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A quantum-kinetic equation accounting for the electron-phonon interaction is solved by

a stochastic approach. Analyzed are three analytically equivalent integral formulation

of the equation which appear to have di�erent numerical properties. Particularly the

path-integral formulation is found to be advantageous for the numerical treatment. The

analysis is supported by the presented simulation results. A variety of physical e�ects

such as collisional broadening and collision retardation introduced by the equation are

discussed.
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1. INTRODUCTION

We introduce an equation which describes the

quantum kinetics of a semiconductor carrier

system coupled with a phonon bath. The time

evolution of such system is predestinated by the

initial state. On a quantum-kinetic level the

knowledge of the carrier-phonon initial state is

often a problematic task. In this respect it is

convenient to consider carries generated by a laser

pulse at low temperatures, a case with no carriers

at the beginning of the excitation. The relevant

description of the phenomena is given by the

semiconductor Bloch equations accounting for the

carrier-phonon, carrier-photon and carrier-carrier

interactions and interference e�ects [7]. In order to

concentrate on the carrier-phonon kinetics only, a

simpli®ed consideration is needed, given by the

one-band model [4]. It describes a relaxation of

an initial distribution of carriers i.e., the phonon

interaction is switched on after the laser pulse

completed the carrier generation. Despite that a

generation term is more realistic than the initial

condition, the latter allows to concentrate on the

quantum-kinetic aspects of the electron-phonon

interaction. The one-band model is obtained in the

framework of the density matrix formalism.

The Hamiltonian H��k"kc
�

k
ck��q!b

�

q
bq��k

0
;k

�gqc
�

k
0bk0ÿkck�cc� accounts for Froehlich interac-

tion with coupling gk0ÿk, c
�

k
�ck� and b

�

q
�bq� are the

electron and phonon creation(annihilation) opera-

tors respectively, "k��h
2
k
2=2m is the electron
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energy, and ! is the phonon frequency. The

physical variables are statistical averages h�i of

combinations of creation and annihilation opera-

tors. Relevant are the electron and phonon dis-

tributions f �k;t��hc
�

k
cki, nq�q;t��hb

�

q
bqi, Their

equations of motion introduce the phonon assisted

density matrices s�k
0
;k;t�� �i=�h�gk0ÿkhc

�

k
0bk0ÿkcki.

The equations for s introduce averages of four

operators and so forth, leading to an in®nite set

(the BBGKY hierarchy) of equations. The set is

closed by approximations in the equations of

motion of the four operator averages. First the ®ve

operator terms are factorized into distribution

functions and phonon assisted density matrices.

Afterwards adiabatic and Markov approximations

are performed and the result is used in the

equations for s. The linearized one-band model,

under the assumption of equilibrium phonons is

given by the equations:

d
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0
; t��n� 1� ÿ f �k; t�n� �2�

which are supplemented by initial conditions f (k,

0)��(k), s(k0, k, 0)� 0.

Here 
�k
0
; k� � �"�k

0
� ÿ "�k� ÿ �h!�=�h, n is the

Bose distribution, the damping ÿ(K
0
, k)� �(k)�

�(k0) is related to the ®nite carrier lifetime against

the scattering process: ��k� �
R
d
3
q�V=23�2�h�

� � kgk0ÿkk
2
��"�k

0
� ÿ "�k� � �h!� �n� 1=2� 1=2�.

This equation set can be further processed [5] if

(2) is integrated formally and inserted in (1) which

leads to:
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The result can be recognized as the zero electric

®eld form of the quantum-kinetic equation re-

ported in [3], which is now obtained by an

alternative to the projection technique way.

It has been recognized that the numerical

evaluation of (3) is a formidable task and that a

relevant approach is theMonte Carlo (MC)method

[3]. The numerical method used here is a formal

extension of the Backward MC approach for

semiclassical [1] and quantum transport [2] simula-

tions. The method utilizes the theory of stochastic

algorithms for solving integral equations. The

convergence of iteration series of the concrete

integral equation signi®cantly a�ects the e�ciency

of the method. In the next section we introduce

three di�erent integral forms of (3). They allow to

analyze a variety of physical and numerical aspects

of the quantum-kinetic equation and the numerical

method, presented in the last section.

