Microelectronics
Journal

ELSEVIE Microelectronics Journal 33 (2002) 61-68

www.elsevier.com/locate/mejo

An extensible TCAD optimization framework combining
gradient based and genetic optimizers

Clemens Heitzinger™, Siegfried Selberherr

Institute for Microelectronics, E360 TU Wien, Guf3hausstrafle 27-29, A-1040 Vienna, Austria
Received 2 February 2001; accepted 21 August 2001

Abstract

The SIESTA framework is an extensible tool for optimization and inverse modeling of semiconductor devices including dynamic load
balancing, for taking advantage of several, loosely connected workstations. Two gradient-based and two evolutionary computation optimi-
zers are currently available through a uniform interface and can be combined at will. At a real world inverse modeling example, we
demonstrate that evolutionary computation optimizers provide several advantages over gradient-based optimizers, due to the specific
properties of the objective functions in TCAD applications. Furthermore, we shortly discuss some issues arising in inverse modeling and
conclude with a comparison of gradient-based and evolutionary computation optimizers from a TCAD point of view. © 2002 Elsevier

Science Ltd. All rights reserved.

Keywords: TCAD; Optimization; Evolutionary computation; Genetic optimization; Gradient based optimization; Inverse modeling

1. Introduction

Technology CAD (TCAD) tools like SIESTA [1,2] have
been successfully used for optimizing semiconductor
devices [3] and for inverse modeling [4]. Although SIESTA
proved to be a valuable tool and several interesting results
[5,6] were achieved using it, it did not, at that time, provide
any global optimizer, but two gradient-based optimizers [7].
The most recent advances include new, global optimizers,
combine these two approaches to optimization, and improve
on the flexibility and extensibility.

Over the years, it has been recognized that a successful
TCAD optimization framework has to meet with the
following criteria.

1. The ability to execute simulation tools on a number of
computers in the local network, and to schedule the
execution of these simulation tools in reaction to changes
in this network. For example, in a heterogeneous network
that is not solely dedicated to executing simulation tools
the question how the tasks have to be scheduled so that
the overall execution time is minimized is not trivial.
Furthermore, software and hardware failures have to be
taken into account.

* Corresponding author. Tel.: +43-1-58801-36035; fax: +43-1-58801-
36099.
E-mail address: heitzinger @iue.tuwien.ac.at (C. Heitzinger).

2. Stability. This property is crucial for a program that
usually runs for several days and has to deal with all
kinds of software failure.

3. Extensibility. A TCAD framework has to deal with
various programs [8], data formats [9] and combinations
thereof. Evaluating the goal function (i.e. the function to
be optimized) often entails several calls to simulation
tools. Because of the abundance of possible goal func-
tions, a framework has to provide a flexible extension
language, which enables the user to succinctly describe
the desired goal function.

4. Specialized optimizers. The evaluation of the goal
function is usually very expensive: times range from
about a minute to one hour or more for process
simulations on current hardware. Strategies for finding
global extrema of computationally very expensive
functions are needed. The respective advantages and
disadvantages of gradient based optimizers and
evolutionary computation will be discussed in Section 5.

5. Finding a suitable starting value is often the most difficult
and time consuming task when using a gradient based
optimizer. Hence, global optimizers which do not need
a starting value sufficiently close to the global extremum
are called for.

It should be noted that the goal function of an optimiza-
tion in TCAD analysis may not even be a function in the

0026-2692/02/$ - see front matter © 2002 Elsevier Science Ltd. All rights reserved.

PII: S0026-2692(01)00105-7

62 C. Heitzinger, S. Selberherr / Microelectronics Journal 33 (2002) 61-68

tool

tool

bj. fi /
obj. fun.

Optimizer Soa —

o

\

Mathematica tool

Fig. 1. Overview of SIESTA.

mathematical sense. Simulation tools like miniMos [10—12
provide modes of operation which are not deterministic, i.e.
the same input may lead to slightly different results. In the
case of MINIMOS, this is due to preconditioning, which
depends on the elapsed simulation time. Furthermore, it
happens in practice that simulation tools do not converge
for certain inputs, or yield results only after consumption of
exceptionally long computation time. These problems are
addressed by the SIESTA framework and are especially
handled well by stochastic global optimizers.

