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Abstract. A novel approach for segregation modeling on interfaces of three-dimensional structures is
described. A numerical scheme is introduced as an extension to the standard finite element scheme for
the diffusion problem. A simulation example for the case of an intrinsic dopant diffusion condition is
presented.

1. Introduction

The trend toward shrinking device dimensions in integrated circuits has resulted in an increased need
for accurate simulation tools for process and device modeling. There are many open problems in three-
dimensional finite element modeling and simulation of diffusion which is one of the most important
process steps. The accurate and physically based simulation of the behavior of diffusing species on ma-
terial interfaces (segregation) where species migrate between segments of different materials is one of the
challenging issues in diffusion simulation [1,2,3].
This work introduces and describes a novel numerical approach for the integration of a segregation model
into a finite element scheme suitable for handling diffusion models. The quality of the approach is illus-
trated by an example of species diffusing through two aligned cubes of different materials.

2. Physical Model

We consider two segments S0 and S1 of different material connected with the plane interface I. The
single species with the concentration C spreads out under intrinsic dopant diffusion in both segments
S0 and S1 with constant but different diffusivities D0 and D1, respectively. In that case the diffusion
governing equations in each of the segments can be written as

Di∆C =
∂C

∂t
, i = 0, 1. (1)

At the interface I the species flux Jij from segment Si to segment Sj (normal to the interface) is given
by [2]

Jij = h
(
Ci − Cj

m

)
, (2)

where h is the transport coefficient, m the segregation coefficient, and Ci and Cj are the species concen-
trations in segments Si and Sj . On the outside boundaries of the S0 and S1, the homogenous Neumann
boundary condition for the dopant species C is assumed. Segregation, i.e. mass transport of species C
through the interface I, is modeled by (2) and together with (1) completes the model considered in this
work.

3. Analytical Solution for One Dimension

In order to assess the numerical scheme it is useful to construct an analytical solution for a special
one-dimensional case. As segment S0 the region x > 0 is assumed and as segment S1 region x < 0. The
one-dimensional segregation problem fullfils (1) and the following initial and interface conditions

C0(x, 0) = Cinit for x > 0 and C1(x, 0) = 0 for x < 0, (3)

D0
∂C0

∂x
= −h

(
C1 −

C0

m

)
, (4)
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D0
∂C0

∂x
= D1

∂C1

∂x
, at interface x = 0. (5)

Note that condition (3) also means that segments have an infinite length. We are searching for the
solution of the problem given by (1), (3), (4) and (5) in the form

for x > 0, C0(x, t) = A0 +B0C(x, t, α0, D0) (6)
for x < 0, C1(x, t) = A1 +B1C(−x, t, α1, D1) (7)

where A0, A1, B0, B1, α0, α1 are constants to be determined and

C(x, t, α,D) = erfc
( x

2
√
Dt

)
− exp(

hxα+ h2tα2

D
)erfc

( x

2
√
Dt

+
h
√
Dtα

D

)
(8)

is a solution of the diffusion equation (1) for the case of the surface evaporation condition already studied
in [6].
We determine constants A0, A1, B0, B1, α0, α1 from the initial and interface conditions (3), (4), (5) as
follows. From the initial conditions we have

A0 = Cinit and A1 = 0. (9)

The interface condition (5) yields

D0

D1

∂C0
∂x
∂C1
∂x

∣∣∣∣∣
x=0

=
B0α0

B1α1

exp

(
h2tα2

0
D0
− h2tα2

1
D1

)
erfc

(
h
√
D0tα0
D0

)
erfc

(
h
√
D1tα1
D1

) = −1. (10)

This equation is fullfiled if:

α0√
D0

=
α1√
D1

and B0α0 = −B1α1. (11)

From (4) and (9) follows

h

D0

(
C1 − C0

m

)
∂C0
∂x

∣∣∣∣∣
x=0

=
1

erfc
(
h
√
D0tα0
D0

)
B0α0

(
B1

(
1− exp(

h2tα2
1

D1
)erfc

(h√D1tα1

D1

))
(12)

−B0

m

(
1− exp(

h2tα2
0

D0
)erfc

(h√D0tα0

D0

))
− Cinit

m

)
= 1 (13)

The last equality is ensured for the condition

B1 −
B0

m
=
Cinit
m

and −B1 +
B0

m
= B0α0. (14)

