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Abstract – Deposition and etching of Silicon
trenches is an important manufacturing step for
state of the art memory cells. Understanding and
simulating the transport of gas species and sur-
face evolution enables to achieve void-less filling
of deep trenches, to predict the resulting pro-
files, and thus to optimize process parameters
with respect to manufacturing throughput and
the quality of the resulting memory cells. For the
simulation of the SiO2 deposition process from
TEOS (Tetraethoxysilane), the level set method
was used in addition to physical models. The level
set algorithm devised minimizes computational
effort while ensuring high accuracy by intertwin-
ing narrow banding and extending the speed func-
tion. In order to make the predictions of the
simulation more accurate, model parameters were
extracted by comparing the step coverages of the
deposited layers in the simulation with those of
SEM (scanning electron microscope) images.

I. INTRODUCTION

The level set method is based on representing surfaces
as the zero level set of a function u(t,x) and solving the
partial differential equation

ut + F (t,x)‖∇xu‖ = 0,

u(0,x) given,

where F (t,x) is the speed function determining the speed
points of the surface move in direction normal to it. The
advantages of the level set method are twofold: The res-
olution achieved is higher than the resolution of the grid
where calculations takes place, and hence higher than the
resolution achieved using a cellular format on a grid of
the same size [1]. Furthermore, calculating surface nor-
mals is more precise than when using a cellular format.

As part of a general simulator for etching and de-
position processes, an advanced level set algorithm was

devised and implemented. Its features are presented in
the next section. Then the transport of species above
the wafer surface and a method for speeding up and thus
increasing the accuracy of radiosity calculations are dis-
cussed. Finally simulation results and examples of nar-
row bands and extended speed functions are shown. The
simulation flow for etching and deposition processes as it
is implemented in the simulator is depicted in Figure 1.

II. NARROW BANDS AND EXTENDING THE
SPEED FUNCTION

For the first time narrow banding and extending the
speed function were combined into one algorithm. This
algorithm provides several benefits. First, the speed func-
tion is retained as the signed distance function through-
out the simulation, which assures good accuracy till the
end of the simulation. Second, narrow banding reduces
the number of active points that have to be updated
from O(n2) to O(n). By retaining the signed distance
function the width of the narrow band is kept down to
two points on each side (cf. Figure 4) without decreasing
accuracy. Third, time consuming calculations (cf. [2])
are reduced to a minimum by intertwining the compu-
tations necessary for narrow banding and extending the
speed function. Finally, it is noted that the width of the
narrow band can be adjusted if desired.

An outline of the algorithm is as follows. First the
initial points near the zero level set, where the speed
function is known, and the neighboring trial points are
determined. In the main loop it is checked if there is
still a trial point to be considered in the narrow band.
All trial points are stored in a heap ordered by their
distance to the zero level set. If there is a point to be
considered, both its distance is approximated and its ex-
tension speed calculated, and its neighbors are updated
accordingly. Finally after the main loop, bookkeeping
information for the narrow band points is updated using
distance information just computed. The computation
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time consumed by this algorithm is negligible compared
to that required for the physical models, while it provides
high accuracy.

The details of the algorithm that performs narrow
banding and extending the speed function are as follows.

1. Tag all points neighboring the current zero level set
as known. Compute their distance to the zero level
set. Tag the rest of the points as far . (All points are
partitioned into three sets: far , known, and trial .)
Initialize the speed function at the known points
from the results of the simulation of transport.

2. Find the trial points, i.e., the neighbors of the known
points, and compute their tentative distance from
the zero level set. Store the trial points in a heap.

3. Loop while there are trial points: let a be the trial
point with the smallest distance value. Remove a
from the heap. If the distance of a from the zero
level set is larger than the width of the narrow band,
return from the loop. Tag a as a known point. Do
the following for all neighbors b of a: if b is a far
point, tag it as trial , insert it into the trial heap, and
compute and set its distance and extension speed;
after that, if b now is a trial point, compute and set
its distance and extension speed.

4. Finally, sign the distance function accordingly. Use
the distance function just computed for keeping
track of the narrow band. Use the extended speed
function for the level set iteration.

III. MODELING OF TRANSPORT AND THE
DEPOSITION REACTION

Under the process conditions applied in one of the exam-
ples (cf. Figure 2), the transport of teos in the boundary
layer above the wafer happens in the diffusion regime and
thus is governed by the diffusion equation. The bound-
ary conditions are as follows: at the top of the simulation
domain a Dirichlet boundary condition is assumed, i.e.,
a constant concentration is supplied from the convective
zone in the reactor; on the left and right hand side a Neu-
mann boundary concentration is assumed, i.e., the fluxes
are zero; and finally the fluxes at the wafer surface are
determined by the amount of particles deposited.

In order to calculate the thickness ∆d of the film de-
posited during a time interval of length ∆t, we observe
that ∆d is proportional to ∆t, to an Arrhenius term, and
to the deposition rate Ri corresponding to the deposition
model chosen. This implies

∆d = ∆t · kee−E/kT · Ri.

