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1. Introduction 
 
Numerical simulation of carrier transport in semiconductor devices dates back to 
the famous work of Scharfetter and Gummel.1  Since then the transport models 
have been continuously refined and extended to capture more accurately transport 
phenomena occurring in modern semiconductor devices.  The need for refinement 
and extension is caused primarily by the ongoing feature size reduction in state-of-
the-art technology.  As the supply voltages cannot be scaled accordingly without 
jeopardizing the circuit performance, the electric fields inside the devices have 
increased.  Large electric fields that rapidly change over small length scales give 
rise to non-local and hot-carrier effects that begin to dominate device performance.  
An accurate description of these phenomena is required and is becoming a primary 
concern for industrial applications. 
 Traditionally, the drift-diffusion model2 has been used to describe carrier 
transport in semiconductor devices.  However, the drift-diffusion model assumes 
equilibrium between carrier energy and electric field, which is no longer valid in 
modern devices.  Extended models have been proposed that consider the carrier 
energy an independent solution variable.3,4  These models are capable of 
describing non-local and hot-carrier effects to first order.  Recent results, however, 
suggest that the average energy is in many cases not sufficient for accurate 
modeling.  Both the transport models themselves and the models for the physical 
parameters are affected.  In this article we review the most commonly used 
transport models and point out their most important limitations.  In addition, an 
extended transport model based on six moments of the distribution function is 
presented, which seems to be a balanced trade-off between accuracy and 
complexity. 
 
 
2. Boltzmann’s transport equation 
 
Transport equations used in semiconductor device simulation normally are derived 
from Boltzmann’s transport equation, which provides a semiclassical description 
of carrier transport.  For a general inhomogeneous material with arbitrary band 
structure it reads5  

  ∂f/∂t + u.∇r f + h–1F.∇k f  = C[f] . (1) 
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Here, u is the group velocity, F the force exerted on the particles, and C the 
collision operator.  For inclusion of quantum effects, equations based on the 
Wigner-Boltzmann equation have been considered.6   Boltzmann’s equation needs 
to be solved in the seven-dimensional phase space, which is prohibitive for 
engineering applications.  Monte Carlo simulations have been proven to give 
accurate results but are restrictively time consuming.  Furthermore, if the 
distribution of high-energy carriers is relevant, or if the carrier concentration is 
very low in specific regions of the device, Monte Carlo simulations tend to 
produce high variance in the results.  Therefore, a common simplification is to 
investigate only some moments of the distribution function, such as the carrier 
concentration and the carrier temperature.  These moments of the distribution 
function are typically defined as 

  〈φ〉 = (1/4π3) ∫φf d3k , (2) 

with a suitable weight function φ = φ(k). 
 
 
3. The drift-diffusion model 
 
The drift-diffusion model is the simplest current transport model that can be de-
rived from Boltzmann’s transport equation by the method of moments2 or from 
basic principles of irreversible thermodynamics.7  It has been the workhorse in 
industrial applications for over thirty years.  Within the drift-diffusion model, the 
well known continuity and current equations have to be solved.  In their static 
form, these equations read 

  ∇.J = qR , (3) 

  J = qµnE + µkBTL∇n . (4) 

Here µ denotes the electron mobility, TL the lattice temperature, E the electric 
field, J the current density, R the recombination rate, n the carrier density and kB 
the Boltzmann constant.  The average energy w can be estimated via the local 
energy balance equation.  This method neglects the lag between the electric field 
and the average energy characterized by the energy relaxation time.  One 
consequence of the lag is that the maximum energy can be much smaller than the 
one predicted by the local energy balance equation.  Furthermore, this lag gives 
rise to an overshoot in the carrier velocity, because the mobility depends to first 
order on the energy and not on the electric field. 
 Therefore, modeling deep-submicron devices is becoming more and more 
problematic.  Although successful reproduction of terminal characteristics of 
nanoscale MOS transistors has been reported,8 the values of the material 
parameters used significantly violate basic physical principles.  In particular, the 
saturation velocity vS has to be set to more than twice the value observed in bulk 
measurements. 
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4. The full hydrodynamic model 
 