After an overview of the framework, a real world
example and the advantages and disadvantages of the
optimizers currently available are discussed. Local, gradi-
ent-based optimizers require a starting point and repeatedly
use the gradient of the target function at the working point to
find better points. They generally find local extrema. Global
optimizers try to not only find local extrema but global ones
and use different techniques. Stochastic optimizers like
genetic algorithms use random numbers and the results
generally differ from run to run.

—_—

2. Overview of the SIESTA framework

This section is devoted to an overview of the SIESTA
framework. Fig. 1 depicts the control and data flow in a
typical optimization run. After setting up an experiment,
one of four optimizers is started by SIESTA and its evaluation
requests are fulfilled in parallel, where each evaluation
entails an arbitrary number of calls of simulation tools on
remote machines. In each run, the definition of the experi-
ment and the progress of the optimization are saved to files
and can be examined from within MATHEMATICA.

2.1. The extension language

SIESTA was originally implemented in a dialect of Lisp
[13,14] called xlisp [15]. Since xlisp was written, because of
the new developments in language design and implementa-
tion, the choice of a suitable base language for SIESTA was
thought over. In order to meet with the requirements
described in Section 1, we posed the following demands
on a suitable base language.

1. It has to provide an interface to the underlying operating
system and network.

2. There has to be one (preferably more) stable and well

supported implementation.

. It has to support multiprocessing (or multithreading).

4. An extension language is necessary in order to provide
the required flexibility.

5. The implementation must be able to load additional code
at run time and to enable the user to execute commands
interactively.

6. It should be well designed and preferably standardized.

(O8]

After evaluating several languages, namely C, C++,
Common Lisp, Java, Perl, Python, Scheme, and Tcl, we
decided to use Common Lisp [16] with multiprocessing
support. In addition to fulfilling all of our requirements, it
provides the following features, which helped reducing the
implementation time.

1. Common Lisp supports the paradigms of functional
programming and object oriented programming.

2. All language constructs are available at run time.

3. Several implementations on all major platforms are
available and all of these provide compilers and
interactive listeners.

4. A powerful macro system makes Common Lisp a very
extensible programming language.

5. Its condition system and operators like unwind-
protect and ignore-errors contribute to stability
and robustness.

6. Common Lisp is an ANSI (American National Standards
Institute) standard.

SIESTA runs on UNIX platforms, since UNIX provides a
good support for executing commands on remote computers
and distributing files in a cluster of computers. Apart from
these requirements, SIESTA is platform independent.

The requirements on the software infrastructure installed
on the cluster of computers to be used in an experiment have
been reduced to a minimum. Early versions of SIESTA
required the user’s home directory to be visible on all
computers of the cluster and relied on network file system
(NFS). However, NFS is a source of problems since it does
not provide sufficient synchronization between the states of
files on different computers. Files are synchronized only
after a pause, which leads to problems when the result file
of a simulation tool exists on a client, but is not seen on the
computer where SIESTA runs. Furthermore, it is not possible
to request synchronization between two computers,
manually.

Several solutions for that problem were tried, yet
none worked satisfactorily. One of the attempts was to
wait for a certain amount of time (up to 30s), after a
simulation tool had finished. Because of this limitation of
NFS, we decided to dispense with it and use rcp or scp
instead.

C. Heitzinger, S. Selberherr / Microelectronics Journal 33 (2002) 61-68 63

In order to run SIESTA, the following programs have to be
installed on a cluster.

e One of these possiblities for communication has to be
chosen:
rsh, rcp and rshd. These are standard on UNIX,
but not secure.
ssh, scp and sshd. These are not found on every
UNIX system by default, but are secure.

Of course, these programs have to be set up such that no
password entry is needed for each individual login, but only
once per session.

e Standard UNIX commands like k111, mkdir, rm, top
and uptime.

o Finally, it goes without saying that the simulation tools to
be used have to be installed. Licenses are managed as
described in Section 2.5.

