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ABSTRACT

With the rapid feature size reduction of modern semicon-
ductor devices accurate description of hot-carrier phenom-
ena is becoming very important. Frequently used carrier
transport models are the traditional drift-diffusion model
and energy-transport models which also consider the av-
erage carrier energy as an independent solution variable.
Recent results show, however, that the average energy is
in many cases not sufficient for accurate modeling. Both
the transport models themselves and the models for the
physical parameters seem to be affected. After a review of
the conventional models we present highly accurate impact
ionization and gate current models based on a six moments
transport model.

Keywords: Drift-diffusion model, hydrodynamic model,
energy-transport model, impact ionization, hot-carrier ef-
fects, gate currents

1. INTRODUCTION

Numerical simulation of carrier transport in semiconductor
devices dates back to the famous work of Scharfetter and
Gummel [1]. Since then the transport models have been
continuously refined and extended to more accurately cap-
ture transport phenomena occurring in modern semicon-
ductor devices. The need for refinement and extension is
primarily caused by the ongoing feature size reduction in
state-of-the-art technology. As the supply voltages can-
not be scaled accordingly without jeopardizing the circuit
performance, the electric field inside the devices has in-
creased. A large electric field which rapidly changes over
small length scales gives rise to non-local and hot-carrier
effects which begin to dominate device performance. An
accurate description of these phenomena is required and is
becoming a primary concern for industrial applications.

Transport equations used in semiconductor device sim-
ulation are normally derived from Boltzmann’s trans-
port equation which provides a semiclassical description
of carrier transport. Boltzmann’s equation needs to be
solved in the seven-dimensional phase space which is pro-
hibitive for engineering applications. Monte Carlo simu-
lations have proven to give accurate results but are restric-
tively time consuming. Furthermore, if the distribution of
high-energetic carriers is relevant, or if the carrier concen-
tration is very low in specific regions of the device, Monte
Carlo simulations tend to produce high variance in the re-
sults. Therefore, a common simplification is to investigate

only some moments of the distribution function, such as
the carrier concentration and the carrier temperature.

Beside the classic drift-diffusion model, moment based
transport models have been proposed which consider the
carrier energy an independent solution variable [2]–[5].
These models are capable of describing non-local and hot-
carrier effects to a first order. Recent results, however, sug-
gest that the average energy does often not suffice for accu-
rate modeling. Even more important is the fact that models
based solely on the average carrier energy can give results
worse than those obtained by models that omit this effect.
To solve this apparent discrepancy it has been suggested to
include the average square energy into the transport mod-
els [6], [7]. This results in a six moments transport model
and some of its benefits will be discussed in this article.

2. THE DRIFT-DIFFUSION MODEL

The drift-diffusion model is the simplest current transport
model which can be derived from Boltzmann’s transport
equation by the method of moments [8] or from basic
principles of irreversible thermodynamics [9]. It has been
the working horse in industrial applications for over thirty
years. Within the drift-diffusion model the well known
continuity and current equations have to be solved which
read in their static form

∇ · J = qR

J = qµnE + µkBTL∇n

Here,n denotes the carrier concentration,µ the electron
mobility, TL the lattice temperature,E the electric field,
andR the recombination rate.

In the drift-diffusion approach the local temperature of the
carrier gas can be estimated via the homogeneous energy
balance equation

Tn = TL + 2
3

q
kB

τEµE2 (1)

whereτE is the energy relaxation time. However, for a
rapidly increasing electric field the carrier temperature lags
behind the electric field because it takes the carriers some
time to pick up energy from the field. A consequence of the
lag is that the local carrier temperature can be considerably
smaller than the one predicted by the homogeneous energy
flux equation. This non-locality of the carrier temperature
is shown in Fig. 1 forn+-n-n+ test structures with vary-
ing channel lengths. To facilitate comparison the spatial
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Figure 1: The carrier temperature of comparablen+-n-
n+ test structures with varying channel lengths where the
spatial coordinates have been normalized to get an over-
lapping electric field.

coordinate has been normalized to make the electric field
of all devices overlap. The bias has been chosen to give a
maximum electric field of300 kV/cm in all devices.

