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One of the most important issues in the reliability study of 
integrated circuits interconnect lines is electromigration. 
This phenomena results in the formation and growth of voids  

 
and for the electrical field  

in metal interconnect which can cause significant 
fluctuations in interconnect resistance and in the extreme 
case sever the interconnect line.  The electromigration 
failure occurs, according to different failure criteria by a 
resistance change of 10 to 20 %. 
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Where 

sD is  the surface diffusivity,  is the chemical 
potential,  ∗Z   is the effective valence,  is the charge of the 

electron,   is the surface energy, Ω  is the volume of the 
atom,  is the double obstacle potential as defined in  
[4],  is a parameter controlling the void-metal interface 
width and V is the electrical potential. 
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To accurately simulate interconnect resistance change due to 
electromigration, tracking  the void   shape and position is 
necessary. Simulations of void evolution in linear 
interconnect began with sharp interface models which 
showed the insufficiency of sharp interface models [1, 2]. 
Later, prompted by the complexity of void surface diffuse 
interface models were introduced [3]. An alternative diffuse 
interface model based on the double obstacle potential was 
proposed in [4]. However, all these methods require 
structured underlying meshes and were applied to simple 
rectangular interconnect geometries. To reach higher mesh 
adaptability and appropriate refinement quality for the finite 
element scheme solving diffuse interface model we used a 
version of recursive local mesh refinement algorithm 
introduced in [5].   
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The electrical conductivity was taken to vary linearly from 
the metal (  to the void area  (  by setting  

. 
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The equations (1) and (3) are solved on the 2D polygonal 
interconnect area  T . 
  
3. Numerical Implementation 
 
3.1. Finite Element Scheme 
Let  be T  a triangulation of the area T , and V  finite 
element space of piecewise linear functions defined on T . 
We call T  basic triangulation of area  T .  For ϕ  an 
inner product on T  is defined by 
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2. Applied Diffuse Interface Model 
We assumed unpassivated monocrystal isotropic 
interconnects where stress phenomena can be neglected. An 
interconnect is idealised as two-dimensional electrically 
conducting via which contains initially circular void. For 
simplicity we also neglect the effects of grain boundaries 
and lattice diffusion.  

As results of the constraints imposed on order parameter φ  
in equations (1) by the double obstacle potential , the 
weak formulation of the problem has the form of the 
variational inequality  [11] 

)(φf
In such case there are two main forces which influence the 
shape of the evolving void interface: the chemical potential 
gradient and electron wind. The first force causes self-
diffusion of metal atoms on the void interface and tends to 
minimize energy which results in circular voids shapes. The 
electron wind force produces asymmetry in the void shape 
depending on electrical field  gradients. In the diffuse 
interface models, void and metal area presented through the 
order parameter φ  which takes values +  in the metal area, 

 in the void area and − φ  in the void-metal 
interface area. The model equations for the void evolving in 
an unpassivated interconnect line are for the order parameter  

  [4] ,     

1
1+1−

φ

1 <<

 
 
                          ( ) 0,,

2
=∇∇+







∂
∂

χµχ
φπ

sD
t

ε                       (4) 

 

( ) ( ) ( φχµφχφ
επ
γ

φχφ
π

εγ
−≥−−

Ω
+∇−∇∇

Ω ∗ ,,
4

,
4

VZess )                   

                                                                                             (5) 
 
where χ  and hV∈ 1≤χ .  
The numerical solution to the above variational inequality is 
computed using an iterative method known as projected 
SOR scheme [6]. 
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An iteration for evaluating   consists of two steps: ),( nn µφ
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  Step 1. 
 For the  iteration of n  time step  linear system of  thk th

 equations has to be solved: 
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for each  i  of  nodal values (  of the 
triangulation  T . and  are the lumped mass and 
stiffness matrix,  respectively. 
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Step 2. 
All nodal values of  { } 1

0
−

=
N
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For solving of equation (3) a usual finite element scheme is 
applied [7]. 
As we will see in the next section, in order to reach 
appropriate accuracy, schemas for the finite element solving 
of the equations (1) and (3) require sequential mesh 
adaptation in each time step.   
Let us denote Φ  the node value  
distribution of order parameter φ  for the time step t  on the 
mesh . The time dependent schema (20) can be 
represented symbolically as an operator : 
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For the mesh transformation we used a  general adaptive 
algorithm  with  flexible refinement-coarsening pattern 
which transforms under certain defined condition COND   
mesh  into mesh Λ  in the next time step. 

Ψ

)n(h tΛ )( 1+nh t
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The details of this adaptive algorithm will be described in a 
separate publication [8]. 
 
3.2. Dynamic  Mesh Adaptation   
The parameter ε  in the equation (1) and (2)  must be chosen 
sufficiently small to ensure that the diffuse interface model 
produces an adequate approximation of the void-metal 
interface shape and position. Evolving diffuse interface 
defined by equation (1) takes values between and  in 

the inner of the thin interfacial region of width επ . The 
mesh has to have enough triangle elements over the width of 
interfacial region to ensure smoothness of order parameter 
profile.  The finer mesh region has also to be attached  
locally to the void-metal  interface dynamically following 
the position of the interface and in order to avoid  covering 
of  larger portions of simulation area with a computer 
resources demanding fine mesh. Outside the interfacial area  
the basic mesh T  should  be sufficiently fine for the 
accurate evaluation of a electrical potential  and order 
parameter. 
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3.2.1 Setting of the initial order parameter profile and 
initial mesh refinement  )0(hΛ
Initial order parameter profile depends on the initial shape of 
the void   and can be expressed as )0(Γ
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Where  is the signed normal distance 
of the point  from the initial interface Γ . In order 
to enable sufficient resolution of this initial profile, the basic 
mesh  should be transformed into mesh Λ  with 
respect to following criterion: 
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Initial mesh refinement criterion ( IMRC ) for the circular 
void with centre O  and radius r  is:    
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n  is the chosen number of mesh elements across the void-
metal interface width, h  is the longest vertices of the 
triangle K  and C  its centre of gravity.   

