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Characterization of the hot electron distribution function
using six moments
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The shape of the hot electron distribution function in semiconductor devices is insufficiently
described using only the first four moments. We propose using six moments of the distribution
function to obtain a more accurate description of hot carrier phenomena. An analytic expression for
the symmetric part of the distribution function as a function of the even moments is given which
shows good agreement with Monte Carlo data for both the bulk case and mSida—n* test
structures. The influence of the band structure on the parameters of the distribution function is
studied and proven to be of importance for an accurate descriptior20@ American Institute of
Physics. [DOI: 10.1063/1.1450257

I. INTRODUCTION proximated by a superposition of a hot and a cold Maxwell-
ian distribution’® In those regions, the relaxation times are
largely determined by the average energy of the hot popula-
tion. Since the number of hot carriers is normally much
smaller than the number of cold carriers, the energy of the

ot carriers has only negligible influence on the average en-
ergy of the total electron gas and, therefore, models using the
total average energy are bound to fail.

& Due to these strong deviations from the Maxwellian
f(S)wexp(— kBTn) (1) shape, the shape of the distribution function can not be
, . , uniquely characterized by the average carrier energy alone.
is commonly used to describe the symmetric part of the DR, the'same average energies, the shape of the DF is com-
where£ is the energyT, is the carrier temperature, ad  yietely different depending on whether the absolute value of
Boltzmann’s constant. As has been frequently pointed oulye efectric field increases or decreab&¥As the relaxation
this is at best a very poor approximation in state-of-the-arf; o< which are commonly used in macroscopic models de-
devices where the gradients of the electric field are largé,eng on the shape of the distribution function via the scat-
Even for the bulk case, as is less frequently noted, this %ering operator, problems are to be expected when they are

sumption is poor. _ modeled as a function of the average carrier energy only.
Two main deviations from the Maxwellian shape have 1, characterize the DF, we include in addition to the

been described by many authors. First, it has been observed rjer temperatura, the next higher moment of the distri-
that beyond a certain energy, the slope of the DF decreasegiion function, the kurtosis,, which represents the nor-
rapidly. This has been called the thermal tail of the DF be+,5jized moment of fourth order ik,

cause its effective temperature equals the lattice temperature.

Abramo and Fiegriadiscussed this thermal behavior of the _24(8 @)
high-energy tail and showed that it is not a band structure "3 kg

effect by reproducing it using a single isotropic and parabolic >

band, including only acoustic and optical phonon scattering. :§ (&) 3)
Furthermore, they showed that the effective temperature of "5 W

the thermal tail is increased when electron—electron scattefq, 5 heated Maxwell—Boltzmann distribution and parabolic
ing (EES is taken into account. The influence of EES haspangs we geB, = 8ys=1. Thus, a3,# 1 quantifies the de-

. . . . 4 " '
been investigated in detail by Chasgal." who also evalu- yiation from the Maxwellian shape in the parabolic case.

ated the influence of the band structugarabolic versus \yhen nonparabolicity is taken into account, a different value
fullband. In addition impact ionization has been shown tofor g - is obtained, as is shown in the following.

affect the high-energy tait®
Another important deviation from the Maxwellian shape
occurs when hot and cold carrier populations mix, as in the
drain region of a metal-oxide—semiconductor transistor!l: QUALITATIVE DESCRIPTION OF THE
These populations coexist for some time and have been a;?—'STRlBUﬂON FUNCTION

Monte Carlo(MC) simulations indicate that the shape of
dElectronic mail: grasser@iue.tuwien.ac.at the DF inside am™ —n—n" structure behaves qualitatively

A very common assumption in device simulation is that
the distribution function(DF) can be modeled with some
variant of a Maxwellian distribution. This may either be a
displaced, heated, or displaced and heated Maxwellia
shape’ As the drift velocity, which gives the displacement, is
normally smalf a heated Maxwellian distribution
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FIG. 1. Schematic evolution of the distribution function insiderdn-n—n"* structure.

as shown in Fig. 1. For cold carriers which are injected at theéll. PREVIOUS ANALYTICAL MODELS
contacts, the Maxwellian shape provides a good description.
In Region |, carriers diffuse against the built-in energy bar-
rier. While moving along Region I, the amount of low ener-
getic carriers in the DF decreases due to reflection at th
energy barrier. Therefore, unlike the prediction by the Max-

