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ABSTRACT. A numerical model which is suitable to
describe three-dimensional thermal oxidation of silicon
is proposed. By oxidation the three material compo-
nents silicon, silicon dioxide and oxidant molecules are
involved. The model takes into account that the dif-
fusion of oxidants, the chemical reaction, and the vol-
ume increase occur simultaneously in a so-called reactive
layer. This reactive layer has a spatial finite width, in
contrast to the sharp interface between silicon and diox-
ide in the convential formulation. The oxidation process
is numerically described with a coupled system of equa-
tions for reaction, diffusion, and displacement. In order
to solve the numerical formulation of the oxidation pro-
cess the finite element scheme is applied.

INTRODUCTION

Thermal oxidation of silicon is one of the most impor-
tant steps in fabrication of highly integrated electronic
circuits, being mainly used for efficient isolation of ad-
jacent devices from each other.
If a surface of a silicon body has contact with an oxiding
atmosphere, the chemical reaction of the oxidant (oxy-
gen or steam) with silicon results in silicon dioxide. This
reaction consumes silicon and the newly formed silicon
dioxide has more than twice the volume of the original
silicon. If a silicon dioxide domain is already existing,
the oxidants diffuse through the oxide domain and react
at the interface of oxide and silicon to form new oxide
so that the dioxide domain is penetrated.
Thermal oxidation is a complex process where the three
subprocesses oxidant diffusion, chemical reaction, and
volume increase occur simultaneously. The volume in-
crease is the main source of mechanical stress and strain,
and these cause displacement (Zelenka 2000).
From the mathematical point of view the problem can
be described by a coupled system of partial differential
equations, one for the diffusion of the oxidant through
the oxide, the second for the conversion of silicon into sil-
icon dioxide at the interface, and a third for the mechan-
ical problem of the Si–SiO2–body, which can be modeled
as an elastic, viscoelastic, or viscous body.
All published approaches can be classified essentially
into three groups. The first type of method (Lorenz et
al. 1985) maps the silicon dioxide domain in each time

step onto a a simple numerical domain. The second ap-
proach uses the boundary element method for diffusion
and displacement (Matsumota and Fukuma 1985). The
third one (Rank and Weinert 1990) models the domain
of computation by finite elements.
For a realistic and accurate oxidation simulation the
three subproblems should be coupled, however, most ox-
idation models decouple them into a sequence of quasi-
stationary steps. In our model all subprocesses are cou-
pled simultaneously and the oxidation process can be
simulated in three dimensions.
We will restrict the following explanation to the most
simple physical model of linear oxidant diffusion and
linear elastic displacement of the Si–SiO2–body.

MODEL

We define a normalized silicon concentration

η(~x, t) =
CSi(~x, t)

C0Si

(1)

where CSi(~x, t) is the silicon concentration at time t and
point ~x (x, y, z) and C0Si is the concentration in pure
silicon. So η is 1 in pure silicon and 0 in pure silicon
dioxide.
The oxidant diffusion is described by

D∆C(~x, t) = k(η)C(~x, t) . (2)

Here D is the diffusion coefficient and k(η) is the strength
of a spatial sink and not just a reaction coefficient at a
sharp interface like in the standard model (Deal and
Grove 1965). k(η)C(~x, t) defines how many particles of
oxygen per unit volume react in a unit time interval to
silicon dioxide.
The change of η is described by

∂η(~x, t)

∂t
= −

1

λ
k(η)C(~x, t)/N1 (3)

where λ is the volume expansion factor (=2.25) for the
reaction from silicon to silicon dioxide, and N1 is the
number of oxidant molecules incorporated into one unit
volume of silicon dioxide.
Furthermore, we define in (4) that k(η) is linear propor-
tional to η.

k = η(~x, t)kmax (4)
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The chemical reaction of silicon and oxygen causes a
volume increase. The additional volume in a reference
volume silicon ∆V , where we assume that the oxidant
concentration C is constant, is given by

V add =
λ − 1

λ
∆ t∆ V k(η)C(~x, t)/N1 . (5)

We define the normalized additional volume V add
rel as

V add
rel =

V add

∆ V
. (6)

For our model we assume, that the Si–SiO2–body de-
forms elastically. In the theory of linear elasticity with
small displacements ~θ(x, y, z) = {u(x, y, z) v(x, y, z)w(x,
y, z)} and strains εij (i, j stands for x, y or z), the strain
tensor ε̃ is defined as

ε̃ = LD
~θ (7)

where ~θ is the displacement vector and LD is a dif-
ferential operator, so that for example εxx = ∂u

∂x
and

εxy = 1
2 (∂u

∂y
+ ∂v

∂x
).

