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ABSTRACT

We report on a new formulation of hot electron tun-
neling through dielectrics. It is based on an expression
of the electron energy distribution function which ac-
counts for the non-Maxwellian shape and is determined
by the first three even moments n, Tn, and βn. We
present a simplified model applicable within the frame-
work of the energy-transport model which only provides
two even moments, n and Tn. Simulation results of long
channel EEPROM devices and short channel MOSFETs
show excellent agreement with Monte Carlo results and
measurements.
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1 INTRODUCTION

In contemporary sub-quartermicron CMOS devices
the prediction of gate oxide tunneling is crucial to en-
able further device scaling. Tunneling models usually
assume a Fermi-Dirac or Maxwellian shape of the elec-
tron energy distribution function (EED). This assump-
tion is clearly violated in the channel of miniaturized
MOS devices, where the deviation from the Maxwellian
shape may reach several orders of magnitude due to a
pronounced high energy tail with carrier temperatures
exceeding 1000 K. A correct modeling of the shape of
the distribution function is thus necessary to reliably
predict gate currents due to hot electron injection.

2 TUNNELING MODEL

The most prominent and almost exclusively used ex-
pression to describe oxide tunneling is based on Tsu-
Esaki’s equation [1], where the gate current density Jg

is computed as

Jg =
meffq

2π2~3
·
∞
∫

0

[f1(E) − f2(E + ∆EC)] dEl

∞
∫

0

TC(Et) dEt.

(1)
In this expression the total energy E is the sum of a
longitudinal component El and a transversal component
Et. The transversal component is perpendicular to the

semiconductor-oxide interface. The electron energy dis-
tribution functions in the gate and substrate are de-
noted by f1 and f2, the difference in the conduction
band edges ∆EC is calculated as EC1 − EC2, and the
quantum-mechanical transmission coefficient is denoted
by TC. It is assumed that the transmission coefficient
only depends on the transversal energy component. The
dependence on the Fermi energies has been lumped into
an energy-independent prefactor of the respective distri-
bution functions. (1) can be written as an integral over
a transmission coefficient TC(Et) and a supply function
N(Et)

Jg =
4πmeffq

h3

∞
∫

0

TC(Et)N(Et) dEt. (2)

The Wentzel-Kramers-Brillouin (WKB) approximation
yields a simple expression for the transmission coeffi-
cient of trapezoidal and triangular barriers

TC(Et) = exp

{

−4

√
2mox

3~qFox

· φ(Et)

}

(3)

where Fox is the electric field and mox the electron mass
in the oxide. The function φ(Et) is defined as

φ(Et) =

{

(Φ − Et)
3/2 Φ0 < Et < Φ

(Φ − Et)
3/2 − (Φ0 − Et)

3/2 Et < Φ0

(4)
where Φ and Φ0 are the SiO2 barrier heights at the
boundaries of the gate oxide. The value of Φ0 is cal-
culated from Φ0 = Φ − q · Fox · tox where q is the elec-
tron charge and tox denotes the gate oxide thickness.
If a Fermi-Dirac distribution is used for f1 and f2, the
supply function N(Et) evaluates to

N(Et) = kBT ln

[

1 + exp ((Ef1 − Et)/kBT )

1 + exp ((Ef2 − Et)/kBT )

]

(5)

where Ef1 and Ef2 denote the Fermi energies at the semi-
conductor-oxide interfaces. This expression is frequently
used in literature and implemented in all major device
simulators. However, the assumption of a Fermi-Dirac
distribution is not valid in the channel of turned-on
MOSFET devices. It is therefore necessary to use ad-
vanced models to describe the distribution function.
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Figure 1: Contour lines of the heated Maxwellian EED
compared to Monte Carlo results.