By solving the equation system given by (11) and (14) we have

B0 = − Cinit

1 +m
√

D0
D1

, B1 =
Cinit

m+
√

D1
D0

, α0 =
1
m

+
√
D0

D1
, α1 = 1 +

1
m

√
D1

D0
. (15)

So we can write a solution for the problem posed by (1), (3), (4) and (5). For x > 0

C0(x, t) = Cinit

(
1−

( 1

1 +m
√

D0
D1

)(
erfc

( x

2
√
D0t

)
− exp(

hxα0 + h2tα2
0

D0
)erfc

( x

2
√
D0t

+
h
√
D0tα1

D0

)))
,

(16)
and for x < 0

C1(x, t) =
Cinit

m+
√

D1
D0

(
erfc

(
− x

2
√
D1t

)
− exp(

−hxα1 + h2tα2
1

D1

)
erfc

(
− x

2
√
D1t

+
h
√
D1tα1

D1

))
. (17)
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4. Weak Formulation and the Basic Idea

Let us assume that the segments S0 and S1 are comprised with three-dimensional areas Ω0 and Ω1 and
the connecting interface I with a two-dimensional area Θ, respectively. The tetrahedralization of areas
Ω0, Ω1 and the triangulation of area Θ are denoted as Th(Ω0), Th(Ω1) and Th(Θ). We discretize (1) on
the element T ∈ Th(Ω0) using a linear basis function Nk. After introducing the weak formulation of (1)
and subsequently applying Green’s theorem we have∫

T

∂C

∂t
Nk dΩ = D0

∫
T

∆C Nk dΩ = D0

∫
Γ

∂C

∂n
Nk dΓ−D0

∫
T

∇C∇Nk dΩ, (18)

where Γ is the boundary of the element T . Assuming that T ∩ Th(Θ) = ΓΘ 6= ∅ and marking all inside
faces of T as Γin we have Γ = ΓΘ ∪ Γin and we can write∫

Γ

∂C

∂n
Nk dΓ =

∫
ΓΘ

∂C

∂n
Nk dΓ +

∫
Γin

∂C

∂n
Nk dΓ. (19)

In the standard finite element assembling procedure [5] we take into account only the terms
∫
T
∇C∇Nk dΩ

when building up the stiffness matrix. Thereby the terms
∫

Γin
∂C
∂n Nk dΓ do not need to be considered

because of their annihilation on the inside faces.
The term

∫
ΓΘ

∂C
∂n Nk dΓ makes sense only on the interface area Θ and there it can be used to introduce

the influence of the species flux from the neighboring segment area Ω1 by applying the segregation flux
formula (2) ∫

ΓΘ

∂C

∂n
Nk dΓ =

∫
ΓΘ

h
(
C1 − C0

m

)
Nk dΓ. (20)

After a usual assembling procedure on the tetrahedralization Th(Ω0) and Th(Ω1) has been carried out
and the global stiffness matrix for both segment areas of the problem (1) has been built, the interface
inputs (20) for the segregation fluxes J01 and J10 are evaluated on the triangulation Th(Θ) and assembled
into the global stiffness matrix according to the particular assembling algorithm developed in this work.

5. Finite element Approximation and Assembling Algorithm

The numerical implementation of the concept described in Section 4. is carried out in two steps.
Step 1.
We assemble the general matrix G of the problem for both segment, i.e., for both diffusion processes.
The number of points in segments S0 and S1 is denoted as s0 and s1, respectively. The general matrix
has dimensions (s0 +s1)×(s0 +s1) and the inputs are correspondingly indexed. The matrix is assembled
by distributing the inputs from matrix Πi(Ti), dim(Πi(Ti)) = 4×4, defined for each Ti ∈ Th(Ωi), i = 0, 1

Πi(Ti) = K(T ) +Di∆tM(Ti) (21)

∆t is the time step of the discretisized time, and K(Ti) and M(Ti) are stiffness and mass matrix defined
on single tetrahedra Ti from Th(Ωi)

Kpq(Ti) =
∫
T

∇Np∇Nq dx dy dz

Mpq(Ti) =
∫
T

NpNq dx dy dz p, q ∈ {0, 1, 2, 3}. (22)

Let us denote vertices of the element Ti from the tetrahedralization Th(Ωi) by P0, P1, P2, P3 and their
indexes in the segment Si by 0 6 kiP0