Here kee−E/kT is the Arrhenius term with activation en-
ergy E, absolute temperature T , and preexponential con-
stant ke. Ri is the deposition rate of the deposition model
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Figure 1: Overview of the simulation flow combining
transport by diffusion or radiosity and surface evolution
using the level set (ls) method. The simulation stops
when a prescribed time is reached on when a layer of
prescribed thickness has been deposited.

chosen, where two heterogeneous deposition models, a
homogeneous intermediate-mediated deposition model,
and a heterogeneous deposition with byproduct inhibi-
tion model are available [3]. This setup also provides a
way to determine the actual chemical reaction, which is
a non-trivial problem and can only be done indirectly by
comparing measurements and simulation results.

IV. RADIOSITY AND COALESCING SURFACE
ELEMENTS

For simulations where the transport of the particles hap-
pens in the radiosity regime, the simulator uses the for-
mulation of radiosity for particles of low energy, where
luminescent reflection is assumed, that can be found, e.g.,
in [4]. In the case of multiple, low energy species the cal-
culation of the visibility matrix and the inverse T only
depends on topographic information and thus is not re-
peated for each species.

When using radiosity models, two operations con-
sume most of the computation time. The first operation
is determining the visibility between all surface elements,
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Figure 2: sem (scanning electron microscope) image of a
cross section through a trench about 4µm deep and 2µm
wide. The white layer is a protection layer.

which is an O(n2) operation where n denotes the num-
ber of surface elements extracted from the level set grid.
The second operation is solving a certain system of lin-
ear equations, which leads to calculating the inverse of a
matrix with n2 elements, which is an O(n3) operation.

Obviously increasing the number of surface elements
is not a remedy in cases where high resolution is required.
High resolution is needed, e.g., near the trench opening,
and the bottom of the trench, and for the simulation of
microtrenching and side wall push back. One approach
is to devise a refinement and coarsening strategy for un-
structured grids on which the level set equation is numer-
ically solved. This, however, complicates the fast march-
ing algorithm necessary for extending the speed function.
A different approach was taken here by coarsening the
surfaces after having been extracted from the level set
grid.

The algorithm works by walking down the list of sur-
face elements extracted as the zero level set and calcu-
lating the angle α between two neighboring surface el-
ements. Whenever |π − α| is below a certain threshold
value of a few degrees, the neighboring elements are co-
alesced into one. After one sweep through the list, the
algorithm can be reapplied for further coarsening. After
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Figure 3: Simulation result and intermediate zero level
sets of the simulation of the deposition process corre-
sponding to the image shown in Figure 2.

k coarsening sweeps, at most 2k surface elements are coa-
lesced into one. The resulting longer surface elements are
used for the radiosity calculation, after which the fluxes
are translated back from the coarsened elements to the
original ones.

V. SIMULATION RESULTS AND INVERSE
MODELING

Several sem images of trenches about 4 µm deep and
2 µm wide were used for comparing the step coverages
of simulated deposition processes with reality. Since
three-dimensional simulations are still too computation-
ally expensive for inverse modeling problems, the two-
dimensional simulation module was used in combination
with the optimization framework siesta [5] for determin-
ing the parameters of the model. Hence extracting the
model parameters is done automatically and can be im-
mediately applied to different measurements and struc-
tures produced under different process conditions. A sim-
ulation result is shown in Figure 3. For all the processes
and trenches simulated, very good agreement was found.
Typical simulation times are in the range of a few min-
utes.
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Figure 4: The level set function during the simulation
whose results are shown in Figure 3. The active narrow
band around the zero level set is very small and retained
the signed distance function, whereas other grid points
have not been updated.

VI. CONCLUSION

For simulating etching and deposition processes, a gen-
eral simulator was developed. It consists of three inde-
pendent modules, namely the level set module, a reac-
tion module, and a transport module for diffusion and
radiosity simulations, and can be used for simulating all
common deposition and etching processes. For tracking
surface evolution, a fast and accurate level set algorithm
including narrow banding and extending the speed func-
tion was devised and implemented.

In practice the simulator was applied to the simula-
tion of SiO2 deposition from teos in different Silicon
trenches under different process conditions. To that end
step coverages measured in several sem images were used
for extracting model parameters, where good quantita-
tive agreement was achieved. All observed effects match
well comparing the sem pictures and the simulation re-
sults. Thus the process conditions could be optimized
with respect to the quality of the trenches and manufac-
turing throughput.

Additionally, two strategies for increasing the accu-
racy of radiosity simulations are presented and com-
pared to measurements of a deposition process. The first
method is the algorithm which performs three level set
computations in parallel: calculating the signed distance
function via a fast marching algorithm, extending the
speed function so that the signed distance function is re-
tained throught the simulation, and moving the narrow
band according to the new zero level set. This gives rise
to a fast and accurate level set algorithm.
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Figure 5: Example of an extended speed function during
the simulation whose results are shown in Figure 3.

The second method is a coarsening algorithm which
ensures fine resolution of the surface in parts of the
boundary with relatively high curvature, i.e., where it
is needed most. These parts are typically the opening of
the trench, its bottom, and places where microtrenching
and side wall push back take place. At the same time the
resolution is lowered where possible which reduces the de-
mand on computational resources significantly. Typically
radiosity simulations run five to ten times faster, when
this algorithm is employed.
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