An important consequence of this non-local behavior of
the carrier temperature is that the lag gives rise to an over-
shoot in the carrier velocity as shown in Fig. 2. Also shown
is the saturation velocityvsat which is the maximum ve-
locity observed in stationary bulk simulations. The reason
for the velocity overshoot is that the mobility depends to
first order on the energy and not on the electric field. As
the mobility µ has not yet been reduced by the increased
energy but the electric field is already large, an overshoot
in the velocityv = µE is observed until the carrier en-
ergy comes into equilibrium with the electric field again.
Thus, drift-diffusion simulations predict the same velocity
profile as for slowly varying field which can dramatically
underestimate the carrier velocities.

Similar to the mobility, many other physical processes
like impact ionization are more accurately described by a
model based on moments of the distribution function rather
than a local electric field model, because the scattering op-
erator in Boltzmann’s transport equation depends on the
distribution function and not on the electric field.

Altogether it can be noted that modeling of deep-
submicron devices is becoming more and more problem-
atic. Although successful reproduction of terminal charac-
teristics of nano-scale MOS transistors has been reported
with the drift-diffusion model [10], the values of the phys-
ical parameters used significantly violate basic physical
principles. In particular, the saturation velocityvsat has to
be set to more than twice the value observed in bulk mea-
surements. These solutions may provide short-term fixes
to available models but obtaining ’correct’ results from the
wrong physics is definitely unsatisfactory in the long run.
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Figure 2: A comparison of the average carrier velocities
of comparablen+-n-n+ test structures. The velocity over-
shoot is caused by the non-locality of the carrier tempera-
ture.
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Figure 3: Electron temperature inside ann+-n-n+ test
structure withLc = 200 nm.

3. ENERGY-TRANSPORT MODELS

In commercial device simulators several variants of
energy-transport models are available. These models are
either based on Stratton’s [2] or Bløtekjær’s [3] approach.
Energy-transport models can be derived from Bløtekjær’s
hydrodynamic model by applying the diffusion approxima-
tion [11] which results in a neglect of the convective terms
and the time derivatives in the flux relations. These mod-
els consider the first three or four moments of Boltzmann’s
equation and have typically the following form

∇ · J = qR

J = qnµE + µkB∇(nTn)
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Figure 4: The distribution function at the four character-
istic points. The average energies at the points A and C
are the same whereas the distribution function looks com-
pletely different. At point D, where the carrier temperature
is 370 K, a significant high-energy tail exists.

∇ · S = E · J− n 3
2kB

Tn − TL

τE
+ GEn

S = − 5
2

µS

µ

kBTn

q
J− 5

2

µS

µ

(kB

q

)2

qµnTn∇Tn

The physical parameters are the mobilityµ, the energy flux
mobility µS and the energy-relaxation timeτE . Normally,
the ratio of the mobilitiesµS/µ is modeled as a constant
with values in the range[0.8, 1]. R andGEn are the contri-
butions due to generation and recombination processes.

One of the fundamental problems of energy-transport mod-
els is that only the average energy is available to model
the shape of the distribution function. Therefore, a heated
Maxwellian distribution is frequently assumed for the clo-
sure of the equation system and for the modeling of phys-
ical processes. This assumption is significantly violated in
modern semiconductor devices. Monte Carlo simulation
results of ann+-n-n+ test structure with a channel length
of Lc = 200 nm are shown in Fig. 3 and Fig. 4. Even
though the average energy is the same at points A and C,
the distribution function looks completely different in both
cases [12], [13]. A heated Maxwellian distribution which
gives a straight line in a semi-logarithmic plot, is definitely
a poor approximation throughout the whole device.

4. SIX MOMENTS MODEL

By considering the first six moments of Boltzmann’s trans-
port equation a macroscopic transport model can be de-
rived without making any assumption on the shape of the
distribution function [7] except that the diffusion approxi-
mation holds. The static flux and balance equations of the
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Figure 5: The kurtosis of differentn+-n-n+ test struc-
tures. Note the strong deviation from unity after the second
junction.

six moments model for electrons read:

∇ · J = qR

J = qnµE + µkB∇(nTn)

∇ · S = E · J− n 3
2kB

Tn − TL

τE
+ GEn

S = − 5
2

k2
B

q
µS

µ
µ

( q
kB

En Tn + ∇(n T 2
n βn)

)
∇ ·K = 2 qE · S− 15

4 k2
B n

T 2
n βn − T 2

L

τβ
+ Gβn

K = − 35
4

k3
B

q
µK

µ
µ

( q
kB

En T 2
n βn + ∇(n T 3

n β3
n)