2.2. Parallelization

Because of the need for parallelizing several evalutions of
the goal function, and thus the simulation tools, we chose to
extend the language with a macro called parallel. It
takes an arbitrary number of expressions as input and
returns a list of results after the evalution of all the input
forms (which is done in several processes), has finished.

The parallel macro and its sister function p-apply
are an important building block of SIESTA and may of course
be called by the user.

2.3. Setting up experiments

In this section, we show how SEISTA is typically used.
When starting up, it reads its initialization file in which the
hosts to be used are defined via define-all-hosts. The
information about the hosts will be used later by the task
manager, which schedules the execution of the various
simulation tools. Hosts may later be enabled and disabled
interactively by the user. Furthermore, for every host, a
function can be provided which decides if a host is usable
right now; this is useful when certain hosts must not be used
at certain times of a day.

Commands are entered in any number of interactive
listeners. After loading a file containing the definition of
an experiment, the run command starts an optimization
run. The value returned by run can be stored in a file,
although an automatically generated file contains all the
results and information about the experiment and the
progress of the optimization. The result can also be used
as a starting value for the next run.

Experiments are defined using define-experiment.
The definition of an experiment consists of an optional
description, the list of the free variables, their interval and
their default values, the list of user variables which enable
sophisticated customized setups, the goal function, the

default value of the goal function to be used when no
attempt was successful, the constraint function, and the
configuration of one or more optimizers.

States correspond to points in the search space or to
individuals of the population in the language of evolutionary
computation. A state consists of a list of all (free) variables
and their respective values, the experiment it belongs to and
— after evaluation — the value of the goal function. States
can be manipulated with the make-state, copy-
state, with-state-vars, setg-in-copied-
state and show-state operators.

Setting up the evaluation function is usually the most
difficult part in defining an experiment. test-run can
be used to evaluate the goal function on the default values
interactively and to see if it works satisfactorily.

2.4. Calling simulation tools

Since several types of software (and hardware) failures
may occur when running simulation tools, especially in a
networked environment, we extended the base language
with a macro called with-retries. Its calling signature
is (number-of-tries & body default-forms) &
body body. with-retries executes its body
until no error was raised, but at most number-of-
tries times. Upon success, the result values are those of
the last form in body, otherwise, the values returned by
default-forms.

Among the inputs to the call of a simulation tool, there is
always one state. Calling simulation tools through the
preferred interface entails the construction of an instance
of class task, or a subclass thereof. Tasks contain all the
information about calling a simulation tool and returning the
required data. While subclasses and methods specialized to
certain simulation tools are provided, the class hierarchy
starting at task can also be specialized by the user, as
well as the methods acting on tasks, e.g. the execute
method.

The task manager schedules the execution of the tasks. In
order to execute a task, it looks for reachable hosts (i.e. hosts
whose load average can be retrieved), which are not
disabled and not too busy. If such a host is available, the
task is run on the host, which currently provides most of the
computational resources. Otherwise, it waits until a host
becomes available.

2.5. License management

When using commercial simulation tools, the number of
available licenses for a certain program is often limited.
Thus, we have to provide a way to ensure that at any
point of time only a certain user prescribed amount of
licenses of such programs are in use. Users can call
simulation tools not only by using the predefined functions
of the framework, but also from self written programs like
shell scripts which are in turn called from within the

64 C. Heitzinger, S. Selberherr / Microelectronics Journal 33 (2002) 61-68

framework. A suitable license management scheme has to
consider this.

In order to make our license management scheme meet
these needs, it works independently from the predefined
functions of the framework. The following steps are
necessary to use it. Whenever the number of requested
licenses exceeds the number of available ones, certain
processes have to wait until the required number becomes
available. In order to show how many licenses are currently
in use, the command show-1icenses can be used.

1. Define the names of the licenses and how many of each
may be used simultaneously. This is accomplished with
define-1licenses and is usually done in your SIESTA
configuration file.

2. When using a license, wrap the code into with-
locked-licenses.

Users expressed interest in varying the number of
available licenses, during optimization. This need
frequently arises in a setting where people want to reserve
one or two licenses for interactive work at certain times, but
want all of them to be used, e.g. at night time. For simply
changing the number of totally available licenses the
function set-number-of-licenses can be used.

