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Gate stacks of high-x dielectrics have been proposed to enable MOSFET effective oxide thickness scaling
below 2nm. Simulation of such devices requires the calculation of tunneling through non-triangular energy
barriers. The tunneling current through an energy barrier of arbitrary shape is

4mmegq /OO TC(E) /Oo [f1(& + &) — f2(& + & + Aée)] d& d&; (1)
0 0

h3
where TC/(&;) is the transmission coefficient, & and & the longitudinal and transversal energy component,
f1 and f5 the energy distribution functions in the gate and substrate, and A&q the difference in the
conduction band edges. The quantum-mechanical transmission coefficient can be derived using several
techniques. While the WKB and Gundlach methods assume a triangular or trapezoidal barrier, the
transfer-matrix method is based on a segmentation of an arbitrary-shaped energy barrier into a series
of constant- or linear-potential segments as shown in Fig. 1. Alternatively, the quantum transmitting
boundary method (QTBM) can be used, where open boundary conditions are introduced by [1]

J:

Uy = a;+by, U = a eXp(—iklA) + b exp(iklA) (2)
U, = ap+by, Ypi1 = apexp(—ik,A) + by exp(ik,A)

which allow Schrodinger’s equation to be solved by standard techniques. The different numerical methods
have been compared to study their applicability for the evaluation of high-x dielectric stacks. Fig. 2 shows
the transmission coefficient of a typical 2nm stack, with the shape of the barrier and the squared wave
function at an energy of 2.8¢eV in the inset. The WKB and Gundlach methods, which approximate the
barrier with a straight line, overestimate the transmission coefficient as compared to the transfer-matrix
based methods, which show good agreement with the transmitting boundary method. The transfer-matrix
based methods, however, cannot be used for thicker dielectrics as shown in Fig. 3 for a 3nm SiO, gate
oxide due to numerical instabilities at low energies (=~ 0.6 eV in this case). It was found that these methods
become unstable due to rounding errors if the decay factor ) k; A exceeds a certain value (~20 in our
simulations).

The transmitting boundary method, on the other hand, delivers accurate results and remains stable even
for large stacks. It has therefore been implemented into the device simulator MINIMOS-NT and applied
for the evaluation of gate dielectric stacks in a 50 nm "well-tempered” MOSFET [2]. Retaining the effective
gate oxide thickness of 2nm we replaced the dielectric by a stack consisting of an underlying SiO» layer
and a high-x dielectric on top. The electron concentration in the stack (see Fig. 4) was taken into account
in the Poisson equation. Using the material parameters listed in Fig. 5 the gate current was calculated at
the bias point Vpg=0V and Vgs=2V for different thicknesses of the SiO» layer, see Fig. 6. Most of the
materials yield even an increased gate current which can be explained by the trade-off between barrier
height and barrier thickness. Only ZrOs and AlsOg show considerably lower leakage than SiOs and may
therefore be considered as viable high-x dielectrics for future CMOS technologies.
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Figure 1: The energy barrier for the linear and con-
stant potential transfer-matrix method.
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Figure 2: Transmission coefficient as a function of

energy for a typical gate stack.
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Figure 3: Transmission coefficient as a function of Figure 4: The electron concentration in a SiOs-
energy for a 3nm thick layer of SiOs. SizN,-SiO, gate stack.
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Figure 5: Material parameters of commonly used
dielectrics, compared to silicon [3, 4].

Figure 6: Gate current as a function of SiO9 layer
thickness at Vpg= 0V and Vgs= 2V.

106


weinb_000
Typewritten Text
106




