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Abstract

We present a survey of tunneling models describing car-
rier transport through insulating layers for semiconduc-
tor device simulation. Based on Tsu-Esaki’s equation
we separately discuss models for the energy distribu-
tion function and the transmission coefficient. We use
a generalized non-Maxwellian distribution function to
account for hot carrier tunneling. We show how to
correctly calculate the transmission coefficient of en-
ergy barriers when the transfer-matrix methods fail
and compare the models to commonly used compact
models.

1 Introduction

For the proper prediction of device performance in
state-of-the-art sub-quartermicron devices the simu-
lation of quantum-mechanical tunneling effects is of
increasing importance. The application area of such
models ranges from the evaluation of gate stacks for ad-
vanced high-k gate insulator materials to source-drain
tunneling which will become a matter of concern with
further device size reduction.

However, tunneling model implementations in state-
of-the-art device simulators rely almost exclusively
on Tsu-Esaki’s equation [1] using a Fermi-Dirac or
Maxwellian distribution function and transmission co-
efficients derived either from the WKB approximation
or Gundlach’s formula [2]. In miniaturized devices
these assumptions are violated in two important as-
pects.

First, the electron energy distribution function (EED)
can in general not be described by a Fermi-Dirac or
Maxwellian distribution. Higher order moments are
necessary to more accurately characterize the distribu-
tion of hot carriers [3]. We propose a simplification to
a recently proposed model where the EED is charac-
terized by the carrier temperature and concentration,
making it applicable for device simulators which solve
the energy-transport equations.

The second weakness lies in the estimation of the trans-
mission coefficient by the WKB or Gundlach method.
Energy barriers which are not of triangular or trape-
zoidal shape are not treated correctly by these models.
To accurately describe tunneling in such cases, Schro-
dinger’s equation must be solved. This can be achieved
using the transfer-matrix method [1].

It was, however, shown that the transfer-matrix
method is numerically stable only for layer thicknesses
up to a few nanometers. We therefore propose to use
the quantum transmitting boundary method for this
purpose [4]. We show that this method allows a stable
and reliable evaluation of transmission coefficients.

2 Theory of Tunneling

The most prominent and almost exclusively used ex-
pression has been developed by Duke [5] and used by
Tsu and Esaki to describe tunneling through a one-
dimensional superlattice [1]. It is commonly known as
Tsu-Esaki expression. The current density is given as
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with a transmission coefficient T'C'(€;) and a supply
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/f1 &+ &)
0

In these expressions the total energy £ is the sum of
a longitudinal component & and a transversal compo-
nent &. The latter is perpendicular to the substrate-
oxide interface. The electron energy distribution func-
tions in the gate and substrate are denoted by f; and
fa, respectively. The difference in the conduction band
edges A&¢ is calculated as Ec1 — Eca, and T'C is the
transmission coefficient. It is assumed that the trans-
mission coefficient only depends on the transversal en-
ergy component and can therefore be treated indepen-
dently of the supply function. For a Fermi-Dirac EED
the supply function evaluates to

1+ex £
p <g gt))) (3)

— fo(E + &+ AEL)] dE. (2)

N(&) =kgTIn

1+exp(

where & and &/ denote the Fermi energies at the
semiconductor-oxide interfaces. This expression is fre-
quently used in the literature and implemented in de-
vice simulators. However, the assumption of a Fermi-
Dirac distribution is not valid in the channel of a
turned-on submicron MOSFET. Advanced models for
the distribution function are necessary.
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Figure 1: Contour lines of the heated Maxwellian
EED compared to Monte Carlo results.

2.1 Distribution Function Modeling

Models for the EED of hot carriers in the channel re-
gion of a MOSFET have been studied by numerous
authors [6, 7). The topic is crucial because the as-
sumption of a cold Maxwellian distribution function

&
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where T7, denotes the lattice temperature and A a nor-
malization constant, underestimates the high-energy
tail of the EED near the drain region. The straight-
forward approach is to use a heated Maxwellian dis-
tribution function where the lattice temperature 77, is
simply replaced by the electron temperature 7,,. We
applied a Monte Carlo simulator employing analyti-
cal non-parabolic bands to check the validity of the
heated Maxwellian approximation. Fig. 1 shows the
contour lines of the heated Maxwellian EED in com-
parison to Monte Carlo results for a MOSFET with
a gate length of L, = 500nm at Vpg = Vgg = 1V.
It can be clearly seen that the heated Maxwellian dis-
tribution (full lines) yields only poor agreement with
the Monte Carlo results (dashed lines). Particularly
the high-energy tail near the drain side of the chan-
nel is heavily overestimated by the heated Maxwellian
model.