The full hydrodynamic model was first derived by Bløtekjær.4  In its original form 
the first three moments of Boltzmann's transport equation were considered.  
Closure was obtained by applying a heuristic model for the heat flux using 
Fourier's law.  Furthermore, the band structure was assumed to be parabolic and 
the tensor quantities were approximated by scalars.  The resulting equation set 
reads4 

  ∇.J = qR , (5) 

  J – (τm/q)∇.(J⊗J/n) = qµnE + µkB∇(nTn) , (6) 

  ∇.S = E.J – n(w–w0)/τE + GE , (7) 

  S = –(w + kBTn)J/q – κ(Tn)∇Tn ; (8) 

where τm is the momentum relaxation time.  The additional parameters are the 
energy relaxation time τE, the thermal conductivity κ, the energy flux S, the 
electron temperature Tn, the average energy in equilibrium w0, and the generation 
rate GE.  For the thermal conductivity an empirical relation analogous to the 
Wiedemann-Franz law is used with a correction factor p: 

  κ(Tn) = (5/2 – p)(kB/q)2 qµnTn . (9) 

This equation system is similar to the Euler equations of gas dynamics with the 
addition of a heat conduction term and the collision terms.  Thus, the electron gas 
has a sound speed and the electron flow may be either subsonic or supersonic.9  In 
the case of supersonic flow, electron shock waves will in general develop inside 
the device.  These shock waves occur at either short length scales or at low 
temperatures.  Furthermore, the traditionally applied Scharfetter-Gummel1 
discretization scheme and its extensions cannot be used for this type of equation, 
which makes handling the full hydrodynamic model quite difficult.9, 10 
 
 
5. The energy transport model 
 
As the closure of the full hydrodynamic model has been shown to be problematic, 
the fourth moment of Boltzmann’s equation is added to give a more accurate 
description for the energy flux S.  For the closure of the equation system a heated 
Maxwellian distribution is generally assumed.11  Since the resulting equation 
system is difficult to handle, simplifications are generally considered.  The four-
moments energy-transport model is obtained by the simplification of the four-
moments hydrodynamic model.  The convective term, 

  (τm/q)∇.(J⊗J/n) , (10) 
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in the current relation is neglected, as are the corresponding convective term in the 
energy flux relation and the contribution of the kinetic energy to the total carrier 
energy: 

  w = mv2/2 + 3kBTn/2 ≈ 3kBTn/2 . (11) 

This simplification gives the four-moments energy-transport model which reads as 
follows: 

  ∇.J = qR , (12) 

  J = qµnE + µkB∇(nTn) , (13) 

  ∇.S = E.J – 3nkB(Tn–TL)/2τE + GE , (14) 

  S = –(5µS/2µ) [(kBTn/q)J + (kB/q)2qµnTn∇(nTn)] . (15) 

Here the energy flux mobility µS appears instead of the thermal conductivity in Eq. 
(8).  Considering the different definitions for the mobilities, the energy-transport 
model is equivalent to the energy-balance model proposed by Stratton.3 See for 
example Ref. 12. 
 A comparison of the energy flux equation of the hydrodynamic model and the 
four-moments energy transport model shows that the correction factor p in the 
thermal conductivity has to be set to zero to obtain a consistent equation set.  
Furthermore, the ratio of the mobilities µS/µ is assumed to be unity in the 
hydrodynamic model. 
 
 
6. Problems of the hydrodynamic and energy-transport models 
 
During the derivation of the models given above various approximations of 
different severity have been employed.  The most important approximations will 
be summarized in the following. 
 
