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Siegfried Selberherr

Institute for Microelectronics, TU Vienna
Gusshausstr. 27–29, A-1040 Vienna, Austria

E-mail: Wittmann@iue.tuwien.ac.at

KEYWORDS
Ion Implantation, Monte Carlo Method, Statistical
Fluctuation of the Doping Profile

ABSTRACT

Without a proper statistical analysis of the simulation
output data, it is not possible to assess the statistical
accuracy of three-dimensional Monte Carlo simulation
results. The Monte Carlo technique applied to the sim-
ulation of ion implantation produces a statistical fluc-
tuation of the doping profile, in particular in the three-
dimensional case. The statistical accuracy is determined
basically by the number N of simulated ion trajectories.
It depends also on the variation of the ion concentra-
tion up to several orders of magnitudes in the simula-
tion domain. The theoretical simulation error of order
1/
√

N has been expectedly verified by several simula-
tion experiments with different N. The paper describes
the application of statistical methods in order to evalu-
ate the accuracy of three-dimensional ion implantation
results compared to one-dimensional results. We pro-
pose a method to determine the number of trajecto-
ries required to obtain a specified precision in a three-
dimensional Monte Carlo simulation study.

INTRODUCTION

Ion implantation is the state-of-the-art method for dop-
ing semiconductors because of its high controllability.
The small dimensions of modern semiconductor devices
have led to simulation applications which require a high
accurate and full three-dimensional treatment. Since
the process of ion implantation has a statistical nature,
it is straightforward to use statistical methods to simu-
late it on computers. The most important of such meth-
ods is the Monte Carlo method which is based on apply-
ing random behavior at an atomistic level (Hobler and
Selberherr 1989), (Ziegler et al. 1995).
Particularly, the position where an ion hits the crys-
talline target is calculated using random numbers. Fur-
thermore, the lattice atoms of the target are in perma-
nent movement due to thermal vibrations. Thus, the

actual positions of the vibrating atoms in the target are
also simulated using random numbers. The trajectory
of each implanted ion is determined by the interactions
with the atoms and the electrons of the target material.
The final position of an implanted ion is reached where
it has lost its complete energy. The accuracy of the
simulation is mainly determined by the complexity of
the models that describe the physical behavior. These
models are applicable for a wide range of implantation
conditions without additional calibration. The number
of simulated ions must be considerably increased in or-
der to achieve the same statistical accuracy for three-
dimensional simulations as in two dimensions. There-
fore the computational effort grows approximately pro-
portional to the surface area of the simulation domain.
A very common mode of operation is to simulate an arbi-
trary large number N of ion trajectories and then treat
the resulting ion concentration estimates as the exact
doping profile. In spite of the use of an expensive sim-
ulation model misleading results might be obtained, if
the random nature of the output data is ignored. From
our point of view no in-depth analysis of the simulation
accuracy of Monte Carlo process simulations has been
carried out so far, and in this work we will present the
first comprehensive investigation of the statistical accu-
racy for three-dimensional Monte Carlo simulations of
ion implantation.

The practitioner of a Monte Carlo simulation is always
concerned with the computational time and the statis-
tical accuracy of the simulation. Both are related to the
simulation rate of convergence to the ”true” value. The
standard error in the simulation can be viewed as the
standard deviation of the random sample divided by an
increasing function of N, the number of simulated ions.
We assume that all simulated ions are statistically inde-
pendent. One way to reduce the simulation error is by
using a smart postprocessing of the row data. The sta-
tistical fluctuation can be reduced effectively by smooth-
ing the Monte Carlo simulation results in a postprocess-
ing step (Heitzinger et al. 2003). The other obvious way
to reduce the error is by increasing the number N of sim-
ulated ions. The traditional Monte Carlo technique us-
ing pseudo random numbers has only a convergence rate
of order 1/

√
N , which follows from the Central Limit
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Figure 1: Data flow and involved process simulation tools.

Theorem (Law and Kelton 2000). This rate is indepen-
dent of the dimension and depends only on the number
N of simulations.
However, there is always a trade-off between the com-
putational effort and the simulation error. In particular
with regard to three-dimensional Monte Carlo simula-
tions additional speed-up techniques have to be used in
order to get reasonably low statistical noise by practi-
cable long simulation runs. Examples of such speed-up
techniques are the trajectory split method and the tra-
jectory reuse method.