, kiP1
, kiP2

, kiP3
< si. Assembling means, for each Ti ∈ Th(Ωi), and

r, q ∈ {0, 1, 2, 3} adding the term Πi(r, q) to G(i s0 + kiPr , i s0 + kiPq ).
After this assembling procedure is carried out the general matrix G has following the structure:

G =
[
S00 0
0 S11

]
(23)
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Where dim(S00) = s0 × s0 and dim(S11) = s1 × s1. The matrix S00 and S11 are the finite element
discretizations of the equation (1) for the segments S0 and S1, respectively.
Step 2.
For the element T0 ∈ Th(Ω0) with one of its faces (ΓΘ) laying on the interface I according to the idea
presented in the Section 4. the weak formulation is:∫

T0

∂C

∂t
Nk dΩ =

∫
ΓΘ

h
(
C1 − C0

m

)
Nk dΓ− D0

∫
T0

∇C∇Nk dΩ, (24)

The segregation term on the right side of (24) is evaluated on the two-dimensional element ΓΘ.
Now if we discretise (24) by applying the idea presented in Section 5 and taking a backward Euler time
scheme with time step ∆t we have for the segment S0:

M(T0) (Cn0 − Cn−1
0 ) = h∆tM (Cn1 −

1
m
Cn0 )−D0∆tK(T0)Cn0 . (25)

where Cn0 = (Cn0,P0
, Cn0,P1

, Cn0,P2
, Cn0,P3

)T and Cn−1
0 = (Cn−1

0,P0
, Cn−1

0,P1
, Cn−1

0,P2
, Cn−1

0,P3
)T are the values of the

species concentration for the nth and n − 1st time step at the vertices of element T0 and analogously
Cn1 = (Cn1,P0

, Cn1,P1
, Cn1,P2

, Cn1,P3
)T for T1 ∈ Th(Ω1), T0 ∩ T1 = ΓΘ. Without losing generality we assume

that vertices P3 of the tetrahedas T0 and T1 is the point which doesn’t belong to the interface Θ. In
that case matrix M from (25) has a simple structure

M = det(J(ΓΘ))/24


2 1 1 0
1 2 1 0
1 1 2 0
0 0 0 0

 , (26)

where J(ΓΘ) is the Jacobian evaluated on the element ΓΘ.
With (21) we obtain

Π0(T0)Cn0 − h∆tM (Cn1 −
1
m
Cn0 ) = M(T0)Cn−1

0 (27)

Let us introduce now H0(ΓΘ) = − h
m∆tM and H1(ΓΘ) = h∆tM and write for the element T0

Π0(T0)Cn0 −H0(ΓΘ)Cn0 −H1(ΓΘ)Cn1 = M(T0)Cn−1
0 (28)

and analogously for the element T1

Π1(T1)Cn1 + H0(ΓΘ)Cn0 + H1(ΓΘ)Cn1 = M(T1)Cn−1
1 . (29)

In the following text, for the sake of simplicity, we omit ΓΘ from Hi(ΓΘ) and write Hi.
The contributions of Π0(T0) and Π1(T1) are already included in the general matrix G by the assembling
procedure made in the first step, the build up of G can now be completed by adding the inputs from
matrix H0 and H1 in order to take into account segregation on the interface I.
Let us denote the vertices of the element ΓΘ ∈ Th(Θ) as P0, P1, P2. In the tetrahedralization Th(Ω0)
these points have indices 0 6 k0

P0
, k0
P1
, k0
P2

< s0 and indices 0 6 k1
P0
, k1
P1
, k1
P2

< s1 in the tetrahedral-
ization Th(Ω1). The actual implementation of the scheme (28) at for each element ΓΘ of the interface
triangulation Th(Θ) and for r, q ∈ {0, 1, 2, 3}:

• adding the term −H0(r, q) to the input G(k0
Pr
, k0
Pq

)

• adding the term −H1(r, q) to the G(k0
Pr
, s0 + k1

Pq
)

• adding the term H0(r, q) to G(s0 + k1
Pr
, k0
Pq

)