• Closure 
 The method of moments transforms Boltzmann’s equation into an equivalent 
infinite set of equations.  One of the severest approximations is the truncation to a 
finite number of equations (normally three or four).  The equation of highest order 
contains the moment of the next order, which has to be suitably approximated 
using available information, typically the lower order moments.  Even though no 
form of the distribution function needs to be assumed in the derivation, an implicit 
coupling of the highest order moment and the lower order moments is enforced by 
this closure.  One approach to derive a suitable closure relation is to assume a 
distribution function and calculate the fourth order moment, where a heated 
Maxwellian shape is almost exclusively used.  Ramaswami and Tang13 gave a 
comparison of different closure relations available in the literature. 
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• Tensor quantities 
 An issue that has been only vaguely dealt with is the approximation of the 
tensors by scalar quantities, such as the trace of the tensors.  For example, the 
carrier mass and the carrier temperature are approximations introduced that way.  
One-dimensional simulations show14 that the longitudinal temperature component 
is larger than the transverse temperature component.  This result indicates that the 
distribution function is elongated along the field direction and thus that the 
normally assumed equipartition of the energy is invalid.  A rigorous approach has 
been taken by Pejcinovic et al.15 who model four components of the temperature 
tensor.  They observed no significant difference between the scalar temperature 
and the trace of the temperature tensor for ballistic diodes and bipolar transistors 
but a 15% difference for aggressively scaled MOSFETs in the linear region of the 
transfer characteristics. 
 
• Drift energy versus thermal energy 
 Another common approximation is that the contribution of the drift energy to 
the total carrier energy is neglected.16 As has been pointed out by Baccarani and 
Wordeman,17 the convective energy can reach values comparable to the thermal 
energy.  The error introduced by this approximation can be significant in the 
beginning of the channel where the carrier temperature is still low and a velocity 
overshoot is observed.  This effect has been studied in detail in Ref. 18. 
 
• Modeling of the physical parameters: mobility and impact ionization 
 The relaxation times traditionally have been derived from homogeneous field 
measurements or Monte Carlo simulations.  For homogeneous fields there is a 
unique relationship between the electric field and the carrier temperature via the 
local energy balance equation which can be used as a definition for τE.  From 
Boltzmann's equation it is clear, however, that the relaxation times depend on the 
distribution function through the collision operator.  Since the distribution function 
is not uniquely described by the average energy, models based solely on the 
average energy are bound to fail.   

Two models for the energy dependence of the mobility are frequently used, 
the model after Baccarani and Wordeman,17 

  µ(Tn)/µ0 = TL/Tn , (16) 

and the model after Hänsch,19,20 

  µ(Tn)/µ0 = [1 – (3µ0/2τEvS
2)(kBTL/q + 2S/5J)]–1 . (17) 

For homogeneous materials (S/J) = 5kBTn/2q, which can be used to simplify Eq. 
(17) to 

  µ(Tn)/µ0 = [1 + (3µ0kB/2τEvS
2q)(Tn–TL)]–1 . (18) 

A comparison of these three expressions with Monte Carlo simulation results 
for an n+-n-n+ test structure with channel length LC = 200 nm is given in Fig. 1. 
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Figure 1.  Comparison of mobility 
models with Monte Carlo data for an 
n+-n-n+ test structure with LC = 200 nm. 

 
Figure 2.  Ratio of the mobilities 
obtained by Monte Carlo simulations 
for two n+-n-n+ test structures. 

 
The analytical expressions were evaluated using the data from the Monte Carlo 
simulation.  Note that the temperature dependence of the inverse mobility is 
frequently plotted because of the expected linear dependence of Eq. (16).  The 
small hysteresis in the simplified Hänsch model and in the Baccarani model is due 
to the doping dependence of the zero-field mobility µ0.   
 The ratio of the mobilities µS/µ as a function of the carrier temperature is 
shown in Fig. 2 for two n+-n-n+ test structures.  To obtain comparable behavior the 
same doping profile has been used for both structures and the bias condition has 
been chosen to give a maximum electric field of 100 kV/cm.  Note that in 
commercial device simulators the mobility ratio is normally assumed to be unity. 
 In Figs. 3 and 4 the error of the analytical models is shown for the two n+-n-n+ 

test structures.  As has been pointed out in Ref. 14, Eq. (17) is the only expression 
that gives reasonable results in both increasing and decreasing field regions.  
However, at the beginning of the channel where the carrier temperature is still low, 
the mobility is considerably over- or underestimated.  Furthermore, due to the 
quotient of the magnitudes of two vector quantities S and J, Eq. (17) is rather 
difficult to handle in a multidimensional device simulator. 