Assuming a linear material, the stress tensor σ̃ is given
by

σ̃ = Dε̃ (8)

where D is a (6x6) material matrix of elastic constants.
The elastic constants are linear functions of Young’s
Modulus E and Poisson’s ratio µ of the materials.
The force vector ~f(x, y, z) = {fx, fy, fz} is the gradient
of the stress tensor σ̃.

~f = ∇σ̃ (9)

The most important part is that the volume expansion
causes displacement. The normalized additional volume
from (6) can be written as

V add
rel = εx + εy + εz . (10)

For an isotropic material the strain components are equal
so that

εx = εy = εz =
1

3
V add

rel . (11)

With (7) and (11) the relationship between the volume
expansion and the displacement is fully determined.

DISCRETIZATION

Weak Formulation

Before we start with the discretization we apply the
weak formulation on (2) and (3).
So we apply the Galerkin method with linear test func-
tions Nk(~x) on the diffusion equation from (2) and apply
Green’s theorem to remove the Laplace operator ∆ as
follows

kmax

∫

V

η C Nk dV = D

∫

V

∆C Nk dV =

D

∫

Γ

∂C

∂~n
Nk dΓ − D

∫

V

∇C ∇Nk dV

(12)

where ∂C
∂~n

= 0 and so the term
∫

Γ
∂C
∂~n

Nk dΓ is also zero,
and so (12) is simplified to

kmax

∫

V

η C Nk dV = −D

∫

V

∇C ∇Nk dV . (13)

The application of the Galerkin method with the same
linear test functions Nk(~x) to the distribution function
from (3) leads to

∫

V

∂η

∂t
Nk dV = kmax

∫

V

η C Nk dV . (14)

Oxidant Diffusion

In order to solve (2) and (3) on a three-dimensional do-
main with the volume Vglobal, we split the domain up
into tetrahedral elements with the volume V and per-
form a finite element discretization. The spatial dis-
cretization for C(~x) on a single tetrahedral element is

C(~x, t = tn) =

4
∑

i=1

c
(tn)
i Ni(~x) (15)

where c
(tn)
i is the oxidant concentration at node i and

discrete time tn. Ni(~x) is the form function on node i.
The spatial discretization for η(~x) on a single tetrahedral
element is

η(~x, t = tn) =

4
∑

i=1

η
(tn)
i Ni(~x) (16)

where η
(tn)
i is the normalized silicon concentration at

node i and discrete time tn. Ni(~x) is the linear form
function on a node i.
If we replace C(~x, t) and η(~x, t) in (13) with (15) and
(16) we obtain

−D

∫

V

(

4
∑

i=1

c
(tn)
i ∇Ni ∇Nk

)

dV =

kmax

∫

V

(

(

4
∑

i=1

η
(tn)
i Ni

4
∑

i=1

c
(tn)
i Ni

)

Nk

)

dV =

kmax

∫

V

(

(

4
∑

i=1

η
(tn)
i c

(tn)
i Ni

)

Nk

)

dV .

(17)

With the following substitution

Mki =

∫

V

Nk(~x)Ni(~x)dV (18)

Kki =

∫

V

∇Nk(~x)∇Ni(~x)dV (19)

(17) is simplified to

4
∑

i=1

(

D Kki c
(tn)
i + kmax Mki c

(tn)
i η

(tn)
i

)

= 0 (20)
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which is a non-linear equation system (k is the equation
index) with the constants D, Kki, kmax and Mki and

with the unknown variables c
(tn)
i and η

(tn)
i for one finite

element.

Change of η

The spatial discretization for C(~x) and η(~x) is the same
like in the last subsection and is already described by
(15) and (16). Because of the time dependence of (3)
an additional time discretization of the partial differen-

tial term ∂η(~x,t)
∂t

is necessary. The time discretization is
performed with the simple Backward-Euler method as

∂η(~x, t = tn)

∂t
=

η(~x, tn) − η(~x, tn−1)

∆t
(21)

where tn and tn−1 are two successive discrete times.