THE SIMULATOR

All Monte Carlo simulation experiments were performed
with the object-oriented, multi-dimensional ion implan-
tation simulator MCIMPL. The simulator is based on
a binary collision algorithm and can handle arbitrary
three-dimensional device structures consisting of several
amorphous materials and crystalline silicon. In order
to optimize the performance, the simulator uses cells
arranged on an ortho-grid to count the number of im-
planted ions and of generated point defects. The final
concentration values are smoothed and translated from
the internal ortho-grid to an unstructured grid suitable
for subsequent process simulation steps, like finite ele-
ment simulations for annealing processes.
Figure 1 shows the data flow during the simulation of

ion implantation. The simulator MCIMPL is embedded
in a process simulation environment by using the object-
oriented WAFER-STATE SERVER library (Binder and
Selberherr 2003).
The WAFER-STATE SERVER has been developed in
order to integrate several three-dimensional process sim-
ulation tools used for topography, ion implantation, and
annealing simulations. It holds the complete informa-
tion describing the simulation domain in a volume mesh
discretized format, and it provides convenient methods
to access these data. The idea was that simulators
make use of these access methods to initialize their inter-
nal data structure, and that the simulators report their
modifications of the wafer structure to the WAFER-
STATE SERVER. Thereby a consistent status of the
wafer structure can be sustained during the whole pro-
cess flow.
The meshing strategy of DELINK follows the concept of
advancing front Delaunay methods and produces tetra-
hedral grid elements (Fleischmann and Selberherr 2002).

ANALYSIS METHOD

For the analysis of three-dimensional simulation out-
put, several numerical experiments were performed on a
three-dimensional structure equivalent to a one-dimen-
sional problem. In particular, implantations of phospho-
rus ions into a crystalline silicon substrate were
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Figure 2: Accurate Monte Carlo simulation result of phosphorus implantation in silicon with N = 107

simulated ions, an energy of 25 keV, and a dose of 1014 cm−2.
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Figure 3: Variability of the three-dimensional result.

One-Dimensional Result
Three-Dimensional Result

PSfrag replacements

0
0

5

15

25

10

10

20

20

30 40 50 60 70 80

S
im

u
la

ti
o
n

A
c
c
u
r
a
c
y

(%
)

Depth z (nm)

Figure 4: Result evaluation.

simulated with different N. Figure 2 shows the three-
dimensional result for an accurate simulation with N =
107 ions. We extracted the z coordinates and the phos-
phorus concentration values C (vertical direction) from
all 2972 grid points of the unstructured grid. This leads
to Figure 3 which demonstrates the statistical fluctua-
tion of the impurity concentration at equal penetration
depth z.
The relative standard deviation of the impurity concen-
tration in a plane z = const is a measure for the sim-
ulation error of three-dimensional results compared to
one-dimensional results. The mean impurity concentra-
tion C(n) of n grid points at equal location z forms the
one-dimensional doping profile. The standard deviation
S(n) of a sample defined by the concentration values of
n grid points in a plane z = const is given by

S(n) =

√

∑n

i=1[Ci − C(n)]2

n − 1
(1)

σ =
S(n)

C(n)
(2)

The relative standard deviation σ according to (2) is cal-
culated in order to evaluate the three-dimensional result.

Figure 4 demonstrates the statistical accuracy of the
three-dimensional result related to the one-dimesional
doping profile. Most of the simulated ions come to rest
close to the mean projected range Rp, causing a small
variance there. Due to the very low dopant concentra-
tion in deeper regions (typically more than 104 times
lower than at the maximum), insufficient events lead to
an increase of the statistical noise.
Being based on random numbers, the results obtained
with the Monte Carlo technique are never exact, but rig-
orous in a statistical sense. The results converge to the
used model characteristics. A 90% confidence interval is
constructed for the mean, in order to assess the relative
error of the one-dimensional doping profile in relation
to the model limit value. The half of the approximate
90% confidence interval, ∆(n), using the t distribution
(Law and Kelton 2000) is given to

∆(n) = tn−1,0.95

S(n)
√

n
(3)

The relative statistical error ε(n) for the one-dimensional
doping profile can be defined as

ε(n) =
∆(n)

C(n)
(4)
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The assessed statistical accuracy of the one-dimensional
doping profile according to (4) is also demonstrated in
Figure 4.
The accuracy of the Monte Carlo result is determined
by the number of counted ions per cell. The distribution
of N ions determines the one-dimensional doping profile
by using a scaling factor α:

α

∫

∞

0

C(z)dz = N (5)

(5) can be used in order to calculate the factor α by
means of numerical integration. For a small volume of
the width ∆z (cell dimension) the local number Ni of
simulated ions is determined by

N =
∑

i

Ni, Ni = α Ci ∆z (6)

The division by all cells of a z plane yields to the av-
erage ions per cell, which is demonstrated in Figure 5
for N = 107 simulated ions. Each bar is located at the
grid points of the internal ortho-grid. The histogram
demonstrates that in deep regions only one simulated
ion per cell is available in the mean. More and more
empty cells at increasing penetration depth downgrade
the statistics dramatically.
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Figure 5: Estimated simulated ions per cell for a
total number N = 107.