2.6. Input deck handling

Nearly all simulation tools use a text file for
configuration. The configuration files of MINIMOS are called
input deck [12] files, and we will use this term for all
simulation tools. SIESTA generates these files by substituting
the values of the variables of a state in template files. If a
template file contains a string {(foo)) and the value of foo
in the current state is, for e.g. 1.23, the string will be
replaced with 1. 23. This applies to free and user variables
of a state.

In case the use of {(and)) leads to collisions in the input
deck file of some simulation tool, the begin and end marker
can be changed.

2.7. Available optimizers

The following brief overview lists all optimizers
currently available in SIESTA, namely, two gradient-based
[17] and two stochastic global ones.

2.7.1. Genopt

The interface to GAlib [18], a C++ library for genetic
optimization, is called genopt. It provides standard
selection, crossover, mutation, scaling and termination
methods [19].

For our experiments, we mainly use the following setup,
because it provides good results in an acceptable amount of
computation time. Since all parameters are reals chosen
from intervals, we represent them as floating point numbers,
and not as binary vectors as favored in early genetic

optimization. We use a mutation operator which adds a
random number from a normal distribution, more precisely,
X € [a,b] is changed to min(max(N(x, 0),a), b), where o
depends on the length of the interval.

As crossover operators, we use two point and uniform
crossover. Most populations consist of about 40—50 indivi-
duals. Some optimization tasks allow us to evaluate about
20 generations per hour, which amounts to roughly 500
generations per day. Typical runs last for two or three days.

Constraints handling is done using the popular penalty
method, i.e. the scores of states which do not fulfill given
constraints, which are defined as an arbitrary function, are
increased by prescribed amounts.

2.7.2. Siman

Simulated annealing [20,21] was invented by Kirkpatrick
in 1982 and is a modified version of hill climbing. Starting
from a random point in the search space, a random move is
made. If this move yields a better point, it is accepted. If it
yields a worse point, it is accepted only with a certain
probability p(7), which depends on the time ¢. The function
p(t) initially is close to 1, but gradually reduces towards 0 in
analogy to the cooling of a solid. Hence, initially any moves
are accepted, but as the temperature reduces, the probability
of accepting a negative move is lowered. Negative moves
are essential sometimes if local maxima are to be escaped,
but obviously, too many negative moves will simply lead
away from an extremum. Versions like fast re-annealing,
adaptive annealing and parallel annealing have been
developed. In our framework, we provide an interface to
an implementation [22] by Lester Ingber.

2.7.3. Donopt

This gradient-based optimizer [7,1] minimizes a scalar
value and supports equality and inequality constraints. It
is based on donlp2 [23,24] by Peter Spellucci.

2.7.4. Lmmin

The Levenberg—Marquardt algorithm [25] is an efficient
method to solve nonlinear least squares problems, and is
therefore well suited for inverse modeling tasks. SIESTA
provides an interface to the implementation found in the
MINPACK [26,27] project.

The parameter values are chosen from prescribed
intervals. However, arbitrary constraints are not supported
by this optimizer. The step size used for the gradient compu-
tation and a tolerance value acting as termination criterion,
can be adjusted.

2.8. Interface to MATHEMATICA

The progress and the results of the various optimization
runs are saved to text files and can be examined via an
interface to MATHEMATICA [28], which enables the user to
take advantage of its graphics and statistics capabilities. All
the score and parameter values, and some auxiliary values,

C. Heitzinger, S. Selberherr / Microelectronics Journal 33 (2002) 61-68 65

are visible in MATHEMATICA and can be inspected using
built-in and custom functions (reportRun, best,plot-
Progress, plotInverseModeling, plotRunOne-
Var, plotRunTwoVars etc.).

3. Inverse modeling (parameter extraction)

Many models in TCAD applications contain free
parameters which depend on properties of the device mate-
rial and have to be calibrated using measurements. Usually
vectors of measured values are fit to characteristic curves of
the device in question.