A lot of effort has been put into the development of
analytical expressions for the symmetric part of the distribu-
tion function which underlines the importance of the matter.
F/Iany different expressions have been published so far, see

. L e.g. Refs. 12-16. All analytical expressions for the DF con-
wellian approximation, only the low-energy range of the en-_: . :
C . ., tain parameters which have to be calculated in one of the
ergy distribution is affected whereas nearly no changes in th .
ollowing ways.

high-energy tail are observed. It is interesting to note that the
slope in the low-energy range is already nearly the same as ét) By considering some simplified form of Boltzmann’s
the end of the channel. However, the knee-enekyy equation, analytic expressions for the distribution func-
changes, shifting towards higher energies as the carriers tion have been given, see for instance Refs. 13, 15, and
travel through the channel in Region Il. In Region I, the 17. The parameters are calculated inaapriori manner,
small number of hot carriers from the channel meet the large for instance as a function of the electric field, the band
pool of cold carriers in the drain which is visible in the DF structure, and some dominant scattering mechanisms.
by a rapid increase of the low-energy part. Region Ill was  Although these approaches are highly interesting from a
found to be very small in our simulations and left the high-  theoretical point of view and also provide insight into
energy tail nearly unchanged. As the hot carriers travel transport phenomena, they give poor results in practical
through Region 1V, the temperature of the high-energy tail  applications, because the assumptions made during their
relaxes to the equilibrium temperature. derivation are normally heavily violated in real devices.
After reviewing previously published models for the DF, In particular, the expression for the analytic DFs ob-
we will clarify the importance of the kurtosis for the shape of  tained this way does not correctly reproduce the mo-
the DF by deriving an analytical expression for the DF as a ments as obtained by MC simulations or macroscopic
function of both the carrier temperature and the kurtosis. transport models. This a source of inconsistencies.
Furthermore, we will show that the kurtosis provides the(2) A macroscopic transport model can be derived by put-
required information to distinguish between Regiondl| ting an Ansatz for a DF into Boltzmann'’s transport equa-
and Regions IH-1V. tion. However, errors made in the Ansatz of the DF di-
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rectly enter the transport model and models based on thision (4) can be easily integrated analytically and has nice
method have shown to perform pootfiNote that these mathematical properties due to the orthogonality of the poly-
models donot consider the moments of the DF but the nomials. However, convergence of Ed@) is known to be
parameters of the DF, a fact that is frequently confusedpoor and a high order is required to reproduce features like
(3) By generalizing Bltekjeer's method of moments a trans- the thermal tail. This could be the reason for the poor prop-
port model can be derived without assuming any particuerties of the associated transport model studied in Refs. 18
lar DF1%1° This procedure results in balance equationsand 26.
for the even moments iR, typically <54>, and in flux Other problems associated with E@) are thatf(¢)
equations for the odd order moments, typica(ll;é*) or  may become negative and that for higher orders oscillations
(k&Y. The method of moments delivers an infinite set ofmay occur. This can be shown fbr=3 and parabolic bands
equations which has to be truncated at a certain order tavherea, can be analytically expressed as

give a tractable equation set. In particular, the highest 3 5

order equation contains the moment of next higher order 5 — _ 1+/1— _Bn>- (5)
which has to be suitably approximated using available kgTnBn 3

moments. Thiganbe done by assuming a particular DF, The term in parenthesis is always positive and real valued for
for instance a Maxwellian distribution. However, differ- g in the rangd0,1.5], which covers the whole of Region II
ent closures have been suggested Note that the four-  and the beginning of Region Ill. Thus, will always be

moments based model which has been closed with fegative which implies that(£)<0 for £>1/a, which is
Maxwellian DF is structurally equivalent to the transport clearly unphysical.