An essential contribution to the accomplished accuracy
of the final result is obtained through the reduction of
the statistical fluctuation by an implemented smooth-
ing algorithm (Heitzinger et al. 2003). This algorithm
sweeps a small rectangular grid over the points of the
new tetrahedral grid and uses an approximation by gen-
eralized Bernstein polynomials. The Bernstein approx-
imation of a concentration value on a new grid point
by using the values of cells located close to the new grid
point reduces significantly the statistical noise. The bad
statistics generated by empty cells can be attenuated by
averaging the values of surrounding cells.
We extracted again z coordinates and phosphorus con-
centration values from all 120×112×20 cells of the sim-
ulation area. Figure 6 compares the relative standard
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Figure 6: Improvement of the statistical
accuracy by smoothing (N = 106).

deviation for N = 106 ions before and after smoothing.
Thus a significant improvement of the statistical accu-
racy of Monte Carlo results can be achieved through the
filter effect of the Bernstein polynomials, which elimi-
nates high-frequency fluctuations from the original data.

Of great importance for the simulation is the weight of
an ion, which is defined by the ratio of the number of
real ions Nreal to the number of simulated ions N .

Weight =
Nreal

N
(7)

In our simulation experiment shown in Figure 2 the
surface dimension is 0.7µm x 0.65µm. With a dose of
1014 cm−2, 455000 ions are implanted. With 107 sim-
ulated ions the weight of an ion results to 0.0455. In
practice the real-world implanted doping profile has also
a fluctuation due to the statistical nature of the implan-
tation process. In our simulation example a real ion has
only a very little weight. Thus the simulation result can
be considered as a simulation of averaging over multiple
real-world implantations.

IMPROVEMENT OF THE SIMULATOR

The crucial factor for the duration and accuracy of the
simulation is the specified number N of ion trajectories
as input data of the simulator. One drawback of the
fixed-sample-size procedure based on N simulated ions is
that the analyst has no immediate control over the pre-
cision of the output data. We suggest an improvement
of the used fixed-sample-size procedure by determining
the duration of the simulation also through a specified
precision as input data of the simulator.
The simulation error of the Monte Carlo method is of
order 1/

√
N . The relationship between the standard

deviation σ and the number N of ions is given by

σ = const ·
1

√
N

(8)
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This relationship has been expectedly verified by simu-
lation experiments with different N and is demonstrated
in Figure 7. It can also be used to assess the number of
trajectories required to obtain a specific precision in a
Monte Carlo simulation study.
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Figure 7: Required N as a function of the desired
three-dimensional accuracy .

As measure of the simulation accuracy, the desired max-
imum of the relative standard deviation σmax within the
range 2·∆Rp (twice the straggling at the mean projected
range) of the doping profile is used. In our experiment
of Figure 2, 2 · ∆Rp = 22 nm at Rp = 30 nm.
For the calculation of the required N as function of the
given standard deviation σmax, a parameter γ is used
which takes the incident atom species and the implan-
tation energy into account. The following formula can
be used to assess the N for a specified surface area A
and a desired precision σmax:

N = γ
A

A0

1

σ2
max

, A0 = 0.455 µm2 (9)

Figure 7 demonstrates this relationship for a phospho-
rus implantation, an ion energy of 25keV, A = A0, and
parameter γ = 15992.

CONCLUSION

The functionality of the three-dimensional Monte Carlo
simulator MCIMPL for ion implantation is demonstrated.
The statistical fluctuation of the simulation result caused
by the stochastic simulation method and the expensive
three-dimensional treatment are analyzed. The evalua-
tion of the statistical accuracy for three-dimensional re-
sults is performed by the use of statistical methods like
calculating the standard deviation or the confidence in-
terval of the output data. The gained insight into the
relationships responsible for the statistical accuracy is
used in order to achieve a better controllability of the
simulator.
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