It is not obvious which goal function should be used in an
inverse modeling experiment, where the distance between
two vectors (where one is constant) is to be minimized, and
several functions have been used (e.g. [29,30]).

In the following m € R", is the measured vector and s €
R" is a vector of simulation results. We define the relative
error of the two vectors as the vector resulting when apply-
ing the relative error function component wise, i.e. ry =
(s — my)/my for r = RE(s, m) being the vector of relative
errors. The quadratic mean M, of a vector x € R" is defined
as:

My (x) ==

and the weighted quadratic mean M,,, with weights w; is
defined as:

where w;, > 0 for all k.

In this regard, the reader is referred to [31] for properties
of mean values. Of course, ||-||, and M, are equivalent norms.
However, the quadratic mean is easier to interpret since the
number of comparison points does not influence the value.

For p being a vector of parameters to be fit, we believe
minimizing

f(p) == My(RE(s(p), m))

to be a natural and advantageous formulation of the problem
of parameter extraction. Variations of s(p) or m over many
magnitudes do not have an ill effect as compared to other
functions working with absolute errors, and by using the
weight factors f can be adjusted to individual needs.

We provide the 1ogl0, p-metric, p-norm, p-mean
and relative-error (for vectors) functions in our
framework.

Table 1

Parameters

Name Interval Default value
et [0,2] 0

ew [—0.6, —0.4] —0.425

nt [10'%, 10" 108

sr [100, 500] 200

srve [10, 10000] 5000

ste (107, 10717 107"

4. A real world example

The goal of this example is to show that a typical class of
optimization problems, namely inverse modeling or
parameter extraction problems, can be automatically solved
using evolutionary computation optimizers. In this real
world problem, we extract six parameters from the drain
currents of the select transistor of a storage cell and try to
fit two transfer characteristics (two bulk voltages, two times
27 points), in the process. This presentation is not intended
as a complete treatment of this particular problem.

For the purpose of this optimization, we treat the
measurements and simulated vectors as one vector with
54 components and try to minimize f(p)=
M,(RE(s(p), m)), as proposed in Section 3. MINIMOS NT
[12] was used as the device simulator and Table 1 lists the
six parameters, their intervals, and their default values. The
default values were used as starting values for the gradient-
based optimizer. The variable ew is the work function of the
gate material, and the variable sr is the source resistance.
The other variables pertain to the Shockley—Read—Hall
model [12, page 71]. Table 2 lists the three optimizers
used (cf. Section 2.7) and their configuration, which is the
default configuration in all three cases.

Fig. 2 shows the progress of the three optimizers. For all
optimization runs, we used a cluster of fifteen workstations
with twenty CPUs and dynamic load balancing. We note
that the gradient-based optimizer does not yield a good
result (cf. also Fig. 3), although its initial progress is fast.
Furthermore, the evaluations of the genetic algorithm,

Table 2
Configuration of the three optimizers

Optimizer Name of parameter Value of parameter
Genopt Algorithm type Steady state
Population size 50
Probability of replacement 0.7
Probability of crossover 0.8
Crossover type Two point crossover
Probability of mutation 0.2
Number of best genomes 50
Siman Block 15
Block max 30
Moving average 3
Donopt del0 0.5

