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ABSTRACT

A Quantum Monte Carlo method taking into ac-
count both interference and dissipation effects is pre-
sented. The method solves the space-dependent Wigner
equation which includes semi-classical scattering via the
Boltzmann collision operator. The classical force term is
separated from the Wigner potential and included in the
Liouville operator on the left hand side. The Wigner po-
tential is treated as an additional scattering source. To
permit a probabilistic interpretation, the Wigner poten-
tial is expressed as a difference of two positive functions.
Scattering from the negative part of the Wigner poten-
tial results in a sign change of the particle’s weight. A
resonant tunneling diode has been simulated using the
new Monte Carlo method. The results clearly demon-
strate that both semi-classical and quantum transport
features are well treated by the method.

Keywords: quantum transport, Wigner equation,
Monte Carlo method, resonant tunneling diode

1 INTRODUCTION

At room temperature the electrical characteristics of
nanoelectronic and highly down-scaled microelectronic
devices are influenced simultaneously by semiclassical
and quantum mechanical effects. A kinetic equation
suitable for describing this mixed transport regime is
given by the Wigner equation. This equation can be for-
mulated in such a way that it simplifies to the semiclas-
sical Boltzmann equation in those device regions where
quantum effects are negligible. The Monte Carlo (MC)
method has proven to be a reliable and accurate numer-
ical method for solving the Boltzmann equation. There-
fore, it appears very promising to devise MC techniques
also for the solution of the Wigner equation. The advan-
tage of a particle method is that semiclassical scatter-
ing from various sources can be included in a straight-
forward way. The major problem to be overcome origi-
nates from the scattering kernel of the Wigner equation,
which is, as opposed to the semiclassical case, no longer
positive. A solution to this so-called negative-sign prob-
lem is presented in the framework of stationary trans-
port, and the feasibility of the resulting MC method is
demonstrated.

2 WIGNER EQUATION

We consider the space-dependent Wigner equation,
including semiclassical scattering via the Boltzmann col-
lision operator Q[fw]

(

∂

∂t
+ v · ∇r + qE · ∇k

)

fw = Q[fw] + Θw[fw] , (1)

Θw[fw](k, r, t) =

∫

Vw(r,k − k′)fw(k′, r, t)dk′ . (2)

The classical force term qE is separated from the Wigner
potential [1]

Vw(r,k) =

1

2πi~

∫

(

V (r +
s

2
) − V (r −

s

2
) + qs · E

)

e−ik·s ds , (3)

and thus appears in the Liouville operator on the left
hand side of (1). The kinetic equation (1) has now the
form of a Boltzmann equation with an additional term
caused by the Wigner potential. Whether the collision
operator or the potential operator is dominant depends
on the device under consideration. The chosen formu-
lation of the Wigner equation ensures that in the clas-
sical limit the Boltzmann equation is obtained. Con-
sequently, the MC method presented below simplifies
gradually to the classical MC method when the Wigner
potential vanishes. Therefore, an artificial separation of
the simulation domain into a quantum and classical re-
gion and application of different numerical methods is
avoided.

3 PARTICLE MODEL

Because the Wigner potential assumes positive and
negative values, it cannot be used directly as a scattering
probability. To permit a probabilistic interpretation, Vw

is expressed as a difference of two positive functions.
Introducing the truncated Wigner potential

V +
w

(k) =

{

Vw(k), Vw(k) ≥ 0
0, Vw(k) < 0

(4)

and accounting for the antisymmetry of Vw with respect
to k, the potential operator can be expressed as

Θw[fw](k) =

∫

V +(q)[fw(k− q)− fw(k + q)] dq . (5)
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In terms of a particle model, the positive and nega-
tive terms of the integrand might be interpreted as in-
scattering and out-scattering terms, respectively. How-
ever, the out-scattering operator is non-local in k-space,
whereas, for comparison, the semiclassical out-scattering
operator is local. Therefore, (5) does not describe a
scattering in the sense that an initial state is annihi-
lated and a final state is created. Instead, (5) describes
the creation of two new states, k− q and k + q. When
generating the second state, the sign of the statistical
weight is changed.

γ(r) =

∫

V +
w

(r,k) dk . (6)

It should be noted that the Wigner equation strictly
conserves charge, as can be seen by taking the zero-order
moment of (1)

∂n

∂t
+ div J = 0 .

Looking at the number of particles regardless of their
statistical weight, that is, counting each particle as pos-
itive, another potential operator needs to be considered.

Θ∗

w
[fw](k) =

∫

V +(q)[fw(k − q) + fw(k + q)] dq (7)

Using (7), a continuity equation for numerical particles
is obtained.

∂n∗

∂t
+ div J∗ = 2γ(r)n∗ (8)

The high generation rate in this equation is a direct
consequence of the negative-sign problem. Not only can
we expect cancellation effects in the estimators due to
the positive and negative statistical weights, but also an
exponential growth in time of certain quantities, such as
particle number, particle weight or variance.

4 MONTE CARLO METHOD

The particle model described in the previous sections
provides a guideline for the development of new and
the characterization of existing MC algorithms for solv-
ing the Wigner equation. Applying a formal approach,
which employs the Neumann series expansion of the un-
derlying transport equation [2], leads to a MC algorithm
with two significant properties: the number of numer-
ical particles is conserved, and the particle weights in-
crease exponentially in time. Using this algorithm it
has been demonstrated that tunneling can be treated
numerically by means of a particle model [3]. However,
because of the exponential increase of the absolute value
of the particle weight at the very short time scale (2γ)−1

(see (8)), application of this algorithm turned out to be
restricted to single-barrier tunneling and small barrier
heights only.