• adding the term H1(r, q) to the G(s0 + k1
Pr
, s0 + k1

Pq
).
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After that the assembling of the general matrix G is completed. These procedure is carried out at each
time step of the simulation.
Let us take:

cn = (Cn0,0, C
n
0,1, ..., C

n
0,s0 , C

n
1,0, C

n
1,1, ..., C

n
1,s1),

cn−1 = (Cn−1
0,0 , Cn−1

0,1 , ..., Cn−1
0,s0

, Cn−1
1,0 , Cn−1

1,1 , ..., Cn−1
1,s1

). (30)

Evaluating the species concentration at the nth time step in both segments including segregation on the
interface is performed by solving the following linear equation system:

G cn = M cn−1. (31)

M in the last equation denotes the global stiffness matrix assembled from the element stiffness matrix
M(T0) evaluated on each element T from the tetrahedralizations Th(Ω0) and Th(Ω1).
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Figure 1: The comparison between numerical (points) and analytical solution (full line) for three different time
steps in each figure above. Because of the assumption of infinite media for the derivation of the analytical solution
there is a deviation of the solution from the numerical one in the proximity of the point −10 on the abscissa.

6. Simulation Results

6.1. Comparison between Analytical Solution and One-Dimensional Numerical Scheme

In order to confirm our numerical scheme and to investigate its behavior for several cases of model
parameters we compare the one-dimensional version of the scheme with the analytical solution given in
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Section 3. We use the nodal error eL∞ to give a measure of the quality of the finite element solution:

eL∞ = |C − Ch|L∞ =
√

1
n

∑
0≤i<n

[Ch(i∆x, t)− C(i∆x, t)]2 (32)

Where C is the analytical solution given by (16) and (17) and Ch is the finite element approximation
described in Section 5. reduced to the one-dimensional case, n is the number of the nodes of the
equidistant spatial discretization. The evaluation was carried out for Cinit = 1.0, D0 = 0.1, D1 = 0.5,
m = 0.2, h = 2 and simulation time tend = 5.

For ∆t = 1

number of nodes 10 20 40
nodal error eL∞ 0.035865 0.007957 0.007011

and for ∆t = 0.1

number of nodes 10 20 40
nodal error eL∞ 0.033980 0.006920 0.001720

As we can see from the tables above an error improvement due to finer spatial discretization is more
distinctive for the smaller time step. Fig.1 illustrate the quality of the numerical scheme for two different
discretisations (n = 20 and n = 80) and for two different segregations coefficients m = 0.2 and m = 3.
Each picture shows diffusion profiles on material interfaces for simulation time t = 5, t = 10, and t = 45.
The analytical solution was constructed assuming infinite diffusion media, therefore the comparison is
justifiable only for the undisturbed edges of the simulation area. These assumption is the cause of dif-
ferences between the numerical and the analytical solution for the values around x = −10 in Fig.1.
As we can see from Fig.1 the numerical scheme produces results which very accurately correspond to the
analytical solution. The numerical solution follows already for the rough discretization the analytical
solution. For the purpose of this comparison a one-dimensionel finite element scheme for the diffusion
equation and segregation was implemented.

6.2. 3D Example

The finite element model for equation (1) and the accompanying segregation model (2) has been imple-
mented in our tree-dimensional object oriented PDE solver. In order to demonstrate the applicability
of the presented scheme for three-dimensional segregation simulation we carried out a numerical exper-
iment for the case of two cubes with a common plane rectangular interface. Initial species distribution
has higher concentration Gaussian profile in top cube and lower constant concentration in the bottom
(Fig.2, t = 0) cube. Simulation shows that the species penetrates from the top cube into the bottom cube
(Fig.2, t = 2, 5, 10) at the rate controllable by segregation and the transport coefficient. The example of
simulated species diffusion exhibits accurate physical behavior on the material interface. The calculation
of the species mass in both segments has shown that the presented numerical scheme complies with the
mass conservation law very well.

7. Conclusion

We presented an extension of the common finite element scheme for the diffusion equations which makes
possible numerical simulation of the segregation effect on the material interface for one-,two- and three-
dimensional geometries. A rigorous foundation of the basic concept is given. For the one-dimensional
case an analytical solution of the problem is derived. The results of the numerical procedure are evaluated
with the analytical solution with which it exhibits very good agreement.
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t = 0 t = 2

t = 5 t = 10

Figure 2: Initial species distribution (t = 0) shows higher concentration Gaussian profile in the top cube
and lower constant concentration in the bottom cube. Simulation shows that the species penetrates from
the top cube into the bottom cube (t = 2, 5, 10).
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