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Hydredynamic and energv-transport models bave emerged as powerful means for
gaining additional insight into the complex non-local behavior encountered in state-of-the-art
-semsiconducior devices. However, several different formulations have been proposed which vary
considerably in complexity. Furthermore, the bandling of these eguations is far more
complicated than that of the robust and well studied drift-diffusion equations. In this paper we
concenirate on the basic equations and the simplifying assumptions used in their derivation
and give a detailed review of the most important papers published on this subjeet.

As the size of state-of-the-art devices is continually reduced, non-local behavior becornes a ent-
toal issue in the simulation of these structures. The well established drift-diffusion (DD) model
[1} which is still predominaxntly used by engineers around the world cannot cover these effects
as the clectron gas is assumed to be in thermal equilibrium with the lattice temperature. In the
DI approach the local energy can be estimated via the homogeneous energy flux equation {e.g.,
{53) with ¥ « {n8) and & set to zero), However, for rapidly increasing electric fields the energy
lags behind the electric field because it takes the carriers some fime to pick up energy from the
field. A consequence of the lag is that the maximum energy can be much smaller than predicted
by the homogeneous energy flux equation. Furthermore, this lag gives rise to an overshoot in the
carrier velocity because the mobility depends to first order on the energy and not on the electric
field. Asthe mobility p has not yet been reduced by the increased energy but the electric ficld is
already large, an overshoot in the velocity v == u4J is observed until the carrier energy comes info
equitibrium with the electric field again. Thus, DD simulations predict the same velocity profile
as for slowly varying ficlds which can dramatically underestimate the carrier velocities. Similar
to the mobility many other physical processes are more accurately described by a local energy -
modet rather than a local electric ficld model. Therefore. the assumption of a fixed energy-fickl
relation can cause non physical results when used to predist, for example impact ionization. To
overcome these Himitations of the DI model, extensions have been proposed which basically add
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an additional balance equation for the average carrier energy {2, 3}, Furthermore, an additional
driving term is added to the current relation which is proportional to the gradient of the car
rier temperature. Several different formulations have been proposed which vary considerably in
complexity. Furthermore, these equations have been extended to handle non-homogeneous ma-
ferials and non-parabolicity effects. In the following we review some of the basic assumptions
underlying these models,

2 Boltzmann’s Transport Equation

Transport equations used in semiconductor device simulation are normally derived from Boltz-
mann's transport equation (BTE) which reads [4]

aef+u-vrf+§f~v&fw0!fl (1

for a general inhomogeneous material with arbitrary band structure [5]. For inclusion of quantum
effects equations based on the Wigner-Boltzmann equation have been considered [6]. The group
velocity uis :

1 :
u(k,r) = E%E(k,r} {2}
which defines the inverse effective mass tensor ' _
B 1) = ;% ®uller) = 5V © N (o) ®

where ® denotes the tensor product {5]. In the following we will only consider position-independen:
masses but permit energy-dependent masses. Generalizations to position-dependent band struc-
tures will be given in the appropriate context. The force F exerted on the particles is generally
given as

Pk, 1) = ~ViEeplr) = 4(E(T) + u x B) ~ Vi, T) @

and depends both on k and 1. Omitting the influence of u x B (see {7] for a treatment of this
term) and assuming homogeneous materials, F simplifies to

F(r) = () | (5)

The BTE is an equation in the seven-dimensional phase space which is prohibitive to solve for
engineering applications. Monte-Carlo (MC) simuiations have been proven to give accurate
results but are restrictive time consuming. Furthermore, if the distribution of high-energetic
carriers is relevant, or if the carrier concentration is very fow in specific repions of the device,
MC simulations tend to produce high variance in the results. Therefore, a common simplification
is to investigate only some moments of the distribution function, such as the carrier concentration
and the carrier temperature, We define the moments of the distribution function as

@) = fg/w Pk (6)
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with a suitable weight function $ = $({k}. In the following we will separate the group velocity
uinto a random part © and the mean value v = {u}/(1) as u =€+ v, We will write all moment
equations introducing the following symbols {8} ;

n= (1) | 0
P ==k ®
ves =2 e
w=2€) (10)
8= %(ug} _ (1)
Q= 5 (mB) . (12)
Tm-é;;{m(k)cs&c) L ay
ﬁmé{?m@-k) B 1)
R=(uoks) as)

