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Abstract

Mobilities and relaxation times are the fundamental
parameters of macroscopic transport models. They are
determined by the scattering integral of Boltzmann’s
equation and thus depend on the shape of the distri-
bution function. They are normally modeled in an
empirical way because knowledge of the distribution
function is difficult to obtain. Based on an analytic
expression for the distribution function which exactly
reproduces its first six moments we present models for
these parameters which are highly accurate even for
nanometer devices. We show that this accuracy can-
not be obtained within the conventional heated and
shifted Maxwellian approximation.

1 Introduction

Since the proposal of hydrodynamic models over forty
years [1, 2] ago the modeling of the transport param-
eters like mobilities and relaxation times has been a
hot topic of research. Since the fluxes are proportional
to the mobilities these parameters are of fundamental
importance. One of the most accurate physics-based
models for the carrier mobility so far has been pro-
posed by Hänsch [3] whereas the energy relaxation time
is commonly assumed to be constant [4]. Although the
energy relaxation time can be more accurately modeled
as a function of the average carrier energy by fitting
Monte Carlo data, this is not possible for the mobili-
ties which are not single-valued functions of the average
carrier energy [4]. Similar difficulties are observed for
the energy flux mobility which is frequently modeled
as equal to the carrier mobility [5].

Despite these difficulties hydrodynamic models suffer
from additional limitations. Most of them are related
to the fact that they do not provide enough infor-
mation about the distribution function and a heated
and drifted Maxwellian approximation is frequently as-
sumed. It has been shown that this is not sufficient to
model hot carrier processes like impact ionization [6, 7]
and that much more accurate results can be obtained
by including the next two equations of the moment hi-
erarchy which results in a six moments transport model
[8]. There, in addition to the carrier mobility µn, the
energy flux mobility µS , and the energy relaxation time
τE required also by hydrodynamic models, the kurto-
sis flux mobility µK , and the kurtosis relaxation time
τβ have to be modeled. The solution variables of the

six moments transport model are the moments of the
distribution function, which are defined by the weight
functions φi = E i for the even moments, giving the bal-
ance equations, and Φu

i = uE i for the flux equations.

2 Distribution Function Model

The distribution function is split into its symmetric
and antisymmetric parts f(k) = fS(E) + fA(k) where
the symmetric part is assumed to depend only on the
energy.

In the following we will use Kane’s dispersion relation
[9] with γ(E) = E (1 + αE) = EHE(αE). The density of
states evaluates to

g(E) = g0

√
E
√

1 + αE (1 + 2αE) = g0

√
EHg(αE) (1)

and the group velocity to

u =
1

~
∇kE(k) =

~k

m∗

1

1 + 2αE =
~k

m∗
Hu(αE) (2)

To obtain closed form expressions for the moments of
the even part of the distribution function we use the
approximation Hg(αE) ≈ 1 + γg(αE)λg .

2.1 Symmetric Part

The symmetric part is modeled according to our pre-
vious works [10] as consisting of a hot (fh) and a cold
distribution (fc).

fS(E) = A
{

exp
[

−
(E

a

)b]

+ c exp
[

− E
ac

]}

(3)

= A
{

fh(E) + c fc(E)
}

(4)

The five parameters A, a, b, c, and ac, are calcu-
lated in such a way that fS exactly reproduces the
first three even moments provided by the six moments
model. In addition, the conditions ac = kBTL and
〈E2〉c = h(〈E〉c) are assumed, where h(〈E〉) is the rela-
tion ship between 〈E2〉 and 〈E〉 in bulk and 〈·〉c is the
moment of fc only. Note that the cold population only
exists inside the drain regions and that inside channel
regions c vanishes [10].

We define the even moments of the distribution func-
tion using the weight functions φi = E i as 〈φi〉 =
1
n

∫

φi fS(E) d3k. Introducing the auxiliary functions

I(x, z) =
ax+

3
2

b
Γ
(x + 3

2

b

)

+ z a
x+

3
2

c Γ
(

x + 3
2

)

(5)

my(x) = I(x, c) + γyα
λyI(x + λy, c) (6)
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Figure 1: Cuts through the symmetric and antisym-
metric parts of the distribution function at
the end of the channel region.

and Cm = Ag0 we obtain

n = Cmmg(0) and 〈φi〉 =
mg(i)

mg(0)
(7)

with my(x) being the generalized moment of fS using
the parameters γy and λy.