66 C. Heitzinger, S. Selberherr / Microelectronics Journal 33 (2002) 61-68

mean rel err

genopt

~~~~~~~~~~ donopt

Fig. 2. Optimization progress.

genopt, are better parallelized on the twenty CPUs than those
of simulated annealing, siman, and thus in terms of wall clock
time elapsed, the genetic algorithm is the fastest optimizer.

Fig. 3 shows the best fitting simulated transfer
characteristics (for two bulk voltages, left and right half)
found by the gradient based optimizer, donopt, yielding a
value of the objective function of 0.58. The agreement in the
range of the points numbered 1—10 and 28—38 is mediocre.
Fig. 4, shows the best fitting vector found after at most 500
evaluations with each optimizer. Siman yields good agree-
ment and a value of 0.52. Both plots are logarithmic and the
comparison points are numbered from 1 to 54.

In Section 5, we will discuss the advantages and
disadvantages of evolutionary computation optimizers and
gradient-based optimizers, based on the experience of this
and similar examples. Most notably, evolutionary comp-
utation optimizers provide automatic global optimization.

5. Comparing gradient based and evolutionary
computation optimizers

During the last three or four decades, there has been

increasing interest in optimization algorithms which work
similar to processes found in nature. The methods of genetic
algorithms [32,33,19] and evolutionary strategies [34],
although having different roots, have converged and are
now commonly known under the name of evolutionary
computation. A journal of the same name [35] has been
published since 1993.

A brief outline of evolutionary algorithms is as follows.
They work with sets (or populations) of potential solutions.
Starting from a random population, each individual is
assigned a score via a goal function. In the selection step,
certain individuals are chosen to proliferate and form a new
population. Operators (e.g. mutation) are applied to the indi-
viduals of the new population with prescribed probability,
and the population is evaluated again. New generations are
formed in this way until a termination condition is fulfilled.
Obviously, many alternatives for every step in this
algorithm exist and have been described and discussed in
many publications [19]. Although the Schema Theorem [19,
page 53] and similar theorems explain the way in which
evolutionary algorithms work in a quantifiable way, and
many special algorithms have been intensively studied, no
consistent theory of evolutionary computation exists to date

Fig. 3. Logarithmic plot of best result by optimizer donopt, score 0.579942. Solid line: measurement; dashed line: simulation.



C. Heitzinger, S. Selberherr / Microelectronics Journal 33 (2002) 61-68 67

10 20

30 40 50

Fig. 4. Logarithmic plot of overall best result after 500 evalutions, optimizer siman, score 0.517803. Solid line: measurement; dashed line: simulation.

and the question of which evolutionary algorithm to choose
for a given problem can be answered only by experimenta-
tion and experience. Nevertheless, evolutionary algorithms
proved to be very general and valuable tools. While domain
specific optimizers typically perform better than their
general evolutionary algorithm counterpart, evolutionary
algorithms can easily be adapted to the problem at hand
and are usable whenever the lack of detailed knowledge
about the goal function prohibits developing a domain
specific optimization algorithm.

Although evolutionary computation is a well estab-
lished optimization technique today, its application to
TCAD analysis has been limited. Reasons are certainly
the need for lots of computational resources and the
requirements outlined in Section 1. While most research
in evolutionary computation has been done relatively
cheap to evaluate goal functions, the optimization of semi-
conductor devices has to cope with a relatively limited
number of evaluations.

The most important difference from the usual practice of
evolutionary algorithm optimizers is that runs are usually
finished before a common termination condition like ‘95%
of the population are identical’ is fulfilled.

In the following, we discuss the advantages and
disadvantages of gradient based and evolutionary algorithm
optimizers and show why the combination of both is
worthwhile. An optimization run with an evolutionary
algorithm optimizer usually yields a set, or population, of