)
The additional parameters are the kurtosis relaxation time
τβ and the kurtosis flux mobilityµK . The unknowns of the
six moments model are defined as

n = 〈1〉, Jn = −q〈u〉 (2)

Tn =
2

3 kB

〈E〉
n

, Sn = 〈u E〉 (3)

βn =
3
5
〈E2〉
〈E〉2

, Kn = 〈u E2〉 (4)

These are the carrier concentrationn, the carrier temper-
atureTn, the kurtosis of the distribution functionβn, the
current densityJn, the energy flux densitySn, and the kur-
tosis flux densityKn. The statistical average is defined as

〈Φ〉 =
1

4π3

∫
Φf d3k (5)

wheref is the distribution function andΦ the weight func-
tion.

The first four equations are the same as for the energy-
transport model, except that the kurtosisβn appears in the
energy flux equation. As a consequence, the energy flux
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equation cannot be written in the form frequently used for
energy-transport models as proportional to the current den-
sity without producing additional terms. This modifica-
tion makes the coupled equation system difficult to solve
and approximations have been used [6], [7]. Note, that the
six moments model reduces to a standard energy-transport
model when the equations forK are dropped and a value
of unity is assumed forβn.

Properties of the Kurtosis
For a heated Maxwell distribution and parabolic bands
βn = βM = 1. Thus aβn 6= 1 quantifies the deviation
from the Maxwellian shape in the parabolic case. When
nonparabolicity is taken into account, the value ofβM de-
pends on the energy but stays close to unity. Note, how-
ever, that a Maxwellian shape is never observed in Monte
Carlo simulations, except for the contact regions where the
carriers are still cold.

Typical values of the kurtosisβn are in the range [0.75,
3] which indicates a strong deviation from a heated
Maxwellian distribution. In addition, as shown in Fig. 5,
the kurtosis behaves fundamentally differently than in bulk
material [14] where a unique relationshipβBulk(Tn) exists.
Especially at the drain side of the structures we observe a
strong deviation from the Maxwellian shape. This devia-
tion corresponds to the high-energy tail in Fig. 4.

5. APPLICATIONS

Despite the modified description of carrier transport the six
moments model provides the kurtosis of the distribution
function. This parameter is essential and can be used to
formulate an accurate analytical model of the distribution
function [14], [15]. In particular, the following model for
the symmetric part of the distribution function has been
proposed in [14]

f(E) = A
{

exp
[
−

( E
kBTref

)b]
︸ ︷︷ ︸

f1(E)

+c exp
[
− E

kBT2

]
︸ ︷︷ ︸

f2(E)

}
(6)

The parametersTref , b, andc are determined in such a way
that (6) selfconsistently reproducesTn andβn. With rea-
sonable accuracy the temperature of the cold Maxwellian
distributionT2 can be assumed to equal the lattice temper-
ature [14]. Many models given in the literature violate the
important issue of selfconsistency [16] which introduces
unpredictable errors.

A comparison of (6) with Monte Carlo data is given in
Fig. 6 for two critical regions of ann+-n-n+ test structure
with Lc = 200 nm. In the channel region, the high-energy
tail is much less populated than would be predicted by a
heated Maxwellian distribution. This is accounted for by
f1 and c is assumed to be zero. In the drain region, the
cold carriers from the drain appear clearly in the distribu-
tion function which is modeled viaf2. Note that models
based solely on the average energy cannot predict this tail
because the average energy is dominated by the cold carri-
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Figure 6: The analytic distribution function inside the
’channel’ and the ’drain-region’ of ann+-n-n+ test struc-
ture withLc = 200 nm. The spacing between the distribu-
tion functions is given as∆x.

ers. Information about the high energy tail is available in
the kurtosis (cf. Fig. 5).