2.2 Antisymmetric Part

The antisymmetric part is obtained by shifting the
symmetric part and applying the diffusion approxima-
tion

fA(k) =

2
∑

j=0

EjBj · k fE(E) (8)

with fE(E) = fh(E) + cA fc(E). Note that a different
prefactor appears in front of fc because the cold elec-
tron gas has a different average energy and velocity.
This prefactor is empirically modeled as cA/c = ac/a
in this work.

To determine the coefficients Bi we calculate the mo-
ments of the antisymmetric part of the distribution
function

〈Φu
i 〉 =

~

m∗n

2
∑

j=0

Bj

∫

E i+j(k ⊗ k)Hu(αE)fE (E) d3k

= CM

2
∑

j=0

Bj

∫

E i+j+3/2HM(αE)fE (E) dE

Here we introduced CM = 2g0/(3~n) and HM(αE) =
Hu(αE)Hg(αE)HE (αE) = (1 + αE)3/2 which will be
approximated as 1 + γM(αE)λM to obtain closed form
solutions. Introducing the auxiliary functions

My(x) = I(x, cA) + γyα
λyI(x + λy, cA) (9)

and requiring that fA reproduces the moments 〈Φu
i 〉

we obtain a linear equation system

〈Φu
i 〉 = CM

2
∑

j=0

BjMM(i + j + 1) =
2

∑

j=0

BjCij (10)
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Figure 2: Cuts through the symmetric and antisym-
metric parts of the distribution function in-
side the drain region.

where the Cij have the property Cij = Ckl for i + j =

k + l. Solving for Bi gives Bi =
∑2

j=0 Dij〈Φu
i 〉 where

the Dij are the components of the inverted tensor Ĉ−1

which have the property Dij = Dji. The antisymmet-
ric part of the distribution function can now be written
as

fA(k) = fE(E)
2

∑

i=0

di(E) 〈Φu
i 〉 · k (11)

di(E) =
2

∑

j=0

Dji Ej (12)

A comparison of the analytic model with Monte Carlo
data is given in Fig. 1 for the end of the channel region
and in Fig. 2 for the beginning of the drain region of
an n+-n-n+ structure with Lc = 100 nm. A hydrody-
namic version of this model is obtained by assuming a
heated Maxwellian distribution for the even part and
considering only B0 and B1 in (8). The results are also
shown in Figs. 1 and 2 which are much less accurate
than the six moments version.

3 Scattering Models

By introducing a relaxation time τφ(E) related to the
weight function φ the scattering integral can be rear-
ranged formally as [11]

∫

φ(k) Q[f(k)] d3k = −
〈 φ(k)

τφ(E)

〉

1

τφ(E)
=

∫

[

1 − φ(k′)

φ(k)

]

S(k,k′) d3k′

In the following we will evaluate the scattering integral
considering acoustic deformation potential scattering
(ADP), intravalley scattering (IVS), and impurity scat-
tering (IMP) [12]. For IMP the Brooks-Herring model
is used for simplicity, although more accurate models
can be treated in the same manner.
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Figure 3: Mobilities required for the six moments
model. The symbols are the Monte Carlo
results whereas the solid lines are obtained
by the analytic distribution function model.

3.1 Mobilities

We now define the scalar mobilities via

−
〈 Φp

i

τp(E)

〉

= q
〈Φu

i 〉
µ〈Φu

i
〉

(13)

Note that we do not employ the relaxation time approx-
imation as we evaluate the scattering integral directly,
using the microscopic relaxation times of the odd mo-
ments Φp

i = ~kE i. For all scattering processes consid-
ered here the microscopic relaxation times related to
τΦ

p

i

(E) are equal the momentum relaxation time τp(E).
This gives

−
〈 Φp

i

τp(E)

〉

= CQ

2
∑

j=0

Bj

∫

E i+j+3/2HQ(αE)
fE (E)

τp(E)
dE

=

2
∑

j=0

Zij〈Φu
j 〉

with the definitions CQ = m∗CM, HQ(αE) = (1 +
αE)3/2(1 + 2αE), and

Zij = CQ

2
∑

l=0

DljQil (14)

Qij =

∫

E i+j+3/2HQ(αE)
fE (E)

τp(E)
dE (15)

3.2 Relaxation Times

The relaxation times for the balance equations are de-
termined by the even moments φi as

−
〈 φi

τφi
(E)

〉

=
1

mg(0)

∫

φiE1/2Hg(αE)
fS(E)

τφi
(E)

dE
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Figure 4: Relaxation times required for the six mo-
ments model. The symbols are the Monte
Carlo results whereas the solid lines are ob-
tained by the analytic model.