As for impact ionization, it is poorly described by models that use the local 
average energy as the only parameter.  In general, ionization rates obtained by 
local-energy models start rising too early and fall off too sharply.  Furthermore, 
local-energy models considerably overestimate the ionization rates if not 
calibrated for the investigated device.  In particular, local-energy models cannot 
capture impact ionization caused by hot electrons in the drain because there the 
cold carriers dominate the average energy, which is close to the equilibrium value. 
 Several non-local models have been proposed21 which are, however, both 
difficult to implement in a conventional device simulator and difficult to justify on 
a theoretical basis, especially for multi-dimensional problems. 
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Figure 3.  Error in the analytical 
mobility models for an n+-n-n+ test 
structure with LC  = 1000 nm. 

 
Figure 4.  Error in the analytical 
mobility models for an n+-n-n+ test 
structure with LC = 200 nm. 

 
7. Possible solution: The six-moments model 
 
One can include the kurtosis βn of the distribution function in addition to the 
temperature Tn without making any assumption on the shape of the distribution 
function except that the diffusion approximation holds.22  With the new variables 
(the kurtosis βn and the kurtosis flux K along with its generation rate Gβ) the static 
flux and balance equations of the six-moments model for electrons read 

  ∇.J = qR , (19) 

  J = qµnE + µkB∇(nTn) , (20) 

  ∇.S = E.J – 3nkB(Tn–TL)/2τE + GE , (21) 

  S = –(5µSkB
2/2µq) µ[qEnTn/kB) + ∇(nTn

2βn)] , (22) 

  ∇.K = 2qE.S – 15nkB
2(βnTn

2–TL
2)/4τβ + Gβ , (23) 

  K = –(35µKkB
3/4µq) µ[qEnβnTn

2/kB + ∇(nTn
3βn

3)] . (24) 

Only one additional second-order partial differential equation for βn is introduced. 
 The additional parameters are the kurtosis relaxation time τβ and the kurtosis 
flux mobility µK.  The solution variables are defined as 

 Tn = 3〈ε〉/2kB  and   βn = 3〈ε2〉/5〈ε〉2 . (25) 

For a heated Maxwell-Boltzmann distribution and parabolic bands βn = βMB = 1.  
When non-parabolicity is taken into account, the value of βMB depends on the 
energy but stays close to unity.   
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 The main difference to the energy-transport equations is that the kurtosis βn 
appears in the equation for the energy flux.  As a consequence, the energy flux 
equation cannot be written in the form frequently used for energy-transport models 
as proportional to the current density.  This modification makes the coupled 
equation system difficult to solve and approximations have been used.  Note that 
the six-moments model reduces to the standard energy-transport model when the 
equations for K are dropped and a value of unity is assumed for βn.  The kurtosis 
assumes values in the range 0.75–2.5 and gives the deviation from a heated-
Maxwellian distribution.  This deviation is vital and can be used to formulate more 
accurate models for the physical parameters. 
 
 
8. Application of the six-moments model: Substrate currents 
 
For reliability issues and for the calculation of substrate currents accurate 
modeling of impact ionization is required.  As shown in Ref. 23, the kurtosis can 
be used to obtain an analytical expression for the distribution function that goes 
beyond the Maxwellian shape approximation.  With this distribution function, 
microscopic scattering rates traditionally used in Monte Carlo simulations can be 
incorporated into macroscopic device simulators.  For the purpose of 
demonstration we considered two MOSFETs with gate lengths LG = 1.0 µm and LG 
= 0.25 µm.  A comparison of the impact ionization rate predicted by a local-energy 
model and by a six-moments model is given in Fig. 5 for the short-channel device. 
also shown is the metallurgical junction (fat line).  For the local-energy model the 
 
 

 
Figure 5.  Comparison of the impact ionization rate as predicted by a local-energy 
model (LE) and by a six-moments model (SM).  Also shown is the metallurgic 
junction (fat line). 
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Figure 6.  Comparison of modeled 
substrate currents and measurements 
for the long-channel device. 
 