model obtained when a Maxwellian DF is put into Bolt-

zmann's transport equation and parabolic bands are as-

sumed. This is not the case with a general band structurg Polynomial in exponential function

and other Ansatz functions for the DF. In particular, the

moments based model is independent of the DF shape Even though expressions of typé) are still frequently

and the temperature appearing in the transport equatioritsed, better approximations have been considered. These are
is defined via the second-order moment. In contrast, th@btained by putting the polynomial into the exponent of the
temperature appearing in models based on an Ansatz f&xponential function

the DF is the par_ameter of the DF_ itself rather than the f(&) ~ap exp(aE+a,2+...ay_ (&N ). (6)
mean energy, which becomes obvious when for instance ) o o ]
a Fermi=Dirac distribution is assum&H. A theoretical derivation which justifies this Ansatz can be

found in Ref. 12. Theoretical considerations based on the

In the following, some typical Ansatz functions for the maximum entropy principle deliver the same reuft’ For
DF and their properties are reviewed. One common feature i8>2, a deviation from the Maxwellian DF is obtained.
that all Ansatz functions must be able to reproduce a coldther authors have used this Ansatz wiNls=3 but deter-
Maxwellian DF which is the solution of Boltzmann’s trans- mined the parametera, via an energy-transport mod¥l,
port equation in equilibriunfassuming nondegenerate semi- which can only supply two parameters and has to be supple-
conductors Furthermore, we will only consider the even mented with heuristic considerations, or via a six-moments
moments of the DR&') because the contribution of odd transport modél which provides all required parameters and
order moments is considered to be of minor importance fothus gives the best results. Unfortunately, E).is difficult
modeling the symmetric part of the DF. Odd order momentgo handle analytically, except fd¢= 2, which corresponds to
like the average carrier velocityhave been used to displace a Maxwellian DF.
the symmetric part of the D¥. However, the odd order mo-
ments are vector quantities in the multidimensional case and
they are not state variables in macroscopic transport models. Generalization of Cassi's expression
which complicates the handling of the model considerably.
In the following, we will show that excellent agreement can
be obtained without considering the odd order moments.

Cassi and Ricct derived an analytical expression for
the distribution function assuming that the diffusion term in
Boltzmann's equation is negligible compared to the drift
term and by fitting the resulting model to MC simulations.
Generalizing their result gives the Ansatz

Expansions of the DF around a heated Maxwellian DF

A. Expansion around a heated Maxwellian DF

— A A
are commonly used in theoretical physics: f(E)=apexp(a £+ agf™+. . +ay_,E™ ). @)
Cassi and Riccaseda, = — x/|E|*¥? anda,= 3 with y being
f(&)=~a, exp( — —|(1+ayE+agfe+...+ay_1EN?). a fit factor. A comparison with MC data shows that this
a is a reasonable expression for the bulk case under high elec-

4) tric fields which corresponds to their assumptions. However,
The parameterg, are frequently related to orthogonal Leg- in the devices of interest, the electric field is never homoge-
endre or Hermite polynomi#$%* or to a Grad-type neous and strong gradients exist. Therefore, to fit their
expansiorf> They can be determined in one of the aforemen-experimental data, other authors have used this expression
tioned ways wheré\ is the number of parameters. Expres-in modified formé®=3° to calculate gate and substrate
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currents of submicron devices. For example, Hastat > 10' pr—r—v—vrr—r-"rrrrrrrrrrrryrrrrr;
replaced the electric field ia; by a function of the carrier
temperature to better account for the nonlocal behavior and 0 MC 3
useda; =7 (kg T,) ¢ anda,=1.3 with =0.265 and; 10 — 17
=0.75. —_ -f |3
5 ]
D. Comparison of analytical expressions f 10" E
To test how well the given approximation can reproduce § ]
realistic DFs, we calculate the parametarsn such a way 2107 3
that the analytic DFs exactly reproduce a given set of mo- § _____ N=5
ments. This is considered the optimal parameter set, favor-2 .\ \\ . A
able to anyad hoc calculated parameters. The number of 2 10 N=3"
given moments equals the number of unknownsAs a test © ]
device we used am™—n—n" structure with a channel 10 -
length of 200um. 3
A comparison of expressiof#) with MC data is shown s . |
in Fig. 2@). We favor to plotf(&) directly instead of the L - S R V- E—

frequently used produdt(£)g(€) which only obscures de- Energy [eV]
tails of the DF as the density of sta@&) is fixed. Note that
the DF becomes negative at arous¥d 1.5 eV and the oscil-
lations for N=7. Altogether, the agreement is poor. In Fig.
2(b), the expression&) and (7) are compared to MC data.
Even forN=3, both expressions give accurate results where
Eq. (7) performs even better in the high-energy tail. In addi-
tion, expression{7) has the advantage that it can be analyti-
cally integrated forN=3 which is one order higher than

Eq. (6).