(4)

A generalized expression for the EED has been pro-
posed by Grasser et al. [8]:
e\’
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The values of a and b are mapped to the solution vari-
ables T, and (3, of a six moments transport model [8].
The electron concentration n, electron temperature 7,,
and kurtosis (§, are derived from the first three even
moments of the distribution function (5). This expres-
sion accurately reproduces Monte Carlo results in the

f(€) = Aexp (5)
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Figure 2: Contour lines of the non-Maxwellian EED
compared to Monte Carlo results.

source and the middle region of the channel of a turned-
on MOSFET. The model, however, requires the solu-
tion of a six moments transport model, which is com-
putationally expensive. We therefore approximate the
kurtosis 3, by an expression obtained for a bulk semi-
conductor where a fixed relationship between 3, Tj,
and the lattice temperature 71, exists:

T2 T
LHT_ﬂ&(l_L)

u Tn:_
(L) = 7 + 2255 (1 22

(6)
In this expression 7, 73, ftn, and pg are the energy re-
laxation time, the kurtosis relaxation time, the electron
mobility, and the energy flux mobility, respectively.
We used a fit to Monte Carlo data for homogeneously
doped bulk silicon for mgps/Teptn [3]. Estimating the
kurtosis from (6), the EED (5) can be used within the
energy-transport model. Restricting ourselves to the
case of a parabolic band structure, we find [8]
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While (7) can easily be inverted to obtain a(T},), the
inversion of (8) to find b(T},) at B, (b) = Spuk(Ty) can-
not be given in a closed form. We therefore use the fit
expression b(T},) = 1+bgz" +by2% with z = 1-T1,/T),
and the parameters bp=38.82, b1=101.11, b»=3.40, and
b3=12.93. Using a(T,) and b(T},,) the Monte Carlo
EED can be approximated without knowledge of 3,
as shown in Fig. 2. With the generalized distribution
(5) in the channel and a Maxwellian EED in the poly
gate, the supply function (2) finally becomes
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where Ny = AskgTy, and T'i(«, 8) denotes the incom-

plete gamma function. This expression has been im-
plemented in the device simulator MINIMOS-NT.

N(&) = A

132



10 u T u T T T T T

Z o
— WKB i
— — Gundlach
- Constant TM -
2| | i . i
10717~ Linear TM 7
Pt
o—aQTBM ,/E,/

A

Transmission coefficient
5
1

Energy [eV]

-1 0 1 2 3
Poslition [nm]I

3 35

5
Energy [eV]

Figure 3: Transmission coefficient T'C as a function of
energy for a stacked oxide.

2.2 Transmission Coefficient Modeling

Apart from the distribution function the quantum-
mechanical transmission coefficient is the second build-
ing block of any tunneling model. It is based on the
probability flux
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where W is the wave function, m the carrier mass, and
i = +v/—1. The transmission coefficient is defined as the
ratio of the fluxes jo and j; due to an incident wave
in Region 1 and a transmitted wave in Region 2. The
respective wave functions can be found by solving the
stationary one-dimensional Schrodinger equation in the
barrier region.

This can be achieved using different numerical meth-
ods, such as the commonly applied Wentzel-Kramers-
Brillouin (WKB) approximation or Gundlach’s method
[2] which is accurate for triangular and trapezoidal bar-
riers.

A more general approach is the transfer-matrix method
[1] the basic principle of which is the approximation of
an arbitrary-shaped energy barrier by a series of bar-
riers with constant or linear potential. Since the wave
function for such barriers can easily be calculated, the
transfer matrix, which relates the incoming to the out-
going wave amplitudes, can be derived by a number
of subsequent matrix computations. From the transfer
matrix, the transmission coefficient can be calculated.
However, the main shortcoming of the method is that it
becomes numerically instable for thick barriers which
is due to the multiplication of exponentially growing
and decaying states, leading to rounding errors which
eventually exceed the amplitude of the wave function
itself [9)].