Impact Ionization
For reliability issues and for the calculation of substrate
currents an accurate model for impact ionization is re-
quired. The analytic distribution function (6) can be used
to transfer microscopic impact ionization rates into macro-
scopic models. A comparison with Monte Carlo data is
shown in Fig. 7 where the analytical models have been
evaluated using parameters from the Monte Carlo simu-
lation. The model based on (6) delivers highly accurate
results for both devices. It is important to note, that when
a heated Maxwellian is assumed instead of (6), the results
deteriorate. This is frequently performed in physics based
models [17]. Also shown are the results obtained by two
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Figure 7: Analytical impact ionization rates in compar-
ison with Monte Carlo data for ann+-n-n+ test struc-
ture. The models based on an analytic distribution func-
tion (ADF) use either a six moments (SM) or a heated
Maxwellian distribution (HM). Also shown are the empir-
ical models based on the local field (LF) and the local en-
ergy (LE).

commonly used empirical fit models [18]

GLF
II = n gII exp

(
−EC

|E|

)
(7)

GLE
II = n gII exp

(
− EC

kB Tn

)
(8)

These models are based on the local field (LF) and on the
local energy (LE). To match the Monte Carlo results the LF
and LE models have been calibrated, whereas the same pa-
rameters as in the Monte Carlo simulation where used for
the models based on the analytical distribution function.

Hot-Carrier Gate Currents
For the design of sub-micron devices with gate oxide
thicknesses around or below2 nm, accurate prediction of
gate oxide tunneling currents is of increasing importance.
Thermionic emission based models are frequently used for
this purpose [16]. These models require detailed knowl-
edge of the distribution function. Frequently, a heated
Maxwellian distribution is assumed which leads to erro-
neous results. In particular, such models lead to a massive
overestimation of gate currents especially for devices with
small gate lengths.

Following [16], the gate current density is given as

Jg =

∞∫
0

f(E) g(E) v⊥(E)T (E) dE (9)

wheref(E) is the electron energy distribution function,
g(E) the density of states,v⊥(E) the electron velocity per-
pendicular to the interface, andT (E) the tunneling proba-
bility. A simple model for the tunneling probabilityT (E)
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Figure 8: Gate current density as a function of the drain
bias for three different analytic distribution functions. Also
shown is the measured data.

can be derived using the WKB approximation [19] for
trapezoidal and triangular barriers:

T (E) = exp
{
−4

√
2mox

3~qFox
· φ

}
(10)

The barrierφ is given as

φ =

{
(Φ − E)3/2 Φ0 < E < Φ

(Φ − E)3/2 − (Φ0 − E)3/2 E < Φ0

whereΦ andΦ0 are the upper and lower barrier height,
andFox is the electrostatic field in the oxide layer. As a
first order correction to the single parabolic band model,
we use Kane’s dispersion relation [20] for the density of
statesg(E). For the distribution function, (6) is used. The
velocity perpendicular to the interface is given in [21].

For the evaluation of the tunnel currents (9) we solve the
six moments model for several MOS transistors with vary-
ing gate lengths and oxide thicknesses. In Fig. 8 the ef-
fect of the drain voltage on the gate current is shown for
a MOS transistor withLg = 0.4 µm and an oxide thick-
ness of1.8 nm. The measured data was taken from [22]
and compared to the analytic expression (9). To estimate
the influence of the distribution function, (9) was evalu-
ated using three different analytic models. When a heated
Maxwellian distribution is assumed a spurious gate current
is obtained for higher drain voltages. Interestingly, a cold
Maxwellian distribution gives much better results but sys-
tematically underestimates the gate current. The analytic
distribution function (6) exactly reproduces the measure-
ments.

The error obtained from the heated Maxwellian distribu-
tion is due to the overestimation of the high-energy tail
of the distribution function. Even though the effect is
relatively small in Fig. 8, it becomes more pronounced
when the gate length is reduced. This is shown in Fig. 9
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tion.

where the error explodes by four orders of magnitude for
a gate length of100 nm. The bias voltages were not
scaled and all devices where biased withVgs = 1V and
Vds = 1V. Therefore, the maximum temperature occur-
ring inside the devices increases when the gate length is
reduced. An estimation shows that these spurious gate cur-
rents occur when the temperature in the channel reaches
approximately1000 K, a value easily exceeded in state-of-
the-art devices.

6. CONCLUSION

Various transport models have been considered so far.
Apart from the drift-diffusion model higher-order models
based on either Stratton’s or Bløtekjær’s approach have
been considered. However, the examples presented here
confirm that the average energy is not sufficient for an ac-
curate description of hot-carrier phenomena. We present
a particular solution using a six moments transport model
which also includes the kurtosis of the distribution func-
tion. The kurtosis allows for a significant improvement in
the accuracy of hot-carrier models.
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