IV. MODELS FOR REGION III AND IV

Expressiong6) and (7) deliver accurate results for Re-
gion Il. When the hot carriers coming from Region Il meet
the cold carriers in Region H1V, two populations coexist
and the contribution of the cold carriers is clearly visible in
the DF.

A. Superposition of two Maxwellian DFs ) 0.5 1 1.5 2 2.5
Energy [eV]

distribution function {a.u.]

A straightforward approach would be to assume a super-
position of two Maxwellian distribution functions. In Refs. 7 FIG. 2. Comparison of different analytic distribution function models for

. various orderdN inside Region ll(channel: (a) The polynomial expansion
and 8, the parameters of the two Maxwellian DFs have bee round a heated Maxwellian. Note the sign changé&(#). (b) Maximum

determined using two coupled transport models for the col@ntropy(ME) and generalized Cassi's expressi@C) for orderN=3. Also
and the hot populations. Another attethptas to calculate shown isN=5 in the middle of Region II.

the parameters from a six-moments transport model. Even
though these approaches give an approximate description,
they overestimate the number of carriers in the high-energyere made: First, the temperature of the Maxwellian TF

tail which does not show the thermal behavior. was assumed to equal the lattice temperature and second, it
was assumed that the kurtosis of the hot QF) does not
B. Sonoda’s model change within Region IH-1V and that thus a constant value
Sonodaet al?’ used the following expression to model of 51= By can be used. The kurtosis of the hot DF is defined
e X as
the contribution of the cold carriers
3 [f,0d€ [E2F,9dE 9
) £ P75 (rer,gae)? ®
f(&)=apexpla,E+ay&)tazexpl — ——].
) - kgTs, As a value forgy, the saturated high-field value for bulk was
(&) 15() used. In additionB;,, was used as a threshold value for the

®) kurtosis to distinguish between Region Il and Region
Il +1V. In particular, wheng,, was smaller tharB,, the pre-
The parametersg, were calculated via given moments of the factor of the Maxwellian DFa; was assumed to be zero
DF. Equation(8) contains five unknowns and to make it (Region I, and only forB,,> B;, the more complex expres-
suitable for a six-moments transport model, two assumptionsion (8) was used. Although this approach looks reasonable,
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3 T T v T T v T overestimation of the high-energy tail with,<1 is even
L. =200 nm stronger than the overestimation observed within the models
A B,I,AC : s 1 using two Maxwellian DFs. Second, during the transition
MC N - between Region Il and Region I, a value of 1 is obtained
v B : for the exponent,. Unfortunately, this results in a Max-
S BBulk(Ti"'C) : wellian DF which is not confirmed by MC simulations. This
2k e DA - error is amplified when, for instance, impact ionization rates
= Bpu(T ) : are calculated where only the high-energy tail of the DF is
required®:

7] V. IMPROVED MODEL

Weighing the pros and cons of the previously published
models, we can now construct an improved model with the
following properties.

2.5F

kurtosis

1L.5F

d (1) First, at least six momentsNE=3) are needed to im-
03 . ] , ] i 1 . 1 prove the Maxwellian approximation. Even though ex-
2 03 p (2-4 (] 0.5 0.6 pressions have been used which go beyond the Maxwell-
istance: tum ian shape approximation using lower order transport
models, there would be no way to predict Regior-IN
without resorting to heuristic criteria. The kurtosis pro-
vides both a change in the shape and a differentiation
" between Region Il and Region #llV. Therefore, if de-
tails of the DF are required, at least a six-moments trans-
MC : port model is required which is one order higher than

— BT ) A, conventional hydrodynamic and energy-transport mod-

2r . BB lk(TMC) A A els.

v . (2) Our model should give closed form solutions so that, for
: instance, closed form expressions of impact ionization
rates can be givettl. Therefore, we use Eq7) with N

=3 as a basis.

(3) To avoid the problems which arise from using Eg). in
Region llI+1V, we allow for a cold Maxwellian DF in
the way Sonodat al. did.?’ However, the kurtosis of the

hot DF, B;, must be modeled dynamically, that is, de-

035 0.'25 ER 0.'35 . 0f4 . 0_:‘5 Y pgnding on bias and position to capture the high-energy

distance [um] tail correctly.