Figure 7.  Comparison of modeled 
substrate currents and measurements 
for the short-channel device. 

maximum occurs at the junction where the average energy rapidly decreases, 
because the hot carriers from the channel meet the large pool of cold carriers in the 
drain.  In the case of the six-moments model, the maximum is inside the drain 
region, which is in agreement with Monte Carlo simulations. 
 Simulated substrate currents are given in Figs. 6 and 7 for the long-channel 
and short-channel devices, respectively.  Both characteristics were calculated 
using the same parameter values.  Note that the local-energy model had to be 
calibrated for these devices.  Although the local-energy model delivers reasonable 
substrate currents, the calculated ionization profiles inside the devices are at the 
wrong position and have a wrong shape that requires individual calibration. 
 
 
9. Problems of higher-order moment equations 
 
Even though the vast majority of routinely performed device simulations still 
employ the drift-diffusion model, hydrodynamic and energy-transport models have 
been investigated thoroughly during the last ten years.  Accurate results have been 
obtained for a large variety of devices.  However, the values of the physical 
parameters used vary considerably. 
 Uncertainties are introduced by the approximation of the collision terms that 
are modeled via relaxation times or mobilities and by the derivation of closure 
relations.  Expressions for the parameters normally are calibrated with 
homogeneous Monte Carlo simulations.  As has been clearly shown, homogeneous 
Monte Carlo simulation data are not sufficient for the simulation of state-of-the-art 
devices as neither the relaxation times nor the closure relations are single-valued 
functions of the average energy.  Unfortunately, data for inhomogeneous situations 
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are difficult to extract from measurements due to the complex interaction between 
the various parameters.  Therefore, Monte Carlo simulations of n+-n-n+ test-
structures were performed to extract the desired data.  However, the results 
obtained by available Monte Carlo codes differ significantly.24  Impurity scattering 
is especially difficult to model25 and any error in the mobility influences the 
simulated energy relaxation times where large differences are found in the 
published data. 
 It is particularly important to note that all models should be able to reproduce 
correctly the homogeneous limit.  Unfortunately, model parameters calibrated to 
particular devices frequently do not fulfill this basic requirement, indicating that 
some of the underlying assumptions need to be reconsidered. 
 From a practical point of view it has to be pointed out that convergence 
problems are still an issue and inhibit the use of higher-order moment equations in 
everyday engineering applications.  Unfortunately, simulation codes based on 
these equations have never reached a robustness comparable to the drift-diffusion 
model.  One reason may be that a consistent discretization of the current equation, 
the energy flux equation, and the heat source term in the energy balance equation 
is difficult.26   No generally accepted scheme like the Scharfetter-Gummel1 scheme 
for the drift-diffusion equations exists. 
 Furthermore it has been shown that hydrodynamic and energy-transport 
models capture velocity overshoot only to first order.  In general, the velocity 
overshoot is overestimated.  Moreover, a spurious peak in the velocity at the drain 
end is observed which has so far not been eliminated with a unique parameter set.  
Comparison with Monte Carlo simulations indicate that this is a principal problem 
caused by the truncation of the infinite moment series.27  In addition, inaccuracies 
in the physical parameters, such as the mobility, amplify the spurious peaks.14  
 With the ongoing reduction of feature size, the influence of quantum-
mechanical effects such as confinement in the channel and tunneling currents is 
increasing.28  Accurate modeling of these effects still requires large amounts of 
computation time.  In particular, the influence of the surface still can not be 
modeled properly.  For instance, the energy relaxation time is known to differ 
significantly from its bulk value. 
 
 
10. Conclusions 
 
Various transport models have been proposed so far.  Apart from the drift-
diffusion model, higher-order models based on either Stratton's or Bløtekjær's 
approach have been considered.  Despite its well-known limitations, the drift-
diffusion model is still predominantly used in engineering applications.  The need 
for higher-order models is well understood and these models have delivered 
excellent results in carefully set-up simulations.  However, handling of higher-
order models still requires a lot of fine-tuning and a detailed understanding of the 
underlying physical phenomena. 
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