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Abstract: — The Wigner equation taking into account both the non-local potential operator and a scattering operator
represents a suitable physical model for carrier transport in nano structures. In this paper a new Monte Carlo method is
proposed for the solution of the stationary Wigner equation. Scattering can be included at the level of the semi-classical
Boltzmann scattering operator, whereas coherent effects are treated without simplifying approximations. As opposed
to the Monte Carlo method for semi-classical transport, in the quantum case the weight of a particle can take on

positive and negative values.

Key-Words: particle model, Wigner equation, nano structures, Monte Carlo method, scattering, tunnel effect

1 Introduction

Description of quantum phenomena by
means of a particle picture is a promising
approach to the modeling of transport in
nanoscale electronic devices. A single parti-
cle Wigner equation has been derived which
accounts for coherent effects via the Wigner
potential operator and for dissipation processes
via the Boltzmann collision operator.

With deterministic methods using finite dif-
ference discretization one usually considers the
coherent Wigner equation, or includes dissipa-
tion in the relaxation time approximation. A
one-dimensional momentum space is assumed.
Stochastic methods using particles are moti-
vated by the Monte Carlo (MC) method for de-
vice simulation, where the dissipation opera-
tor is treated in an exact manner but the co-
herent part is presented by its classical limit.
This limit transforms the Wigner potential op-
erator into a classical force term, and hence the
Wigner equation into the semi-classical Boltz-
mann equation.

The treatment of the Wigner potential op-
erator is the main concern of the particle ap-
proach. In [1] it has been interpreted as a quan-
tum force giving rise to dynamic particle trajec-

tories. They nicely explain the tunneling pro-
cess but yet cannot solve the Wigner equation:
the quantum force itself depends on the solu-
tion f,,. Recently the coherent Wigner equa-
tion has been solved numerically by using par-
ticles [2] which cross the device by collision-
less drift over classical trajectories. The infor-
mation about the Wigner potential is retained
as particle weight. The physical observables
are obtained as weighted ensemble averages.

2 TheParticle Mode

In this work we consider the Wigner equa-
tion which accounts for the coherent part of
the transport via the Wigner potential V,, and
for dissipation processes due to the electron-
phonon interaction. The equation can be de-
rived from the generalized electron-phonon
Wigner equation by a hierarchy of approxima-
tions [3]. The approximations concern only the
phonon interaction, while the coherent part is
treated at a rigorous quantum level. The clas-
sical limit of the dissipation part gives rise to
the common Boltzmann collision operator. For



one dimensional devices the equation reads:
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We propose a stochastic method which treats
the entire right hand side of the stationary equa-
tion (1) as a scattering term. The method re-
tains the basic features of the weighted Single
Particle MC method [4]. All three dimensions
of the momentum space are included. The al-
gorithms for injection from the boundary distri-
bution, the build up of the trajectory by consec-
utive drift and scattering events, and the record
of the physical averages remain unchanged. In
addition to phonon scattering the potential V,,
is also a source of scattering. This scattering
source gives rise to sign changes of the particle
weights. The method is based on the separation
into two positive functions.
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Here H denotes the Heavyside function. Be-
cause of [ dk,V,(z,k,) = 0, a unique func-
tion
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can be introduced, which is interpreted as the
out-scattering rate of the potential operator in
strict analogy with the phonon out-scattering
rate \. The free-flight time is selected as in
the classical MC scheme, however, with an
out-scattering rate given by the sum (y + \).
The quantum character of the transport affects
mainly the scheme for the after-scattering state
selection. The conditional probability densities
for a transition from the free-flight end state
(z,k) to the after scattering state (x,k’) are
given in the following table.
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where p(z, k) = 3y(x) + A(k) and v(z, k) =
v(z) + Ak).

Particles enter the device from the contacts
with unit weight. The weight is updated af-
ter each scattering by factor 2 k . It becomes

v(z.k
negative, —5&18 in the case when the scatter-
ing source is V.. When ~ ~ 0, e.g. far from
the quantum region, the weight remains unity.
In this case the method simplifies to the clas-
sical Single Particle MC method. The practical
application of the method includes a discretiza-
tion of the x and k, coordinates. The dis-
cretization satisfies AxAk, = w/N, where N
is the number of points of the discrete Fourier
transform used to calculate V,,.

3 Results and Discussion

To study the MC method it is applied to a co-
herent tunneling process (A = 0). In the simu-
lated experiment particles are injected between
the two 1nm thin, 0.05eV high barriers of
an unbiased resonant-tunneling device (RTD).
The injected particles are evenly distributed in
the middle 2nm part inside the 4nm wide poten-
tial well and have a Maxwell-Boltzmann dis-
tribution in energy. Material parameters for
GaAs at 300K temperature are assumed. The
chosen energies are such that the injected par-
ticles can cross the barriers only by tunneling.
The tunneled particles leave the device through
the left to right absorbing contacts. On con-
trary classical particles will accumulate with
the time inside the well - there is no station-
ary classical solution. The method provides the
stationary solution which consistently charac-
terizes the quantum nature of the transport pro-
cess. The current and density distributions in
Fig. 1 reflect the symmetry of the task. Out-
side the injection region the current densities
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to the left and right contacts are constant and
equal in magnitude. In the injection region the
particle density is constant in space and time.
The density drops outside the injection region
well before the physical location of the barri-
ers, which shows the nonlocal character of the
potential scattering. Indeed the potential out-
scattering rate ~ is remarkably high around the
barriers on a distance determined by the coher-
ence length L. = NAz. As shown in Fig. 2,
~ assumes even higher values outside the bar-
riers than inside. A clear demonstration of the
tunneling process is given by the mean kinetic
energy distribution. It becomes negative in the
barriers, where the wave vector of the tunneling
particles is imaginary.

The above experiment gives an insight to the
conventional modes of operation of the RTD’s.
Under moderate bias conditions, when the I-
V curve is simulated, the dominant transport
mechanism through the first barrier is tunnel-
ing. The transport mechanism through the sec-
ond barrier becomes classical when the mean
kinetic energy becomes positive.
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Fig. 1. Device potential, current and particle density
distribution in the device.
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Fig. 2. Device potential, out-scattering rate v and kinetic
energy distribution in the device.
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