LC=50nm

kurtosis
>

FIG. 3. Comparison oﬁ’fc with two analytical models. When the tempera- Therefore, we use the Ansatz
ture of the hot DFT is used in the bulk characteristic, accurate results are

obtained fom™ —n—n"* structures with. .= 200 nm and..=50 nm. Note b £

that Bgu(T,) does not properly describe the behaviogaf. Also shown is f(&)=Ajexp| — T +cexp| — T

the kurtosis of the total distribution functigsy, . \EB T ref) B2
f1(9 12(E

(10

there are two problems with assuming a constant value fofyr the symmetric part of the DF. We now have to determine
Bn: First, B, doeschange inside Region Ill and approachesyq five parametera, T, b, ¢, andT, which describe the

unity in Region V. With 8, the shape of the hot DF pE that is, we need two additional equations to the three

changes and approaches a Maxwellian shape SomeWhereﬂﬁrameterm, T,, and 3, provided by the six-moments

Region IV. Second, for lower applied fields, the kurtosis,qqel.

might not reachBy, at all and the model erroneously predicts To get an idea about the behavior of the DF in Region

a spurious cold population throughout the whole device. Fojj; v we look at the momentg; andT, (Figs. 3 and 4

Iarge_r app_lied biases, a spurious _cold population is alwaysr1 is the temperature of the hot DIF(&) which is defined

predicted in the larger part of Region Il whegg> By . analogously tg3;. Note thatT; is different fromT . For

C. Generalization of Cassi’s expression the extraction of these parameters, see Appendix A. From
When th (E culated f h Fig. 4, we see that the temperature of the cold Maxwellian

en the parameters of E(y) are calculated from the 54, pegion 1l rapidly relaxes to the lattice temperatiie
moments of the DR, becomes smaller than unity in Region and will be modeled a%,=T, in this work

u'a'\gl‘#ﬂ@h IS N cr:)nt_rast to Reglgln . Wher_eazil . In contrast to T, modeling of the kurtosig, is crucial
RO S " |Tva;_)rphroac gives reaslona iapprox.lrrllg 'Oni Mor an accurate description of the high-energy tail. One ap-
egion lll+1V. There are two problems, however: First, t eproach would be to describg; via the bulk relation
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£ Zo09
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23000 =
g ]
e

0.8

" M 1 " M 1 M "
8. 0'70 3000 6000 9000
Temperature [K]
7000 FIG. 5. The kurtosisg, plotted over the temperaturg, for bulk silicon
with the doping concentration as a parametidy,=10'°10",10'® and
10" cm™3). Also shown is the fit expressiorid2) and the kurtosisByg
6000 which would be obtained from a fictitious Maxwellian DF.
5000 . . _
_ accurate for doping concentrations around®xn~ 3 but the
= 4000 doping dependence @y, is only relevant at lower doping
g concentrationgFig. 5).
£ A comparison of the mode8; = Bg,k(T1) with MC data
§3000 is shown in Fig. 3. Note thaBg,(T,) approaches unity too
=

quickly as also shown in Fig. 3 which underlines the idea of

modeling the hot and cold electrons as separate populations.

Furthermore, we see tha@g,(T,) provides a separation

between Region Il and Region #lIV. This is reasonable

because inside Region Il the high-energy tail at any point can

' : ; ) be expected to be less populated than in a comparable bulk

02 03 0.4 0.5 case, resulting in a kurtosis smaller th&g,,. In Region
distance [|m] Il +1V, on the other hand, the cold population dominates the

FIG. 4. The three different temperaturgs, T,, andT, extracted from MC kurtosis, resulting in values larger thgig, -

simulations for twon*—n—n* structures. Note that in Region IT,,=T, Inside Region Il, there is no cold population and tlus

holds. =0. This implies thafl; equals the total temperatufg and

B the total kurtosisB,. At the beginning of Region lll, a

cold population appears which causes0. Note that at the

transition point, T;=T, holds and thus Bg,(T1)

= Beuk(Tn), Which guarantees a continuous transition.