3 DISTRIBUTION FUNCTION

Distribution function modeling of hot carriers in the
channel region of a MOSFET has been studied inten-
sively [2], [3]. The topic is crucial because the assump-
tion of a cold Maxwellian distribution function

f(E) = A · exp

(

− E
kB · TL

)

, (6)

with TL being the lattice temperature and A a normal-
ization constant depending on the Fermi energy, under-
estimates the high-energy tail of the electron energy dis-
tribution near the drain region. The straightforward
approach is to use a heated Maxwellian distribution

f(E) = A · exp

(

− E
kB · Tn

)

(7)

where the lattice temperature TL is simply replaced by
the electron temperature Tn calculated from a suitable
transport model. We applied a Monte Carlo simulator
employing analytical non-parabolic bands to check the
validity of the heated Maxwellian approximation. Fig. 1
shows the contour lines of the heated Maxwellian EED
in comparison to Monte Carlo results for a MOSFET
device with a gate length of Lg = 500 nm at VDS =
VGS = 1 V . Neighboring lines differ by a factor of 10.
It can be clearly seen that the heated Maxwellian dis-
tribution (full lines) yields only poor agreement with
the Monte Carlo results (dashed lines). Particularly the
high-energy tail near the drain side of the channel is
heavily overestimated by the heated Maxwellian model.

A generalized expression for the EED has been pro-
posed to account for the high-energy tail [4]:

f(E) = A exp

[

−
(E

a

)b
]

. (8)

It was found that the values of a and b can be mapped
to the solution variables Tn and βn of a six moments
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Figure 2: Contour lines of the non-Maxwellian EED
compared to Monte Carlo results.

transport model [5]. These solution variables are defined
by the first and second order moments 〈E〉 and 〈E2〉 of
the distribution function:

3kBTn

2
= 〈E〉 (9)

5βn

3
=

〈E2〉
〈E〉2 . (10)

(8) has been shown to accurately reproduce Monte
Carlo results of turned-on MOSFETs. It was success-
fully applied to the calculation of impact ionization co-
efficients [4] and gate currents [6].

This model would require the solution of a six mo-
ments transport model which may not be feasible for ev-
eryday TCAD applications. We therefore approximate
the kurtosis βn by an expression obtained from the local
balance equation in homogeneously doped bulk silicon
where a fixed relationship between βn, Tn and the lattice
temperature TL exists:

βBulk(Tn) =
T 2

L

T 2
n

+ 2
τβ

τε

µS

µn
(1 − TL

Tn
) (11)

In this expression τε, τβ , µn, and µS are the energy re-
laxation time, the kurtosis relaxation time, the electron
mobility, and the energy flux mobility, respectively. We
used a fit to Monte Carlo data for homogeneously doped
bulk silicon for τβµS/τεµn [3]. As the influence of the
band structure was found to be negligible for the total
tunneling current we restrict ourselves to the parabolic
case where we find the moments of (8) [4]

Tn =
2

3

Γ (5/2b)

Γ (3/2b)

a

kB

(12)

βn =
3

5

Γ (3/2b)Γ (7/2b)

Γ (5/2b)
2

. (13)
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Figure 3: The values of βn and Tn along the channel
of a 0.5 � m gate length MOSFET.

(12) can be easily inverted to find a(Tn) whereas the
inversion of (13) to find b(Tn) at βn(b) = βBulk(Tn) can-
not be given in a closed form. We therefore used the fit
expression

b(Tn) = 1 + b0z
b1 + b2z

b3 (14)

with z = 1 − TL/Tn and the parameters b0 = 38.82,
b1 = 101.11, b2 = 3.40, and b3 = 12.93. Using a(Tn)
and b(Tn) the Monte Carlo EED can be approximated
without knowledge of βn as shown in Fig. 2. Thus, the
self-consistent approach can be used within the energy-
transport model which provides the carrier concentra-
tion and temperature.

With this generalized expression for the distribution
function and the assumption of a Maxwellian EED in
the poly gate, the supply function N(Et) becomes

N(Et) = A1

a

b
Γi

[

1

b
,

(Et

a

)b
]

−A2kBTL exp

[

−Et + ∆EC

kBTL

]

(15)
where Γi(α, β) denotes the incomplete gamma function.
This expression represents a generalized supply function
which, for a = kBTL and b = 1, describes cold carrier
tunneling as well.