Since ADP and IMP are assumed to be elastic, they
do not contribute to these relaxation rates. The relax-
ation times for the even moments determine the aver-
age relaxation times used in the macroscopic transport
equations

τ〈φi〉 =
〈φi〉 − 〈φi〉eq

qi
and 〈φi〉eq =

mg(i)

mg(0)

∣

∣

∣

eq

where under equilibrium a = kBTL, b = 1, and c = 0.

3.3 Scattering Rates

Since the scattering models we use are well known [12],
they are only briefly sketched here:

ADP :
1

τp(E)
= Kadp g(E) (16)

IVS :
1

τ±
p (E)

= K±
ivs σ(E ± E0)g(E ± E0) (17)

IMP :
1

τp(E)
= Kimp T (t) Himp(αE) E−3/2 (18)

with the auxiliary definitions for IMP

T (t) =
[

ln(1 + t) − t

1 + t

]

t =
4

Eβ
E(1 + αE)

Himp(αE) =
1 + 2αE

(1 + αE)3/2

4 Results

In our Monte Carlo code we use the same scattering
rates as given above and a single equivalent isotropic
nonparabolic band. Although this band structure is
unreliable above 0.5 eV, it allows us to write relatively
simple closed form expressions when the integrals oc-
curring in the evaluation of the scattering integral are
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Figure 5: Mobilities required for the hydrodynamic
model. The dashed line shows the results
obtained by the Hänsch model.

accordingly approximated. Furthermore, if required,
our approach can be easily extended to more accurate
analytical models in a straight forward manner. We use
the first six moments obtained from the Monte Carlo
simulation to evaluate the distribution function model
and the scattering integral. The resulting highly accu-
rate mobilities and relaxation times are shown in Fig. 3
and Fig. 4 for an n+-n-n+ structure with Lc = 100 nm
and a maximum electric field of Emax = 100 kV/cm.
For the channel region where c = 0 and no heuristic
criterions are applied the error in the mobilities and
and relaxation times is well below 0.1%. Even in the
drain region, where the bulk relation between the aver-
age of the square of the energy and the average energy
is assumed to be valid, the accuracy is extremely good.

In Fig. 5 and Fig. 6 the analogous expressions for the
hydrodynamic model are evaluated which clearly con-
firm that the resulting heated and drifted Maxwellian
distribution is not well suited for the modeling of hot
carrier processes. In addition, the results obtained by
the Hänsch model is shown in Fig. 5 with τE = 0.33 ps.

5 Conclusion

Modeling of physical processes in macroscopic trans-
port models requires knowledge of the distribution
function. In hydrodynamic models the distribution
function is frequently assumed to be a heated and
shifted Maxwellian distribution. It has been often
shown that this approach is inaccurate for hot car-
rier processes such as impact ionization where hydrody-
namic models give notoriously wrong results. This has
been attributed to the fact that the heated Maxwellian
distribution cannot reproduce the hot energy tail of the
distribution function. Here we have demonstrated that
similar limitations apply to the modeling of scattering
processes occurring at lower carrier energies such as
phonon and impurity scattering. Although the results
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Figure 6: Relaxation times required for the hydrody-
namic model.

obtained with the heated Maxwellian approximation
do not differ by orders of magnitude, as is the case for
impact ionization, the improved quality obtained with
a six moments representation is striking. We can there-
fore conclude that a six moment description provides
not merely a marginal improvement over the conven-
tional heated Maxwellian distribution but rather makes
precise modeling of energy dependent processes possi-
ble. This is underlined by the fact that the six mo-
ments model provides sufficient information to accu-
rately model all required transport parameters which
is not the case for lower order transport models.
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