nearly optimal solutions. The best of these is used as the start-
ing point for a run with a gradient based optimizer, thus bring-
ing together global and local optimization methods. Other
combinations are also possible, for example: starting popu-
lations can be constructed manually; other states than the
best in a population may yield better final results because
they lie closer to the global optimum; the configuration of an
optimizer can be changed and the computation restarted
with the latest population or starting point.

5.1. Advantages and disadvantages of gradient based
optimizers

Most importantly, gradient based optimizers are hill
climbing algorithms and therefore local optimization
techniques. Although highly sophisticated algorithms [17]
have been developed, they all depend on a suitable starting
point. In practice, finding this starting point has been found
to be the major hurdle when trying to do unattended,
automatic optimizations. Typically, finding such a point
and shortening the parameter intervals so that the goal
function can actually be evaluted, requires several tries
and can easily take several days.

When the number of variables increase, the number of
evaluations increases as well. While goal functions with few
variables are feasible, optimizations with about 20 variables
are usually impractical. Evolutionary algorithms do not
suffer as much from this effect.

5.2. Advantages and disadvantages of evolutionary
algorithm optimizers

Evolutionary  algorithm  optimizers are  global
optimization methods and scale well to higher dimensional
problems. They are robust with respect to noisy evaluation
functions and the handling of evalution functions,
which do not yield a sensible result in a given period, is
straightforward.

The algorithms can easily be adjusted to the problem at
hand. Almost any aspect of the algorithm may be changed
and customized. On the other hand, although lots of research
has been done, on which evolutionary algorithm is best
suited for a given problem, this question has not been
answered satisfactorily. Although the standard values
usually provide reasonably good performance, different
configurations may give better results. Furthermore, prema-
ture convergence to a local extremum may result from



68 C. Heitzinger, S. Selberherr / Microelectronics Journal 33 (2002) 61-68

adverse configuration and not yield (a point near) the global
extremum.

6. Conclusions

SIESTA has been used for several optimizations of real
world devices on a cluster of a dozen workstations with
about twenty CPUs and has proven to be very robust. The
combination of gradient based optimizers and evolutionary
computation allows us to take advantage of the benefits of
both approaches. While the default configurations of the opti-
mizers provide reasonably good performance, many aspects of
an optimization run can be customized. The output of one
or more optimization runs can be combined and used as
input for the next run. This interoperability allows for inter-
esting combinations of optimizers, comparisons of their
performance and specialization to the problem at hand.

Acknowledgements

The authors acknowledge support from the ‘Christian
Doppler Forschungsgesellschaft’, Vienna, Austria. Many
fruitful discussions with Thomas Binder and Robert Klima
were valuable and always appreciated.

References

[1] R. Strasser, Rigorous TCAD investigations on semiconductor +
fabrication technology. Dissertation, Technische Universitdt Wien,
1999. http://www.iue.tuwien.ac.at/diss/strasser/diss-new/diss.html.

[2] R.Plasun, M. Stockinger, R. Strasser, S. Selberherr, Simulation based

optimization environment and its application to semiconductor

devices, in: International Conference on Applied Modelling and

Simulation, Honolulu, Hawaii, USA, August 1998, pp. 313-316.

R. Plasun, C. Pichler, T. Simlinger, S. Selberherr, Optimization tasks

in technology CAD, in: W. Hahn, A. Lehmann (Eds.), Ninth European

Simulation Symposium, Society for Computer Simulation

International, Passau, Germany, 1997, pp. 445-449.

[4] R. Strasser, R. Plasun, S. Selberherr, Practical inverse modeling with
SIESTA, Simulation of Semiconductor Processes and Devices, Kyoto,
Japan, September 1999, pp. 91-94.

[5] M. Stockinger, Optimization of ultra-low-power CMOS transistors.
Dissertation, Technische Universitat Wien, 2000.

[6] M. Stockinger, A. Wild, S. Selberherr, Closed-loop MOSFET doping