Due to the simple shape of the distribution function
the model does not account for the emerging population
of cold carriers near the drain end of the channel which
leads to a significant inaccuracy in the shape of the EED
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Figure 4: Distribution of the gate current density.
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Figure 5: Gate current density of pMOS devices com-
pared to measurements.

[3]. Looking at the values of the electron temperature Tn

and kurtosis βn shown in Fig. 3 it can be seen, however,
that this error is confined to a very small part of the gate
length, thus being negligible for the total gate current.

4 RESULTS

The outlined model with the generalized expression
for the supply function has been implemented in the
general-purpose device simulator Minimos-NT and com-
pared to Monte Carlo results and measurements. The
tunneling current is calculated between two specified
boundaries of insulator or semiconductor segments with
N interface nodes. The total current is found by

I = w ·
Lg
∫

0

J(x) dx ≈ w ·
∑

i=1..N

Ji∆xi (16)

where w is the gate width, Ji the local tunneling current
density calculated from (2), and ∆xi the interface length
associated with the node i. The local tunneling current
density Ji is added self-consistently to the continuity
equation of the neighboring segment.

Fig. 4 shows the local electron tunneling current den-
sity in the gate oxide of a 1 � m MOSFET with a gate
bias of 1.5 V and a drain bias of 3 V. Arrows indicate
the current direction. Near the drain electrons tunnel
from the gate contact to the semiconductor, while in
the middle of the channel and near the source, electrons
tunnel in the opposite direction. This is the reason why
for turned-on nMOS devices, the gate current density
shows its minimum at positive gate bias.

A comparison of our model with measurements is
shown in Fig. 5 for pMOS devices with gate and source
grounded [7]. The gate oxide thicknesses from top to
bottom are 2.29 nm, 2.45 nm, 2.73 nm, 3.04 nm, 3.22 nm,
3.44 nm, and 4.18 nm, respectively. A substrate doping
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Figure 6: Gate current density along the channel of a
90 nm MOSFET.

of 1017 cm−3 and an electron effective mass of mox =
0.32 m0 was used. The measured values can be repro-
duced over a wide range of oxide thicknesses with a sin-
gle set of physical parameters.

Fig. 6 shows the gate current density of a 90nm
nMOS device with 2nm oxide thickness at VGS = VDS

= 1 V. The values of a and b are calculated from (12) and
(14), respectively, and the resulting gate current density
along the channel is compared to Monte Carlo results.
The model yields excellent agreement, while the heated
Maxwellian approximation substantially overestimates
the gate current density especially near the drain re-
gion. Instead of the heated Maxwellian EED it may
even be better to use a cold Maxwellian EED in that
regime. The effect of this overestimation can be seen in
Fig. 7 where the model was applied to the simulation
of a 0.5 � m EEPROM device with an oxide thickness
of 4 nm. For low gate voltages the electron temperature
is high and the heated Maxwellian approximation mas-
sively overestimates the total gate current. As the gate
voltage increases, the peak electric field in the channel is
reduced. Hence, the high energy tail is suppressed and
the models deliver similar results.

5 CONCLUSIONS

We presented a tunneling model which is based on
Tsu-Esaki’s expression but accounts for a generalized
non-Maxwellian electron energy distribution function in
the channel region. The model is applied to the simula-
tion of short and long channel MOSFET devices. Good
agreement with Monte Carlo simulations and measure-
ments is achieved. In contrast to the heated Maxwellian
model which heavily overestimates the gate current den-
sity of turned-on MOSFETs, our model delivers accu-
rate results for both hot and cold electron tunneling.
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Figure 7: Gate current of a 500 nm MOSFET with
4 nm oxide thickness.

The only adjustable parameter is the electron mass in
the oxide. The model is thus well suited for the im-
plementation in device simulators solving the energy-
transport model.
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