Thus, for each grid point, the following nonlinear equa-
tion system is solved using Newton’s method

:

Beuk(T,) which can be derived from the homogeneous six-
moments modét as

IB (T ):Lﬁ_i_zﬁis 1_l (11) Tn(Tref:baC) TrI\IAC
ST T e pn\ T T BolTeetsb,0) | = e . (13
where ¢, 75, un, andug are the energy relaxation time, B(Trerb,C) Beurd T1(Trer,b,C)]

the kurtosis relaxation time, the electron mobility, and theNote thatT,, B,, and 8, are analytic expressions derived
energy flux mobility, respectively. Unfortunately, still no suf- from the moments of Eq(10) and TV and g¥° are taken
ficiently accurate models for these parameters exist whiclrom MC simulations. As just stated, in Region d=0 is
work in the present context. Therefore, we use the fit to MCassumed and the last row of Ed.3) is dropped.

data A. Expressions for the density of satates
T T :
X(Tn)zzj M—S=x0+x1 1ex;{ 7X27L , (12) For the calculation of the moments
Te Mn Tn
with xo=0.69, x;=1.34, andx,=1.89. This expression is m=C J £g(&)f(&)de (14)
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TABLE I. Coefficients for the Taylor expansion of Kane's DO®S. 4 —
i 0 1 2 3 4 5 I Fischetti A
d; 1 5/2 7/8 —3/16 11/128  —13/256 O w=05ev" P
3See Ref. 17. 3l o g=oev! 7
—_ AAA
”'> — New Fit A
[ A
'?E -=- y=1052 a
of the analytic distribution functiori10), an expression for 4% 2
the density of state$DOS) g(&) is required. Besides the = ‘A“,,—
simple parabolic band approximation, Kane's dispersion 4 T
relation® % - —r
72 K2 1 e :.::|:::u:u::l:ltl‘“':":":l .
1+aé)= , 15
E(1+ad)=5- (15
is a frequently used expression to incorporate nonparabolic-
ity effects_ to first_order, witha beipg the nqnparabolicity o 15 é . 2f5 3
factor. This factor is generally considered a fitting parameter, Energy [eV]

with @~0.5 eV 1 in Si. The dispersion relatiofl5) is gen-
erally accepted as valid for energies up to 0.5 eV.
The DOS evaluates for Kane’s expression to

FIG. 6. Comparison of different expressions for the DOS.

9(E) =goVEV1+al(1+2af) (16 Eq. (14), a value smaller than 1 is required farto accu-

Unfortunately, using Eq16), the moments can not be evalu- rately fit the low-energy region, because this is whi(€)
ated analytically for arbitranf ¢, b, andc. A straightfor- ~ has its maximum. However, the resulting DOS shows a
ward approach is to consider the Taylor expansion of theparabolic-like” behavior.

nonparabo”c Correction term in Eme) as TO inCIUde “nonpal’abolic-like” behaViOI’ W|th0ut |OSing
G accuracy in the low-energy region, we propose using
9(8)=0oVE 2, di(ad) (17) 9(E)=goVE(L+()). (20)

This expression has the advantage of fitting Kane's expres-
sion (16) and the numerical datesee Fig. 8, the shape of
which can not be reproduced by adjustiagn Eqg. (16). The

with the coefficients given in Table I. This expansion con-
verges rather poorly and is difficult to handle in a numerical

implementation for higher order truncations. Accurate result§itted parameters for these two cases are shown in
were obtained folG=3. . Table 1.

To obtain a more tractable expression, Cassi and Ricco Using Eq.(20), we can calculate the moments analyti-
approximated the dispersion relation as cally as ’

h2 k2 1+3/2
— kgT 21+3

XE'= s (18) S Ago(( B rzf) ( .
fitting the parameters andy for different energy ranges. 2042043
From Eq.(18), the DOS follows a8 +(77kBTref)£F(T

9(8)= i—?(z mgyx)¥2y 3~ 1=g, &, (19 21+3

+ C(kBTZ)I+3/2 F(—

Note that fory=1, the parabolic DOS is obtained. As
pointed out in Ref. 21, this expression must be used with 214+2¢+3
care. In particular, physically meaningful results could only +(’7kBT2)§F(T) @D
be obtained by fitting Eq18) to the energy rangé,0.2 eV].
This can be explained by looking more closely at the DOS. A
comparison of different fits to the Kane expression is ShOWR g, £ |1 coefficients for Ref. 20.
in Fig. 6 together with the numerical data used by Fischetti
and Laux>® The fitted values were taken from Ref. 21 and Energy range
are x=1.365 andy=1.52 when fitted to the low-energy Fitto 7(ev) 4 (ev)
range[0,0.2 eM andx=1.185 andy=1.052 when fitted to  Kane 1.37153 1.044 59 [0,0.5]
the high-energy rangil.5,3.0 e\, wherex has the unusual Kane 1.40132 1.081 28 (0,1.0
dimension of eV~ Y. For A\=1, the shape o§(€) changes Kane 1.404 111207 (0,19
from convex to concave and thus either the low- or the high-';;';f]em éggﬁ (7); 1613(?9%5 %g'ig
energy range can be fitted properly but not both simultayiscpeti 0.884 09 1.3742 [0.1.71

neously. Asg(€) is normally needed in a context similar to
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with my; andmy, being the moments of the hot and cold DF,
respectively. The normalized moments are calculated as