For the simulation of double-barrier structures a sim-
ilar MC algorithm has been designed, which now con-
serves the statistical weight, |wi(t)| = 1, where wi(t)
denotes the weight of the i-th particle at time t. In re-
turn, particles are generated at the rate of 2γ. Variance
reduction is accomplished by continuously removing nu-
merical particles. Those particles which have opposite
weight and a sufficiently small distance in phase space
can be assumed to annihilate each other.

This algorithm has been implemented for the steady
state. To apply well-posed boundary conditions, parts of
the highly doped contact regions are included in the sim-
ulation domain. In these regions the non-local potential
vanishes and conditions are near-equilibrium. There-
fore, particles can be injected from a classical distribu-
tion at the domain boundaries. As in the semi-classical
MC method, particles undergo a sequence of accelerated
free flights and scattering. In regions where Vw is non-
zero pairs of numerical particles are generated according
to the generation term (5). After each scattering event
one has to deal with three states, namely the generated
ones, k − q, k + q, and the initial state k, which is not
affected by (5) and thus has to be retained. In the sta-
tionary MC algorithm developed the weights of two out
of the three states are stored on a phase space grid, and
the trajectory is continued from the remaining state. In
the course of a simulation the weights on the grid can-
cel to a large extent. The goal of the algorithm is to
minimize the residual weight on the grid, which is an
indicator for the numerical error of the method.

5 RESULTS AND DISCUSSION

A resonant tunneling diode (RTD) has been investi-
gated, assuming a barrier height of Eb = 0.3eV, a bar-
rier width of 3nm, and a well width of 5nm (Fig. 1).
The Wigner potential is discretized using Nk = 640
equidistant kx points and ∆x = 0.5nm spacing in x-
direction. Assuming a coherence length of Lc = 80nm
one would require at least Nk = Lc/∆x = 160. This
minium value is often used in finite difference methods
for the Wigner equation. However, since other numeri-
cal methods based on the Schödinger equation use typi-
cally much finer grids in order to resolve the resonances
properly we believe that also for the Wigner equation a
fine k-grid is required.

The annihilation mesh is three-dimensional. In x-
direction the grid covers the region where the Wigner
potential is non-zero. Because of the cylindrical sym-
metry of the Wigner function only two momentum co-
ordinates have to be considered. The mesh extends to
an energy of 6eV in both axial and radial k-direction.

The semiclassical scattering model includes polar op-
tical and acoustic deformation potential scattering, as-
suming parameter values for GaAs.

The Wigner generation rate (5) is on the order of
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1015s−1 for the structure considered (Fig. 2). Compar-
ing this rate with the much smaller semiclassical scatter-
ing rate is a quantitative measure of the fact that quan-
tum interference effects are dominant. The zero-field
contact regions have been chosen sufficiently large, such
that the Wigner potential drops to zero within these
regions. The temperature dependence of the current-
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Figure 1: Conduction band edge of the RTD for differ-
ent voltages. A linear voltage drop is assumed over a
distance of 40 nm.
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Figure 2: Pair generation rate γ(x) caused by the
Wigner potential for two different voltages.

voltage characteristics of the RTD is shown in Fig. 3.
The resonance current is higher at low temperature due
to the smaller spreading of the energy distribution. On
the other hand, the valley current increases with tem-
perature. Fig. 4 shows the electron concentration in the
device at voltages below the resonance voltage. A classi-
cal behavior is found before and after the double barrier,
whereas in the quantum well the behavior of the solution
is non-classical. In front of the barrier an accumulation
layer forms, with its maximum concentration increas-
ing with the band bending. In the quantum well the
concentration increases as the resonance is approached.
After the barrier a depletion layer forms, which grows
with applied voltage. In this region the concentration
at 0.15V varies exponentially in response to the linear
potential (Fig. 1), which is again a classical property.

For voltages above the resonance voltage, the con-
centration in the well drops, whereas the depletion layer
continues to grow. The mean kinetic energy of the elec-
trons is depicted in Fig. 6. In the zero-field regions an
energy close to the equilibrium energy is obtained, which
demonstrates that the energy conservation property of
the Wigner potential operator is also satisfied by the
numerical MC procedure. One has to keep in mind that
the Wigner potential can produce a rather large momen-
tum transfer. For the chosen x-discretization the related
energy transfer can reach values as large as 5eV, which
shows that a large degree of cancellation occurs in the
estimator for the mean energy. In the barrier the mean
energy assumes a minimum. At lower temperature even
negative mean energies can be obtained, which can be
expected for tunneling states. Electrons injected from
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Figure 3: IV-characteristics of the RTD for two different
temperatures.
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Figure 4: Electron concentration in the RTD for
voltages less than the resonance voltage.
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Figure 5: Electron concentration in the RTD for
voltages greater than the resonance voltage.

the second barrier into the collector space charge region
show initially a high kinetic energy.

6 CONCLUSION

A Monte Carlo method for the simulation of far-
from-equilibrium transport in nanostructures has been
presented. The method solves the Wigner equation in-
cluding the Boltzmann scattering operator. Scattering
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Figure 6: Mean kinetic energy for two different voltages.

from the Wigner potential is complicated by the so-
called negative sign problem. The latter would lead to a
run-away of variance, unless a proper variance reduction
technique is used. In the presented approach variance
reduction is accomplished by annihilation of numerical
particles at the same rate as they are generated. Simula-
tion results for a resonant tunneling diode demonstrate
that the solution of the non-coherent Wigner equation
exhibits a mixed semiclassical and quantum behavior.
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