If we replace C(~x, t), η(~x, t) and ∂η(~x,t)
∂t

in (14) with the
discrete expressions (15), (16) and (21), we obtain

1

∆t

∫

V

(

4
∑

i=1

(

η
(tn)
i − η

(tn−1)
i

)

Ni Nk

)

dV =

kmax

∫

V

(

(

4
∑

i=1

(

η
(tn)
i c

(tn)
i

)

Ni Nk

)

dV.

(22)

With the substitution (18) the last equation is simpli-
fied to a non-linear equations system (k is the equation
index)

4
∑

i=1

(

Mki

(

η
(tn)
i − η

(tn−1)
i − kmax c

(tn)
i η

(tn)
i

) 1

∆t

)

= 0

(23)

with the unknown variables c
(tn)
i and η

(tn)
i and with the

constants Mki, kmax and 1
∆t

for one finite element. The

values for η
(tn−1)
i are already determined at the previous

time step.

If we combine the two equation systems (20) and (23),
we obtain a non-linear equations system for one finite
element (with eight equations and the eight unknows

c
(tn)
1..4 and η

(tn)
1..4 ). Now we are able to solve the system (for

example with the Newton method) at each time point

tn and the values for c
(tn)
i and η

(tn)
i can be determined.

Mechanics

The finite element discretization for a mechnical sys-
tem has been already often described, for example by
(Zienkiewicz 1987). Because of this fact we will restrict
this subsection only to some steps which are important
for the oxidation simulation.
After discretization of the continuum, the relationship
between strain and displacement (7) can be written as

ε̃e = B ~de = [Bi,Bj,Bm,Bp] (24)

in which ε̃e is the strain tensor, ~de is the displacement

vector and i, j, m and p are the four nodes on a single
thetrahedron.
The element displacement is defined by the 12 displace-
ment components of the nodes as

~de =



















~di

~dj

~dm

~dp



















with ~di =







ui

vi

wi







etc. (25)

The submatrix Bi for the node i is

Bi =



















∂Ni

∂x
, 0, 0

0, ∂Ni

∂y
, 0

0, 0, ∂Ni

∂z
∂Ni

∂y
, ∂Ni

∂x
, 0

0, ∂Ni

∂z
, ∂Ni

∂y
∂Ni

∂z
, 0, ∂Ni

∂x



















=

















bi, 0, 0
0, ci, 0
0, 0, di

ci, bi, 0
0, di, ci

di, 0, bi

















(26)

with the linear form function Ni(~x) defined as

Ni(~x) = ai + bi x + ci y + di z (27)

in which ai, bi, ci and di are constant geometrical coef-
ficients for the finite element. For example bi is

bi = − det

∣

∣

∣

∣

∣

∣

1, yj , zj

1, ym, zm

1, yp, zp

∣

∣

∣

∣

∣

∣

. (28)

The entire inner virtual work on a finite element is

Winner =

∫

V

{ε̃e}T σedV (29)

in which the transposed strain tensor is

{ε̃e}T = ~de
T

B
T (30)

and the stress tensor (8) can be written as

σe = D ε̃e = DB ~de . (31)

That leads us to the following equation for Winner .

Winner = ~de
T

∫

V

B
T
DB ~de dV (32)

The outer virtual work on a finite element, caused by
the node forces is

Wouter = ~de
T ~fe . (33)

On a element the inner work must be equal with the
outer work.

Winner = ~de
T

∫

V

B
T
DB ~de dV = ~de

T ~fe = Wouter (34)
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With the substituation

K
e =

∫

V

B
T
DBdV (35)

where K
e is the so-called stiffnes matrix, we obtain a

linear equation system for the mechanical problem.

K
e ~de = ~fe (36)

The most important part is, how the volume increase
(5), caused by the chemical reaction of silicon to silicon
dioxide, loads the displacement problem.
Due to (11) we obtain the components εe

x, εe
y and εe

y for
the strain tensor ε̃e and with

~fe
i = −B

T
i Dε̃e V e (37)

the relationship between the volume expansion and the
node forces is given, and with (36) and (37) the displace-
ments on the nodes is fully determined.