2mg 3 mgm,
“eTn=3m, P75 -
1 1 :
<
and =
g
3mp oMy, g
Bi== — = (22 5
5 mi,l =
L2
=
VI. COMPARISON WITH MONTE CARLO DATA -'E
%

In the following, we give a comparison of the analytical
model with results obtained by rigorous MC simulations. For
the MC model, we employed optical and acoustic phonon
scattering in addition to impurity scattering. Furthermore,

nonparabolicity was considered using Kane’s dispersion re- 10755351 15 5 s

whk
.u).
W
&

lation with =0.5 eV'* and Keldysh’s impact ionization Energy [eV]
model®*
A. Bulk 10'Ry
A comparison of Cassi's model and the improved model .
with MC data for bulk is shown in Fig. 7 forNp 10°®oe
=10 cm3. Cassi’s model, where we usgd=1.1x 10° for 5 8
the fitting parameter, does not work properly for low electric £t
fields (E<200 kV/cm) where it gives poor agreement inthe g 10 F
low-energy region. This is due to the fixed curvature of the § F
distribution function which does not allow for a better reso- E 102k
lution. Excellent results have been obtained with the im- .& F
proved model as shown in Fig. 7, where the analytical ex- -é s
pression accurately reproduces the whole energy range, .3 10
although the high-energy tail is slightly overestimated. [
To judge the accuracy of the models qualitatively, we 107
can calculate the moments of the analytic DFs. We require E
that these moments reproduce the MC moments and we H T T T U T W T T W T -\ W
quantify the deviation as 00" 05 1 15 2 25 3 35 4
Energy [eV]
\/(Tﬁ—TnMC)Z (Bﬁ— ﬁ”c)z . . . . .
¢= ic + Vic , (23 FIG. 7. Comparison of bulk distribution functions obtained by Cassi’s
Tn n model and the improved model with MC data for electric field values of 50,

. T 100, 300, and 600 kV/cm.
where the superscriph indicates the moments of the ana-

lytic DF. The Cassi model is quite accurate for electric fields

larger than 200 kV/cm with an error as small as 3.5%. At . .
lower fields, however, the error increases to over 1a¥50 simulated. The basic structure was taken from Ref. 27 where
' ' the channel length . has been adjusted to 200 and 50 nm.

kvicm), because the curvature has been fixed to the hig To obtain comparable results, the devices were biased to give
field case. Making the curvature of the DF field dependent ) parable ' ; 9
a maximum electric field of 300 kV/cm in both cases.

might improve the accuracy for the bulk case. However, Cas- As expected, the distribution functions given by the

si's model is still not suitable for the inhomogeneous CaseCassi formula show no visible correlation with the MC data

because it only uses the electric field as a parameter.
. : . and are thus not shown. Also not shown are the results ob-
The results obtained with the parameters given by Has; . : ) ; . .
natet al,? who replaced the electric field dependence with atalned with Hasnat'’s correction which gave a minimum error
L . of 65% compared to the 109% of Cassi’s formula. Interest-
carrier temperature dependence, are even worse with an eror = assuming a Maxwellian distribution function onl
larger than 70% over nearly the whole electric field range. iseys’, a maximgm error of 57% where the introduced er?/or
This suggests that the parameters for their distribution func?esults from the assumptio@ :Ol This implies that brob-
tion model were fitted to resemble some average character- . » plios, = 1. p, P .
istic for the whole device. ably neither Cassi’s expression nor Hasnat's corrections give

an improvement over the simple Maxwellian-shape assump-
tion which makes their application to submicron devices
questionable.