Furthermore, we will employ an isotropic effective mass approximation via the trace of the mass
tensor as {9)

et = e () (16)

3 Band Structure

The simplest approximation for the complex band structure is a parabolic relationship between
the energy and the crystal momentum

e ' {17
which is valid for energies close to the band minimum. A first-order mparaboiac relationship
was given by Kane [10] as

21.2 _
z‘l(l—H?u‘f}“rup (18

with ¢k being the non-parabohclty correction factor. This gives the ﬁ:iiowmg relationship betwcen
momentum and veioc:ty {11]

. tk=m(l14+2e8m (19)
and between energry and velocity

£ (Lm20mu?)i2 -1
%a

{20}
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which reduce to their parabolic counterparts for o = 0. Expansion of the square root in (20) .
yields terms in ascending powers of velocity which are not negligible when averaged. This
is problematic because these quantities are additional unknowns representing higher-order mo-
ments of the velocity distribution. Although (18} is an 1mprovemeni over {17)itis nevertheless _
a crude approximation for real band structures at higher energies. '

4 Stratton’s Approach

One of the first derivations of moment equations was performed Sy: Swatton {21 First, the distri-
bution function is spi:i into its even and odd pasts as

o JeD) = L) + AlkT) | e

From fi{—k, 1} = — f;(k r) it foi!cws that { }’3} Q. Assummg ihat ﬂw collision opcratur C is
linear and invoking a microscopic relaxation time approximation for the collision operator -

f—Jfo

Ry i L. 22
U=~ el

the BTE can be split into two coupled equations. In particular, £y is related to fp via
fo= =60 (uVefy — 2B+ Vick) @

The microscopic relaxation time is then expressed using a power law as
g "‘? W . i

€)=n(5) e

which aiiuws for an explictt infegration over constant energy surfaces. When fo is assumed fo be
a heated Maxwellian distribution, the following equation system is obtained

J = qurE + ke V(npdy) (26}
v. s;wkga,(nmm Jw««»ka ;" o (27)
5
5= “(5 ~ p) (pmksTyB + m(fV(ﬂ}LT,;J) (28)
{26} is frequently written as
N kg  ka _
3= qu(nB+ 2T,Vn+ n(1 + 1) Vi (29)
q 4
with
Tu 6[—‘ dn Pinp .
Y 1 G0
which is commonly used as a fit parameter with values —0.5.., — 1.0. For oy, = ~1.0, the

thermal diffusion term disappears. Under certain assumptions {2, 12] p == ~py,. The problem
with expression (24) for r is that p must be approximated by ap average value to cover the relevant
scattering processes, However, this average depends on the doping profile and the applied field
and thus ro unique value for p e be given.
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S Blatekjwr’s Approach

Bletekjeer [3] derived conservation equatwns by taking the moments of the BTE using the weight
functions 1, ik, and £ without imposing dny assumptions on the form of the distribution function;
These weight functions $ define the moments of zeroth, first, and second order. The resulting
moment equations can be written as follows [8]

O  +V-{nv} =2 70 L 3D
Silnp) + V() ~oF  =aC, (32)
dy(nw)+V - (n8) ~nv F=nCy e

Note that these expressions are valid for arbitrary hand stmtures provided that the carrier mass

is position-independent. When F is allowed fo be position-dependent, additional force terms

appear 16 431333} [13] The collision terms are usually modeled with a macroscopic relaxation .
time approximation as

1 1
O = ";‘E;(R ~ )= --;;U {34)
| Cr=—t o (38)
Ce = —=221 (36)
£

which introduces the relaxation times 7, and 7z. A discussion on this approximation is given in
{14}. This equation set is not closed as it contains more unknowns than equations. Closure rela-
‘tions have to be found to express the equations in terms of the unknowns i, v, and w. Due fo the

strong scattering the temperature tensor is normally assuma:d to be isotropic and is approximated
by a scalar Ty as .