profile optimization for portable systems, in: Proceedings of the
Second International Conference on Modeling and Simulation of
Microsystems, San Juan, Puerto Rico, USA, April 1999, pp. 411-414.

[71 R. Plasun, Optimization of VLSI semiconductor devices,
Dissertation, Technische  Universitdit Wien, 1999. http:/
www.iue.tuwien.ac.at/diss/plasun/diss-new/diss.html.

[8] J. Daniell, S. Director, An object-oriented approach to CAD tool
control, IEEE Trans. Comput.-Aided Des. 10 (1991) 698-713.

[9] T. Binder, S. Selberherr, Object-oriented design patterns for process
flow simulations, Proceedings of the Fourth Annual IASTED
International Conference on Software Engineering and Applications,
Las Vegas, November 2000.

[10] S. Selberherr, W. Fichtner, H. Potzl, MINIMOS — a program package

3

—_

to facilitate MOS device design and analysis, in: B. Browne, J. Miller
(Eds.), Numerical Analysis of Semiconductor Devices and Integrated
Circuits, vol. I, Boole Press, Dublin, 1979, pp. 275-279.

[11] T. Simlinger, H. Kosina, M. Rottinger, S. Selberherr, MINIMOS-NT: a
generic simulator for complex semiconductor devices, in: H. de
Graaff, H. van Kranenburg (Eds.), 25th European Solid State Device
Research Conference, Editions Frontieres, Gif-sur-Yvette Cedex,
France, 1995, pp. 83-86.

[12] T. Binder, K. Dragosits, T. Grasser, R. Klima, M. Knaipp, H Kosina,
R. Mlekus, V. Palankovski, M. Rottinger, G. Schrom, S. Selberherr,
M. Stockinger, MINIMOS-NT User’s Guide, Institut fiir Mikroelektro-
nik, Technical University Vienna, Austria, 1998.

[13] J. McCarthy, Recursive functions of symbolic expressions and their
computation by machine (Part I), Commun. ACM 3 (1960) 184—195.

[14] J. McCarthy, Lisp 1.5 Programmer’s Manual, MIT Press, Cambridge,
MA, 1962.

[15] D. Betz, XLISP: An Object-Oriented Lisp, Version 2.1. Apple,
Peterborough, New Hampshire, USA, 1989.

[16] P. Graham, ANSI Common Lisp, Prentice Hall, Englewood Cliffs,
NJ, 1996.

[17] C. Kelley, Iterative Methods for Optimization, SIAM, Philadelphia,
1999.

[18] M. Wall, GAlib: a C++ genetic algorithm library, 1994. http:/
lancet.mit.edu/ga/.

[19] Z. Michalewicz, Genetic Algorithms + Data Structures = Evolution
Programs, Springer, Berlin, 1996.

[20] D. Beasley, D. Bull, R. Martin, An overview of genetic algorithms:
part 2, research topics, Univ. Comput. 15 (1993) 170-181.

[21] R. Rutenbar, Simulated annealing algorithms: an overview, IEEE
Circuits Devices (1989) 19-26.

[22] L. Ingber, Adaptive simulated annealing, 1993. http://www.ingber
.com/#ASA-CODE.

[23] P. Spellucci, donlp2 Users Guide. Part of the netlib project, 1995.

[24] P. Spellucci, Solving general convex QP problems via an exact
quadratic augmented Lagrangian with bound constraints, June 1996.
http://www.mathematik.th-darmstadt.de/ags/ag8/spellucci.

[25] D. Marquardt, An algorithm for the estimation of nonlinear
parameters, Soc. Ind. Appl. Maths. J. 11 (1963) 431-441.

[26] J. Moré, B. Garbow, K. Hillstrom, Users Guide for MINPACK-1,
Argonne National Laboratory Report ANL-80-74, Argone, IL, 1980.

[27]1 J. Moré, D. Sorensen, K. Hillstrom, B. Garbow, The MINPACK
project, Sources and Development of Mathematical Software,
Prentice-Hall, Englewood Cliffs, NJ, 1984.

[28] S. Wolfram, Mathematica — A System for Doing Mathematics by
Computer, 2nd ed., Addison-Wesley, Reading, MA, 1991.

[29] R. Cartuyvels, R. Booth, S. Kubicek, L. Dupas, K. De Meyer, A
powerful TCAD system including advanced RSM techniques for
various engineering optimization problems, in: S. Selberherr, H.
Stippel, E. Strasser (Eds.), Simulation of Semiconductor Devices
and Processes, vol. 5, Springer, Wien, 1993, pp. 29-32.

[30] R. Young, F. Morehead, S. Fischer, Calibrating a complex process
simulator for predicting device characteristics, First International
Workshop on Statistical Metrology, Honolulu, 1996.

[31] G. Hardy, J. Littlewood, G. Pélya, Inequalities, 2nd ed., Cambridge
University Press, Cambridge, 1952.

[32] D. Goldberg, Genetic Genetic Algorithms in Search, Optimization
and Machine Learning, Addison-Wesley, Reading, MA, 1989.

[33] J. Holland, Adaption in Natural and Artificial Systems, MIT Press,
Cambridge, MA, 1975.

[34] 1. Rechenberg, Evolutionsstrategie: Optimierung technischer Systeme
nach Prinzipien der biologischen Evolution, Frommann-Holzboog,
Stuttgart, 1973.

[35] K.D. Jong (ed.), Evolutionary Computation, Journal published by
MIT Press, 1993.