By coupling (20), (23) and (36), a local equation sys-
tem for one finite element is given, which is a complete
numerical formulation of the oxidation process with its
oxidant diffusion, chemical reaction and volume increase
at any time.

SIMULATION PROCEDURE

In the first step of the simulation procedure, we perform
a finite element discretization. With this aim in view we
split up the Si–SiO2–body into tetrahedral elements and
that results in a tetrahedral grid on the domain. The
size of the tetrahedrons and, as a result of that, the
number of the finite elements can be influenced by the
meshing module.
In the next step we set the initial values for the oxidant
concentration C and the normalized silicon concentra-
tion η on the grid nodes. For example η must be 1 in a
pure silicon domain.
Since the oxidation process is time dependent, the ac-
tual simulation time must be reset at the beginning of
the simulation.
As shown in Fig. 1, we iterate over all finite elements
and build the local equation system for one element for
every actual discrete time. The local system describes
the oxidation process numerically for one element with
the coupled system for diffusion, chemical reaction and
the displacement problem. Note, that it would be wrong
to solve the relative simple local equation system for one
element. The finite element method includes the super-
postition principle but not in the way to add up locally
calculated results in order to determine the global re-
sults. In our case ”global” has a spatial meaning and
stands for the whole discretized domain.
In order to describe the global oxidation process we need
a global coupled equation system. The components of
the global equation system are assembled from the local
equation system by using the superpostition principle.

Start simulation

Create a tetrahedral grid

Initialize the values for C and η
on the grid nodes

set actual simulation time = 0
�

time = time + timestep

�

Make the local equation system
for one finite element

Assemble the components form
the local equation system to the

global equation system

all finite
elements ?

No

Yes

Solve the global equation system

Update the values for C, η and
displacement on the grid nodes

time = max.
simulat. time ?

No

Yes

End simulation

Figure 1: Simulation procedure

After the iteration over all elements is finished, the global
assembled equation system is also finished. Now the
global non-linear equation system can be solved and we
obtain the results for the C, η and displacement values
for the global discretized oxdidation process for the ac-
tual time step.
With these results we update the values for C, η and
displacement on the grid nodes by adding up the new
results to the already existing values on the grid nodes
and so the values for C, η and displacement always keep
pace with the actual simulation time.
If the above described procedure is finished, we increase
the actual simulation time and start with the assem-
bling loop again as long as the actual time is equal to
the maximum simulation time.
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A DEMONSTRATIVE EXAMPLE

As example a silicon body with the initial dimension
( 0.5 x 0.4 x 0.5 ) µm as shown in Fig. 2 is oxidized. For
the simulation the following parameters were chosen:

C∗ = 3 · 107 [part.
µm3 ], D = 0.08 [µm2

s ], kmax = 40 [1s ].

Here C∗ is the surface oxidant concentration.
In this example only the upper surface of the body
has contact with the oxiding atmosphere. As shown in
Figs. 2 – 4 the bottom surface is fixed and on the rest of
the surfaces there are free mechanical boundary condi-
tions applied.
In the Figs. 2 – 4 the angel of view is always the same
and the proportions of the body geometry are also true,
so that the displacement effects caused by the volume
increase can be watched correct.
The colour in the figures shows the value of the nor-
malized silicon concentration. This means that blue is
pure silicon dioxide and red is pure silicon and the other
colours are the reaction layer.

Figure 2: Initial silicon body before oxidation.

Figure 3: Deformation and silicon dioxide distribution
(blue region) at some time t1.

Figure 4: Deformation and silicon dioxide distribution
(blue region) at time 2 ∗ t1.

CONCLUSIONS

A three-dimensional oxidation model which is based on
the finite element technique has been proposed. In this
model it is assumed that the interface beween the silicon
and oxide is a reaction layer with finite width instead of
a sharp interface. In this layer there is a mixture of the
three components silicon, oxidants, and oxide.
One of the advantages of this model is that the numeri-
cal formulation, consisting of a coupled differential equa-
tion system, describes the complete physical oxidation
process in a very realistic way.
As demonstrated on a numerical example, this model is
a powerful tool to simulate the whole oxidation process
on three-dimensional semiconductor structures.
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