APPLIED PHYSICS LETTERS

VOLUME 80, NUMBER 4

28 JANUARY 2002

Transient model for terminal current noise
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The condition of a stationary transport process is a common origin for the approaches for terminal
current noise. Based on a recently-proposed stationary model and the integral form of the
Boltzmann equation, we derive a transient stochastic process whose autocovariance function
characterizes the terminal current noise. The properties and the domain of application of this
transient model and its stationary counterpart are investigated. Numerical experiments are presented
which support the conclusions drawn for the two models. © 2002 American Institute of Physics.
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The current fluctuations in semiconductor devices are
entirely characterized by the autocavariance function C; of
the current signal i(¢). For a general time dependence C; is
defined as:

Ci(t,)=(i()i(t+ 7)) = (i) t) (i)t + 1), (1)

where the brackets denote ensemble averages. For a station-
ary process the mean value of the current (i) is constant and
the autocovariance does not depend on time ¢, Furthermore,
the ergodicity of the transport process alows to replace the
ensemble average by a time average:

Ci(7)=(i(0)i(7))=(i)*>=Cy(7)

T
= -]—f i(t)i(t+r)dr— (i)~ 2)
T Jo

The physical and numerical complexity of transport in mod-
ern devices stimulated a mutual development of basic mod-
els and appearance of novel models for the evaluation of the
autocovariance function. Fundamental is the ensemble
Monte Carlo (EMC) method which provides both a model
and a numerical approach to the phenomena. The method is
based on the notion that a direct emulation of the stochastic
processes underlying the transport phenomena provides
along with the physical mean also values their fluctuations. If
the transport process is emulated and the current i(t) is re-
corded in the averaging interval (0,7),' the autocovariance
function is retrieved from the second equality in Eq. (2). The
stationary current is ensured by the physical boundary con-
ditions (BC). The carriers are injected into the device con-
tacts according to the carrier distribution in the leads. The
carrier number inside the device is kept constant by reinjec-
tion of the leaving carriers, It has been recognized that this
physically transparent boundary conditions require thermal
equilibrium between the leads and the contacts. When this is
not fulfilled as it is, e.g., in the case of resistors, the EMC
method is evolved to a complicated algorithm.?

Recently an alternative model for the current noise has
been proposed>* in the framework of the stationary defini-
tion given by the first equality in Eq. (2). The autocovariance
function has been obtained as a statistical average:
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C,-(T)z(i)f kodei(k,X)g(k’x:T)“<i>2;

©)]
(i)y= f ddexi(k,x)fs(k,x).

The space coordinate x is for a one-dimensional device with
a length L and k denotes the wave vector. Here i(k,x) is the
current contribution from a particle in the particular phase
space point according to the Ramo—Shockley theorem. g is
an effective distribution function, i.e., the solution of the
time dependent Boltzmann equation for an initial condition:

go(k,x) = i(K,x)fs(k,x)/(i), )

where f, is the stationary solution of the equation. In Ref. 4
the model has been applied to a bulk semiconductor using a
deterministic method. To apply the model (3) for devices, it
is convenient to use a stochastic method for solving the
Boltzmann equation. We note that a Monte Carlo (MC) ap-
proach in this case simulates an evolution of the effective
distribution function in contrast to the direct emulation of the
current fluctuations by the EMC.

The boundary conditions for Eq. (3) are deduced from
the limit C;—0 when 7—co, The effective distribution g
must evolve from g to f, in this limit. The stationary solu-
tion f, of the Boltzmann equation is ensured by the boundary
conditions imposed. Hence, the same physical boundary con-
ditions utilized by the EMC method must be applied. This
brings the same requirements for equilibrium between leads
and contacts also for the alternative model Eq. (3).

We propose the following transformation of Eq. (3). C;
contains as an integrand the difference ¢(k,x,7)=g(K,x,7)
—f.(k,x). Both, g and f; satisfy the Boltzmann equation
which has the following integral form:

O N T G YANR )

X ¢~ LMK 4. £ 1k(0),x(0) ]~ Fad? k()]

+fb[k(fb)ax(tb)]e_frdeYX[k(y)] 5)

with a trajectory determined by the electric force F and ve-
locity v:
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FIG. 1. Current autocovariance for the n*nn™ diode at 0 and 1 V applied
bias.
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The initial condition f; and the boundary conditions f,, par-
ticipate explicitly in the integral form [Eq. (6)]. f), is zero
inside the device and is specified only on the boundaries,
while f, is zero if x(0) is placed outside the device. The time
t, is determined from the position where the Newton trajec-
tory (6) crosses the device boundary x(z,)=x, . f, is a solu-
tion of Eq. (6) for the initial condition given by fy=f;,
while for the function g the initial condition is given by fq
=g,. Both, f, and g utilize the same boundary conditions
given by the term f,, . It follows that the equation for ¢ does
not contain f:

¢(k,x,7)=Jordt'f dk’' ¢[k',x(¢"),t"]S[k' k(t")]

X e ~IHMKOIL 4 g k(0),x(0)]

X e~ JodrN KNI~ £ [k(0),x(0)]

x o~ JHAYNKO)],

This equation describes a purely transient problem, where
two ensembles with initial conditions gy and f, evolve in
time as ¢y(k,x,7) and ¢4(k,x,7) and give the solution as
the difference ¢= ¢po— ¢;. The boundaries absorb all par-
ticles that leave the device without reinjection.

