the known values to the whole simu-
lation domain. This can be done iteratively by starting from
the points nearest to the surface. Mathematical arguments
show that the signed distance functions can by maintained
from on time step to the next by choosing a suitable exten-
sion.

The idea leading to fast level set algorithms stems from
observing that only the values of the level set function near
its zero level set are essential, and thus only the values at
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Figure 1: Overview of the simulation flow combining trans-
port by diffusion and surface evolution using the level set
(LS) method. The simulation stops when a prescribed time
is reached on when a layer of prescribed thickness has been
deposited.

the grid points in a narrow band around the zero level set
have to be calculated. As the zero level set moves, the signed
distance function in the narrow band must be maintained.

Both, extending the speed function and narrow banding
require constructing the distance function from the zero level
set in the order of increasing distance. But calculating the ex-
act distance function from a curve or surface consisting of a
large number of small line segments or triangles is computa-
tionally expensive and can only be justified for the initializa-
tion. An approximation to the distance function can be com-
puted by a special fast marching method (Sethian 1999b).

For the first time narrow banding and extending the speed
function were combined into one algorithm. This algorithm
provides several benefits. First, the speed function is retained
as the signed distance function throughout the simulation,
which assures good accuracy till the end of the simulation.
Second, narrow banding reduces the number of active points
that have to be updated fromO(n2) to O(n). By retaining

the signed distance function the width of the narrow band
can be kept down to two points on each side (cf. Figure 6)
without decreasing accuracy. Third, time consuming calcu-
lations (cf. (Adalsteinsson and Sethian 1999)) are reduced to
a minimum by intertwining the computations necessary for
narrow banding and extending the speed function. Finally
the width of the narrow band can be adjusted if desired.

An outline of the algorithm is as follows. First the ini-
tial points near the zero level set, where the speed function
is known, and the neighboring trial points are determined.
In the main loop it is checked if there is still a trial point to
be considered in the narrow band. All trial points are stored
in a heap ordered by their distance to the zero level set. If
there is a point to be considered, both its distance is approx-
imated and its extension speed calculated, and its neighbors
are updated accordingly. Finally after the main loop, book-
keeping information for the narrow band points is updated
using distance information just computed. The computation
time consumed by this algorithm is negligible compared to
that required for the physical models, while it provides high
accuracy.

By intertwining both, extending the speed function and
narrow banding, in our implementation expensive calcula-
tions are kept to a minimum. Although the level set method
is a seemingly computationally expensive method, since it
requires solving a partial differential equation for describing
surface evolutions, the computation time consumed for the
surface evolution by narrow banding is negligible compared
to that required for the physical models, e.g., diffusion.

TRANSPORT

In an integrated simulation of transport phenomena and
surface evolution the transport phenomena above the wafer
surface specify the etch and deposition rates. They can
broadly be divided into two classes according to the mean
free path length, although this distinction is only a rough
classification and the suitable model in each case depends
on other considerations as well:

• If the mean free path length is much larger than the di-
ameter of the simulation domain, the collision of single
particles can be neglected and the transport can be sim-
ulated using the radiosity approach.

• If, on the other hand, the mean free path length is much
smaller than the simulation domain, the collisions be-
tween single particles play a major role and their con-
centration is determined by the diffusion equation.

Of course, the question which case to choose for a certain
deposition process depends on the conditions of the deposi-
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Figure 2: The figures show the surface evolution of a typical trench structure during a deposition processes. The concentration
of the diffusing particles above the wafer is between0 and1 and it is constantly1 at the top of the simulatin domain.

tion or etching process to be simulated and more details can-
not be presented here. In order to provide a general purposes
simulator, both approaches are indispensable.

In the following the modeling of both cases as used in the
simulations presented later is described.

Transport in the Diffusion Regime

Here transport is governed by the well-known diffusion
equation

∂c

∂t
= ∇ · (D∇c),

wherec is the concentration andD the diffusion coefficient.
The boundary conditions (cf. Figure 2) are usually as fol-
lows: at the top of the simulation domain a Dirichlet bound-
ary condition is assumed, i.e., a constant concentration is
supplied by the reactor; on the left and right hand side a Neu-
mann boundary concentration is assumed, i.e., the fluxes are
zero; and finally the fluxes on the wafer surface are deter-
mined by the deposition rates.

Transport in the Radiosity Regime

In this case particles are injected into the simulation do-
main from sources above the wafer and their way is traced ac-
cording to reflections from the surface until it attaches itself
at a certain location or leaves the simulation domain. How
particles are reflected mostly depends on their energy. This
model is similar to ray tracing in computer graphics.