To evaluate the accuracy of the improved model for the  In contrast, the improvecd model gives accurate results
inhomogeneous case, two'—n—n" structures have been for all four regions of the devices. The results for bath

B. Inhomogeneous case
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FIG. 8. The analytic distribution function inside the four regions af'a
—n—n" structure withL .= 200 nm. The spacing between the DFs is given
asAx. Note the different lengths of each region.
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FIG. 9. Comparison of the moments of the hot analytic DF with MC data.
The temperaturd, is obtained implicitly whereag, is modeled via the
bulk characteristic. Note thaf; appears to be independent of the channel
length and the total temperatufg . Furthermore]T, relaxes exponentially
towards the lattice temperature. The origin of thaxis has been moved to
the transition point between Region Il and Ill.

—n—n* structures are similar and tHe.=200 nm case is
shown Fig. 8. The accuracy of the improved model is con-
firmed when we look at the normalized moments of the hot
DF only. This is shown in Fig. 9 where the mometsand
T, are compared to the values extracted from the MC simu-
lation. Note that the temperatuil, is obtained implicitly
whereasB; is modeled via the bulk characteristic. The accu-
racy of both parameters is astonishing. It is interesting to
note that neithe; nor T, seem to depend on the channel
length and the value of the total temperatiifeand the total
kurtosis B,, which behave differently in both devices. Fur-
thermore, T, relaxes exponentially towards the lattice tem-
perature.

The importance of a proper model f@#; is demon-
strated in Fig. 10 where a constant value®&f= 3y, is as-
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107 pr—r—rr—rr—rrr—~rrr—rrrrrrrrr formation to differentiate between the channel regi&e-
gion Il) and the transition region from channel to dréie-

gion lI+1V). Furthermore, it can be used to describe the
changing shape of the distribution function throughout the
whole device. To obtain the kurtosis, a six-moments trans-
port modet! can be used which contains one additional bal-
ance equation as compared to the conventional energy-
transport models.

Another important factor is the inclusion of band struc-
ture effects. We propose a model for the DOS which can be
fit to both Kane’s expression and to data obtained from
pseudopotential calculations. Although these relatively
simple analytical expressions can not capture all of the de-
tails of a realistic band structure, they provide a considerable
improvement over the parabolic band assumption and are
, % ., 0. proven to be suitable for efficient simulation of submicron

1. 2 2.5 3 devices. With the improved models of the distribution func-
Energy [eV] tion and the DOS, models based on microscopic scattering
FIG. 10. The analytic distribution function inside RegionHIV when a desc_rlptlons can be develope_d for the I_ndUSIO_n ”t] m_acro'
constant value is used f@, as in Ref. 27. scopic transport models. Candidates are impact ionization, as

reported in Ref. 31, and gate current modeling.

o MC
— Analytic: §, =0.7744

aned 2o

LC =200 nm
Region III+IV (Ax = 40 nm)

e EPETT B

distribution function [a.u.}

sumed as in Ref. 27. Because of the small valugpf the  AckNOWLEDGMENTS

curvature at the end of Region IV is too high, resulting in a ) o
suppression of the high-energy tail. For larger electric fields, ~ This work has been partly supported by the “Christian
the influence of the band structure model used in the momerifOPPler Forschungsgeselischaft,” Vienna, Austria. Fruitful
calculation becomes important. This is shown in Fig. 11discussions with Dr. K. Sonoda, Mitsubishi Corp., are grate-
where a parabolic DOS has been assumed during the evalftlly acknowledged.

ation of Eq.(14). In particular, a maximum error of 50% was

For the extraction of3; andT,, which are the moments
VII. CONCLUSION of the hot subpopulation, we used the following algorithm:
We have developed an analytical description for the dis—FirStj MC ;imulations were performed ,WhiCh recorded the
tribution function which goes beyond the assumption of aPF N the interval[0,3 eV] using 400 points. In a postpro-
Maxwellian shape. Of fundamental importance to this modefeSSiNg step, a change in the curvature of the DF was de-
is the information provided by the kurtosis of the distribution t€¢ted; and the low-energy region of the DF, which contained

function. We have shown that the kurtosis provides the in{he cold Maxwellian DF, was cut off. The low-energy reg_io_n
of the hot DF was then reconstructed by least-square fitting

of Eq. (6) with N=5 to the remaining high-energy region.

1073 e From the reconstructed DF, the second and fourth moments
3 where taken to calculatg; andT,. T, was determined in a
10" ° MC 1 similar fashion from the low-energy region.
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