K

Now an adaptive algorithm  transforms initial mesh T  
according to . 

Ψ h

IMRC
 
                                                          (14) )0(),( hh IMRCT Λ=Ψ
 
This means that each element of T  is recursive adapted by 
algorithm Ψ  until IMRC  is satisfied. 

h

The initial order parameter distribution (6) is set on mesh 
 and has the symbolically the form:         )0(hΛ
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Thus we can define the transitional mesh refinement 
criterion TMRC 
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And the mesh adapting  for the next time step evaluation of 
parameter φ  can be expressed as 
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TMRC   ensures fine mesh  resolution  of  the belt area of  
width  επ   around the newly evaluated void-metal 
interface with  elements across it.  

2/
n

 
 

                                                        
 metal-void 

interface   Fig. 1: Refined mesh around the void 
                                                                 
3.2.2 Maintaining the mesh during the  simulation                                     επ  2/
After  an order parameter was evaluated on the Λ  a 
mesh needs to be readapted according to the new void-metal 
interface position.  

)( 1−nh t

Therefore it is necessary to extract all elements which are 
cut by void-metal interface in mesh Λ . The following 
condition is used: Let us take a triangle element 

 and denote its vertices as . The 
triangle  belongs to the  interfacial elements if for the 
values of order parameter φ  at the triangle’s vertices holds 

 or φ . We assume that an 
interface intersects each edge of the element only once (Fig. 
1). 
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 Fig. 1: Interface cutting chain element 
 
 The set of all interfacial elements at time

.  The centres of gravity of each
 build the interface point list L

the arbitrary point  from L  is defin
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Fig. 2: Fine grid area around void-metal interface. 
 
 
3.3.  Solving Procedure 
Based on the steps described in the sections above the 
complete solving procedure is represented by the diagram in 
Fig. 3. 
 
 
 
  
  
 
    
   
 
 

1P   Setting of   )0),0(( hΛΦ  t

)0()( , hh IMRCT Λ=Ψvoid-metal 
interface  

Setting of  T  h
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Fig. 3: Solving procedure 
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The maximal time step ∆  is  chosen to ensure that 
the simulated void-interface does not overrun the belt area of 
the fine mesh. 

nn ttt −= +1

   
4. Results and Discussion 
We consider a two-dimensional, stress free, electrical 
conducting interconnect via. A constant voltage is prescribed 
at points A and B (Fig. 4.) of the structure. Because of  
geometrical reasons there is current crowding in the 
adjacencies of the  corners  C and D.  The analytical solution 
of the equation  (3)  has in these points actually a singularity 
[7]. 
              

 

 
Fig. 5: Qualitative profile of the current density (in 

) at the  corners of  interconnect 2/ mA
 
This shape change and the position of void at the 
interconnect corner causes   characteristical profile of the 
resistance change which shows a lowering  of the 
electromigration damage influence on the interconnect 
resistance  for the time duration depending on the initial void 
size (Fig. 4.). 
 

                          

 
Fig. 4: Interconnect via with initial void 

 
High electrical field  gradients in the area around the corner 
points increase overall error of finite element schema for the 
equation (3) which is overcome by applying an   additional 
refinement of the basic mesh T  according to the local value 
of the electrical field gradient.   

h

 
              t = 2h                  t = 33h                    t = 46h 
 

      

In our simulations void evolving through linear part of the 
interconnect geometry exhibits similar shape changes as 
observed in the earlier diffuse interface [3,4] and sharp 
interface models [1,2]. There is also no significant  
fluctuations of the resistance during this period of 
interconnect evolution. The situation changes when the void 
evolves in the proximity of the interconnect corner.  Due to 
current crowding in this area (Fig. 5.) the influence of the 
electromigration force on the material transport on the void 
surface is more pronounced  than the chemical potential 
gradient and this unbalance leads to higher asymmetry in the 
void shape then observed in the linear part of interconnect.  

 
              t = 62h                  t = 97h                  t = 116h 
 
Fig. 4: Void evolving through interconnect in the electric 

current direction 
 
It was also observed, that independent of the initial void 
size, voids retains it’s stability and do not transform in slit or 
wedge like formations which have been shown to be a main 
cause for the complete interconnect failure [9, 10]. 

Our simulations have shown that even in this case voids 
follow the electrical current direction (Fig. 4.), but undergo 
more extensive shape changes than in the linear part of the 
interconnect.   
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Due to high electrical current gradients in the proximity  of 
the interconnect corners and overall asymmetry of the 
electrical field, voids exhibit specific faceting which was not 
observed  in the case of  the linear interconnect geometries.   

 

The presented method is well suited for long time prediction 
of resistance change due to electromigration during the 
interconnect life time. The applied diffuse interface model 
extends readily to incorporate the additional physical such as 
that of anisotropy, temperature variations and bulk and grain 
boundary diffusion.  
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A governing diffuse interface equation for the order 
parameter coupled with the Laplace equation for the 
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