A formulation of the radiosity method for the transport of
particles of low energy only, where luminescent reflection is

assumed, which excludes the case of high energetic particles
(i.e., ions), can be found, e.g., in (Sethian 1999b):

Flux =
β − β0

1 − β
IS+

+
β(1 − β0)

1 − β
L−1(L−1 − (1 − β)Ψ)−1︸ ︷︷ ︸

T :=

IS ,

whereIS is the vector of fluxes coming from the sources to
the surface elements,β0 the sticking coefficient for particles
coming directly from the source,β the one for secondary
bounces,L the diagonal matrix containing the lengths of the
surface elements, and

Ψij =
ni · (tj − ti)nj · (ti − tj)

π|tj − ti|3
[i visible j],

whereti are the centroids of the surface elements,ni their
unit normal vectors, and[i visible j] is 1 or 0 if surface ele-
mentj is visible fromi respectively not.

In the case of multiple, low energy species the calculation
of the visibility matrix and the inverseT only depends on to-
pographic information and thus does not have to be repeated
for each species.

COALESCING SURFACE ELEMENTS

When using radiosity models for simulating the transport
of particles above the wafer in the case where the length of
the mean free path is greater than the size of the feature, two
operations consume most of the computation time. The first
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Figure 3: Illustration of the coalescing algorithm. Since the
angles atA, B, andC are above the threshold value, no re-
placement takes place here. The angle atD is below the
threshold value, and thus the segmentsCD andDE are re-
placed by a new segmentCE.

Coarsening Visibility Flux
Steps Test Calculation

0 1 1
1 0.29 0.10
2 0.12 0.02

Table 1: Comparison of the speed of the visibility test and of
the calculation of the fluxes on surface elements by radiosity
both with the coalescing algorithm and without. The compu-
tation time relative to the conventional algorithm, equaling1,
is shown.

operation is determining the visibility between all surface el-
ements, which is anO(n2) operation wheren denotes the
number of surface elements extracted from the level set grid.
The second operation is solving a certain system of linear
equations, which leads to calculating the inverse of a matrix
with n2 elements, which is anO(n3) operation.

Obviously increasing the number of surface elements is
not a remedy in cases where high resolution is required. High
resolution is needed, e.g., near the trench opening, and the
bottom of the trench, and for the simulation of microtrench-
ing and side wall push back. One approach is to devise a
refinement and coarsening strategy for unstructured grids on
which the level set equation is numerically solved. This,
however, complicates the fast marching algorithm necessary
for extending the speed function. A different approach was
taken in this work by coarsening the surfaces after having
been extracted from the level set grid.

The algorithm works by walking down the list of surface
elements extracted as the zero level set and calculating the
angleα between two neighboring surface elements. When-
ever|π − α| is below a certain threshold value of a few de-
grees, the neighboring elements are coalesced into one. Af-

ter one sweep through the list, the algorithm can be reapplied
for further coarsening. Afterk coarsening sweeps, at most2k

surface elements are coalesced into one. The resulting longer
surface elements are used for the radiosity calculation, after
which the fluxes are translated back from the coarsened ele-
ments to the original ones.

SIMULATION RESULTS

Example of Deposition in the Diffusion Regime

Before discussing the simulations and the effects of the
speeding up strategies, the physical modeling approach is
shortly described.

In order to calculate the thickness∆d of the film de-
posited during a time interval of length∆t, we observe
that ∆d is proportional to∆t, to an Arrhenius term, and
to the deposition rateRi corresponding to the deposition
model chosen. This implies∆d = ∆t · kee−E/kT · Ri.
Here kee−E/kT is the Arrhenius term with activation en-
ergy E, absolute temperatureT , and preexponential con-
stantke. Ri is the deposition rate of the deposition model
chosen, where two heterogeneous deposition models, a ho-
mogeneous intermediate-mediated deposition model, and a
heterogeneous deposition with byproduct inhibition model
are available (Raupp et al. 1992). This setup also provides
a way to determine the actual chemical reaction, which is
a non-trivial problem and can only be solved indirectly by
comparing measurements and simulation results.

As noted from the characteristic shape of the measure-
ments provided (cf. Figure 4) and the process conditions em-
ployed, the transport ofTEOS in the boundary layer above
the wafer happens in the diffusion regime and thus is gov-
erned by the diffusion equation. The boundary conditions
are as follows: at the top of the simulation domain a Dirichlet
boundary condition is assumed, i.e., a constant concentration
is supplied from the convective zone in the reactor; on the
left and right hand side a Neumann boundary concentration
is assumed, i.e., the fluxes are zero; and finally the fluxes at
the wafer surface are determined by the amount of particles
deposited.