10 b 1 W 1 T T T T T T
' — WKB
10°F — - Gundlach
--++ Constant TM
g 10°H =+ Linear T™
'S B—aQTBM
= ]
8 10°%F
c
@ 10_12 :\_ _ 3
& o S
% !:l. 2‘2
=0 !_l";: Y 2
I b 1
c
» I}
10—13 2 g 0
;‘.i... -1 0 1 2 3
10_lelrlr_ e PO.SI'[IOIr‘I[nr:n]
0 0.5 1 15 2 25 3
Energy [eV]

Figure 4: Transmission coefficient TC as a function of
energy for a 3nm thick layer of SiOs.

An alternative method to compute the transmission co-
efficient is based on the quantum transmitting bound-
ary method [4]. The method uses a finite-difference
approximation of Schrédinger’s equation with open
boundary conditions. This results in a complex-valued
linear equation system for the unknown values of the
wave amplitudes. The method is easy to implement,
fast, and more robust than the transfer-matrix method.

The different numerical methods are compared in Fig. 3
for a 2nm gate stack comprised of SiO, and an adja-
cent material with a lower barrier height. The WKB
and Gundlach methods, which approximate the bar-
rier with a linear potential, overestimate the trans-
mission coefficient as compared to the transfer-matrix
based methods. It can also be seen that the two-step
constant-potential approximation (dotted line) shows
a resonance at 1.3eV. The linear potential approx-
imation shows no resonance and is more accurate.
The quantum transmitting boundary method (QTBM)
was applied with a resolution of 500 points in the x-
direction and represents the most accurate solution.
The inset in Fig. 3 shows the shape of the barrier and
the squared wave function for an energy of 2.8eV on a
logarithmic scale.

While the transfer-matrix based methods yield reason-
able results for a thin gate stack, they cannot be used
for thick barriers as shown in Fig. 4 for a 3nm SiO, gate
oxide. For energies lower than ~ 0.6 eV the transfer-
matrix methods become unstable and give erroneous
results. The transmitting boundary method, how-
ever, delivers the same results as the Gundlach method
which provides an accurate analytical solution in this
case. It therefore promises to be a reliable method for
the estimation of the transmission coefficient of high-k
gate stacks.
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Figure 5: Comparison of Tsu-Esaki’s model with
measurements of a pMOS device [10].
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3 Simulation Results

The Tsu-Esaki expression with a WKB transmission
coefficient is in good agreement with measurements as
shown in Fig. 5 for pMOS devices with oxide thick-
nesses of 2.29nm, 2.45nm, 2.73nm, 3.04 nm, 3.22 nm,
3.44nm, and 4.18 nm, respectively [10]. The gate cur-
rent density can be reproduced over a wide range of
oxide thicknesses with a single set of physical param-
eters. The model seems to be well suited to describe
cold-carrier tunneling through single-layer dielectrics.

For the use in practical device simulation it is desir-
able to use compact models which do not require large
computational resources and may be used for a quick
estimation of the oxide thickness from IV-data. The
most commonly used model to describe tunneling is
the Fowler-Nordheim formula [11]:

4/2m ox D3
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It can be derived from (1) by the assumption of zero
temperature and a triangular barrier. Schuegraf and
Hu [12] derived simple correction terms for this expres-
sion to make it applicable to the regime of trapezoidal
barriers. The correction factors cause the minimum
tunneling current to occur for minimum bias, and not
for minimum field in the oxide, which is a major prob-
lem of the Fowler-Nordheim formula.

Fig. 6 shows the results of the compact models for the
case of an nMOS device with 2 nm oxide thickness. The
Schuegraf model fails to describe the tunneling current
density at low bias, because it does not take the band
structure into account. For high bias, however, it may
be used to provide an estimation of the gate current.
The Fowler-Nordheim formula totally fails for this ap-
plication.
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Figure 6: Comparison of compact tunneling models

for a nMOS device [13].

4 Conclusion

We presented a hierarchy of tunneling models for de-
vice simulation. Based on Tsu-Esaki’s equation models
for the supply function and the transmission coefficient
are discussed. We described a method to correctly ac-
count for the electron energy distribution in the chan-
nel of a turned-on MOSFET. Furthermore, we out-
lined methods to estimate the transmission coefficient
of an energy barrier, namely the WKB, Gundlach, con-
stant and linear potential transfer-matrix, and trans-
mitting boundary methods. The transmitting bound-
ary method may be used to overcome inherent nu-
merical problems of the transfer-matrix method and
is the method of choice for the evaluation of tunneling
through high-k gate stacks. A study of compact mod-
els showed that the commonly used Fowler-Nordheim
formula fails for low bias, while the Schuegraf model
shows reasonable agreement with measurements.
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