2. INTEGRAL FORMS

The ®rst integral form of (3) is obtained by a direct

integration over t0 in the limits (0; t) and using

the initial condition on the right hand side. The

equation gives rise to a second integral form

obtained after the following transformations. The

order of the two time integrals can be exchanged

according to
R
t

0
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0
R
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0
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�

R
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0
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00
R
t

t00
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0
. Further-

more the kernel S can be analytically integrated

over t0 with the help of the identity:
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where L is a Lorentzian function L�k
0
; k� �

�ÿ�k
0
; k�=
2

�k
0
; k� � ÿ

2
�k

0
; k�� .Thus the scattering

term denoted by L�ÿ�k
0
; k�; k

0
; k; tÿ t

00
� �R

t

t00
dt

0
S�k

0
; k; t0 ÿ t

00
� is decomposed into a time

independent part (two Lorentzian multiplied by

the equilibrium phonon factors) and an oscillating,

exponentially damped function of the evolution

time. The two parts cancel each other at t� 0. The

Markovian limit t!1 of L is presented by the

Lorentzian part. The time dependent part is liable

for the memory character of the equation.
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The Markovian limit of this equation does not re-

cover the semiclassical Boltzmann equation. It is

due to the ®nite lifetime of the carriers ± the energy

conserving delta function is recovered by the limit

ÿ! 0.

The derivation of the third integral form utilizes

the main idea of the path integral transformation,

which is the basis of the MC calculations in the

Boltzmann transport framework. A term  (k)f (k,

t0), where  is a positive function is added to both

sides of (3). The left hand side can be written as

e
ÿ �k�t0

�d=dt0��e �k�t
0

f �k; t0��. The equation is

further divided by e
ÿ �k�t0

and integrated on t
0
in

the interval (0; t). A subsequent division on e
 (k)t

leads to path integral formulation, with f (k, t) on

the left and the exponential damping due to the  

function incorporated in the time integrals on the

right. The identity (4) still can be applied to give:
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This path integral form coincides with the zero

®eld Barker-Ferry equation [3] with the only

modi®cation, that the self-scattering constant is

replaced by the function  . The advantages of the

Barker-Ferry form for the utilized numerical

approach are analyzed in the next section. The

physical aspects of the quantum model and

particularly of its Lorentzian limit are discussed

and demonstrated by simulation experiments.

3. RESULTS AND DISCUSSIONS

The simulation results are obtained for GaAs with

material parameters taken from [4]. The initial

condition is given by a Gaussian distribution in

energy, corresponding to a 87 femtosecond laser

pulse with an excess energy of 180meV, scaled in

a way to ensure peak value equal to unity. Zero

lattice temperature has been chosen in order to

allow a convenient comparison with the behavior

of semiclassical electrons. At such temperature the

latter can only emit phonons and loose energy

equal to a multiple of the phonon energy �h!. The

evolution of the distribution function is patterned

by replicas of the initial distribution shifted

towards low energies. The electrons can not be

scattered out of the states below the phonon

energy and can not appear above the initial

distribution. This simple semiclassical behavior

will be the reference background for the e�ects

imposed by the quantum-kinetic Eq. (3). The

symmetry of the task allows to use spherical

coordinates with a wave vector amplitude k� jkj.

The ®gures present the quantity kf (k, t), the

distribution function multiplied by the density of

states, in arbitrary units versus k
2
(10

14
/m

2
), which

is proportional to the electron energy.

3.1. Physical Aspects

Figure 1 shows quantum solutions for low evolu-

tion times. Electrons appear in the semiclasically

forbidden region above the initial condition. This

is explained by referring to the scattering term S in

the ®rst integral form. For small time di�erences in
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the cosine function the probability for scattering

into the whole Brillouin zone becomes ®nite.

Despite that only a small fraction of the electrons

populate the higher energy states ± the resolution

is within four orders of magnitude below the initial

peak value ± this property remains even if a

generation term is considered. The initial condi-

tion allows a clear demonstration of the e�ect.