The autocovariance Eq. (3) becomes:

Ci(n)= (i>f ddexi(k,x)[%(k,x,T)— ¢s(k.x,7)]

= j dkadxi(k,x)i[k(O),x(O)]¢:(k,x, T)
—=(i)(7)(i)(0). (7

The last equality does not follow in a trivial way from the
equality on the previous line. For the derivation we have
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FIG. 2. Current autocovariance for the resistor at 0 and 0.25 V applicd bius,

used Eq. (4) and the Neumann expansion of the Boltzmann
equation, written for the function ¢,. The brackets define
the ensemble average

<i>(7)=fddexi(k,xm(k,x,T), (i)(0)= (i),

where Eq. (7) resembles the definition (1) of the autocovari-
ance function of a transient process of initial time #=0. It is
obtained that the autocovariance function Eq. (3) of the ter-
minal current fluctuations is the same as the autocovariance
function of the following transient process. An ensemble of
particles which is initially (at time zero) distributed accord-
ing to the stationary distribution f, in the device evolves with
time. The particles follow the natural evolution of the semi-
conductor carriers and give instant contribution i(k,x) to the
current according to the Ramo—Schockley theorem. The con-
tribution of a particle absorbed by the boundaries vanishes
since there is no reinjection. The current fluctuations are de-
scribed by the ensemble averages in Eq. (7). Currently, the
mean current (i)(7) is time dependent in contrast to the sta-
tionary case, since particles leaving the device are not rein-
jected. The role of the boundary conditions is to ensure the
stationary solution f, in the device. They are switched off in
the subsequent evolution of the ensemble and thus do not
influence the autocovariance function. In this way the physi-
cal conditions in leads and contacts become insignificant for
the applicability of Eq. (7). We conclude that the transient
model obtained is more universal as compared to its station-
ary counterpart (3). In the following, the two models are
distinguished by the corresponding absorbing or injecting
boundary conditions.

AMC approach has been developed for the two models.’
The purpose is to check the consistency of the models and to
investigate the case when the thermal equilibrium between
the leads and the device contacts is violated. The stochastic
approach consists of alternative MC algorithms which ac-
count for the initial condition, simulate the evolution pro-
cess, and obey the boundary conditions. The main feature is
that a one particle MC simulation is used to obtain the sta-
tionary distribution £, inside the device. The latter gives rise
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FIG. 3. Current autocovariance for the resistor at 1 V applied bias.

to initial points of an ensemble of particles, whose evolution
provides the current autocovariance function.

In the numerical experiments we consider an n*nn*
diode under bias conditions required by Eq. (3) and a resis-
tor. The silicon diode has a length of each segment of 0.2 um
and doping concentration 10'7:10'® cm™3, the resistor » is
with the same total length 0.6 wm. The autocovariance func-
tions obtained are normalized as C;(7)/C;(0) and plotted up
to 4 ps evolution time for a better resolution. We note that the
decay time for such structures is one order of magnitude
higher.®

In Fig. 1 the curves for the absorbing and the injecting
boundary conditions obtained for 0 and 1 V overlap each
other as predicted by the theory. However, this is not true for
the resistor considered in Fig. 2. At equilibrium the results of
the two models still coincide. At 0.25 V there is already a
difference in the corresponding curves. We assign this to the
influence of the leads on the autocovariance function during
the process of reinjection: the hot fraction of the leaving
carriers are injected back thermalized. This is supported by
the increase of the effect with the increase of the voltage. At
1V, Fig. 3, the curve for the absorbing BC relaxes to zero,
while the curve for the injecting BC remains well above
zero. Additional experiments show a decrease of the effect
when the length of the structure increases under a constant
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FIG. 4. Current autocovariance for the n*nn™ structure at 1 V applied bias.

electric field inside. In this case the portion of the leaving
carriers decreases with respect to the total number of par-
ticles in the resistor. Another experiment is shown in Fig. 4.
The simulated structure is formed by two tiny highly doped
0.05 um regions attached on both sides of the resistor which
cool the exiting carries. The curves corresponding to the two
models overlap again.

We conclude that the stationary model can be applied if
the contact regions thermalize the carriers before they leave
the device, Otherwise an extra correlation between leads and
device contacts is introduced by the model. The absorbing
BC model is universal and physically more transparent since
it refers to the dwelling time of the particles in the device.
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