The simulation flow for arriving at the results shown in
Figure 2 is depicted in Figure 1. In Figure 2 the results of
SiO2 deposition fromTEOSare shown. The initial structures
are roughly rectangular trenches4µm deep and2µm wide.
Initially the TEOSconcentration equals1 everywhere and the
boundary conditions from the previous section were applied,
where the concentration at the top was constantly1.

The depletion ofTEOS during the deposition can clearly
be seen. This leads to the narrowing of the upper part of
the trench, whereTEOS is still supplied. Furthermore the
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Figure 4: (a): SEM (scanning electron microscope) image of a cross section through a trench about4 µm deep and2 µm wide.
(b): Simulation result showing the final trench geometry. TheTEOSconcentration above the wafer in the boundary layer is shown
as well.(c): Some intermediate zero level set of the simulation shown in (b).

stronger depletion in the corners at the bottom of the trench
causes the edges to become concave, although they were ini-
tially convex. Finally at the upper corners the deposited layer
becomes thicker than on the flat layer surface, which might
not seem intuitive at first, but is also observed in theSEM

pictures.

Example of Deposition in the Radiosity Regime

In experiments SiO2 was deposited under different pro-
cess conditions in a different set of trenches for PowerMOS-
FETs with a higher aspect ratio than the trench shown in the
SEM image in Figure 4. For the following simulation results,
the radiosity module of the topography simulator was em-
ployed.

For adjusting the parameters of the model the to-
pography simulator was used in combination with the
optimization framework SIESTA (Heitzinger et al. 2001,
Heitzinger and Selberherr 2002). Hence extracting the
model parameters is performed automatically and can be im-
mediately applied to different measurements and structures
produced under different process conditions.

A simulation result is shown in Figure 5, where the sur-
face coalescing algorithm described above was employed.

First, the computation time of the level set algorithm with
narrow banding as described above (cf. Figures 6, 7, and 8) is
negligible compared to the computation time of the physical
models. This, however, is not the case when narrow banding
is not employed. Table 1 lists the relative computation time
of testing for visibility and the actual radiosity calculation
both with and without the coalescing algorithm. The simu-
lation result with coarsening in Figure 5 is nearly identical
to the one yielded when no coarsening was applied. Accu-
racy is hardly affected, but the simulation time considerably
decreased.

CONCLUSION

State of the art algorithms for surface evolution processes
like etching and deposition processes used for manufacturing
semiconductor components have been developed and imple-
mented. The simulator developed consists of three indepen-
dent modules, namely the level set module, a reaction mod-
ule, and a diffusion module, which can be used for simulating
all common deposition and etching processes as well. Step
coverages measured in severalSEM images were used for ex-
tracting model parameters, where good quantitative agree-
ment was achieved. Hence the process conditions have been
optimized with respect to the quality of the trenches and man-
ufacturing throughput.
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Figure 5: A simulation result showing initial, intermediate,
and final surfaces. The resolution of the underlying level set
grid was80 · 160. The coarsening algorithm was applied
twice, coalescing at most four surface elements into one, and
the threshold angle was3◦. This result is nearly identical to
the one achieved when no coarsening was applied.

Two strategies for increasing the accuracy of radiosity
simulations are presented and compared to measurements of
a deposition process. The first method is an algorithm which
performs three level set computations in parallel: calculating
the signed distance function via a fast marching algorithm,
extending the speed function, and moving the narrow band
according to the new zero level set. This gives rise to a fast
and accurate level set algorithm.

The second method is a coarsening algorithm which en-
sures fine resolution of the surface in parts of the boundary
with relatively high curvature, i.e., where it is needed most.
These parts are typically the opening of the trench, its bot-
tom, and places where microtrenching and side wall push
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Figure 6: The level set function after the last step of the
simulation whose result is shown in Figure 5. The active nar-
row band around the zero level set retains the signed distance
function, whereas other grid points have not been updated.

back take place. At the same time the resolution is lowered
where possible which reduces the demand on computational
resources significantly.

In order to verify the models and simulator developed it
was applied to the deposition of SiO2 from TEOS in differ-
ent Silicon trenches under different process conditions. All
observed effects match well comparing theSEM pictures and
the simulation results.
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