The quantum e�ects in the energy region below

the initial condition can be interpreted with the

help of the scattering term L of the second integral

form. Itself the time independent part of L is

responsible for the e�ect of collisional broadening,

destroying the replica-like pattern of the distribu-

tion function. Figure 2 compares the semiclassical

distribution after 400 fs with the solution of a

Boltzmann like equation (BLE), where the delta

function in energy is replaced by the Lorentzian. A

detailed discussion of the e�ects delivered by the

Lorentzian model are given in [6].

The memory character of the equation, carried

on by the time-dependent part of L, introduces a

collision retardation. The latter is demonstrated in

Figures 3 and 4 as an delay in the build up of the

remote peaks of the quantum solutions as com-

pared to the corresponding BLE solutions.

At high evolution times the time independent

part dominates the kinetics and introduces addi-

tional deviations from the semiclassical behavior.

Due to the long reaching tails of the Lorentzian

function, the electrons with energy below the LO

phonon threshold are in mutual exchange, having

an out-scattering rate of order of 10
ÿ5
/fs.

Furthermore a fraction of electrons run away

FIGURE 1 Quantum solutions for three low evolution times. Electrons appear in the semiclasically forbidden region above the

initial condition.
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towards the high energy states leading to an

arti®cial heating of the electron system [6]. Thus

the application of (3) for high evolution times

must be handled with care.

3.2. Numerical Aspects

The applied Monte Carlo method is based on the

following estimator:

�i�x0� �
K�x0�; x1

P�x0; x1�
. . .

K�xiÿ1; xi�

P�xiÿ1; xi�
��xi�

which calculates the multiple integrals forming

the iteration series of the integral equation:

f �x� �
R
dx

0
K�x;x0�f �x0� � ��x�, [5]. Here x0 is

the desired point k, t where the solution is to be

evaluated and xi, i> 0 given by the set of the

integral variables: k
0
, t

0
, t

00
for the ®rst form and k

0
,

t
00
for the second and third form and the BLE. An

even transition probability density P has been

chosen for the all variables in the ®rst form. For

the rest of the equations k has a Lorentzian

distribution in the phase space, and the time is

generated according the exponential distribution.

The advantages of the method lie in the direct

evaluation of the functional value at the desired

point ± in contrast the Ensemble MC provides

only averaged estimates. A direct control of the

numerical precision in the desired point is avail-

able. This is demonstrated by the high resolution

of the statistical results on Figure 1. The method

does not require the knowledge of the distribution

function dependence on k at previous times.

FIGURE 2 Semiclassical and BLE solutions for 400 fs evolution time. The Lorentzian destroys the peak-like pattern in the region

of low energies.
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The variance of the estimator for the ®rst

integral form rapidly increases, allowing simula-

tions up to 100 fs evolution time. The mean value

of the estimator is formed by cancellations of

positive and negative numbers, which rapidly

increase with the evolution time. The analytic

evaluation of one time integral leading to the

second integral form only slightly improves

the variance. This shows that the reason is in the

poor convergence of the iteration series rather

than in the stochastic error in the evaluation of

the integrals. The build up of the Markovian limit

of (4) increases the number of the relevant

iteration terms before the truncation of the series.

The same problem has been reported for the di-

rect time integral form of the Boltzmann equation

[2]. The remedy in the semiclassical case is in the

path integral formulation of the equation. It

evaluates analytically the negative contributions

of the out-scattering term by the exponential

function, giving the probability for the free-¯ight

time. The same e�ect is observed in the path

integral form (6). The function  subtracted from

the second term gives rise to an exponential

damping with the evolution time, which improves

the convergence of the iteration series. The above

analysis is supported by the numerical experi-

ments. A choice of  �� has been done, which

simpli®es the scattering term. Despite that the

Lorentzian in (6) have higher peak values

as compared to (4), evolution times of 300 fs can

be conveniently simulated. For the BLE  has

been chosen to cancel exactly the out-scattering

term.

FIGURE 3 Quantum and BLE solutions for 150 fs evolution time. The quantum solution follows the BLE solution with a

delay.
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