Ta Tﬁi = WI (a7

gracii_tionaliy, parabolic bands were assurned which gives the following closure relations for p,
,and w

p=m'y {38

0= %{u ou =kl +mv®y - (39)
3 m'v?

wes ék,,q;‘ 5 (40)

Note that the random component of the velocity has zero average ({C) = 0). With (38) one '
obiains the foliowing formulation for C, .
:
o WS QU L AR . = (41)
g ) .T.P ,Tp . 2“ ; |
For modeling purposes it is advantageous to lump m* mdf, o one new parameter, :he mob; lity

- As signal frequencies are well below 1/{2mr,) & 102 Hz the time derivative in (32) can
safely be neglected.
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Furthermore, a suitable approximation for the energy flux density n8 bas to be found and differ-
ent approaches have been published. Bletekjeer used

n8 = {w+ kgD ny +n1Q {42)

and approximated the heat fux n€Q by Fouriers law as
Q= -x{T)VE ' (43)

- in which the thermal conductivity is given by the Wiedemann-Franz law as
WY %
W) = (5 -2) () w, (44)

where p is a correction factor. As has been pointed out {8], this expression is problematic as (43)
only approximates the diffusive component of nQ). For & uniforms temperature VI, = 0 and
thus € == O which is not plansible. The convective component Q ., st be included to obtain
physical results when the curreat flow is not ncghgﬁ:%e

With these approximations (31}-{33) can be written in the usual variables as {15]

V-3 =qldn +T) “5)

7 J '
3-2v. (J_ ) = sk V(nTy) +quulS - 46)
V. (nS) = ~&(nw) + B J - n ;“"’ 47
7S = ——f—}(w + kT — K(T)VT, @)

to give the full hydrodynamic model {FHD) for parabolic band structures. This equation system
is similar to the Euler equations of gas dynamics with the addition of a heat conduction term
and the collision terms. 1t describes the propagation of glectrons in a semiconductor device as
the flow of & compressible, charged fiuid. This clectron gas has a sound speed v, = /T /m*,
and the electron flow may be either subsonic or supersonic. With Ty = £7% and 7%, = 300 K,
v = y& 1.3+ 107 e /s while for T}, = T7 K, ve = /£6.6+ 10% cm/5 [ 16].

irn the case of supersonic flow, electron shock waves will in general develop inside the device
{18]. These shock waves occur at either short length scales or at low temperatures. As the equa-
tion system is hyperbolic in the supersonic regions, special hyperbolic methods have to be used
[16, 17, 18, 19]. Furthermore, the traditionally applied Schasfetter-Gummel [20] discretization
scheme and its extension to the energy-balance and energy-transport models {21, 22, 23, 24]
cannot be used for this type of equation. One approximation is 10 treat the convective term as a
perturbation by freezing its dependence on the state variables at each linearization step and using
the values from the last iteration [25]. However, this approach will degrade the convergence in
cases where the variation in space or time is important [26]. Thus, to derive a spatial discretiza-
tion, fluid dynamics methods known as upwinding are used {26]. Furthermore, the handling of
the boundary conditions becomes more difficult 19, 27}

When the convective tenn

%V» (3 ;};) | (49)
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i neglected, 2 pambolic equation system is-obtained which only covers the subsonic flow regions.
This is a very common approximation in todays device simulators. Furthermore, the contribution
of the velocity to the carnier energy is frequently neglected

w s ST (50)
which then results in the following equation system
Vel=q@n+U) : ' (51}
I = pkgV(nZ,) + qnuE {52}
V- (#8) =~ 3}‘”8‘(»?;} +B.J - n‘% = TST" (53)
= -§}%an — KTV, | s

{51)-(54) form a typical three moment energy-transport (ET) mode] which has been closed using
Fourier’s law.

To overcome the difficulties associated with the Fourier law closure (43), the fourth moment of
the BTE has been taken info account [28] which gives

V - (nh)~nfwl + 0) - F= nCpx (55)

where the time derivative has been ignored using a similar argument to (32). The collision term
in €55} can be modeled in analogy to (41) as

_ .8
o = .
which gives - .
s««—m(w?w)-w ((whﬁ) V7 (@nl) ~ v(nﬁ)) (57)

Now & closure reiatmn for & has to be introduced, -which can be, for example, obtained by
assuming @ heated Maxwellian distribution which gives

f= 7ot o (58)

Using closure ( 38) and the same appmmmatwns that led fo the three moments ET model (51)-
(54), 2 more accurate expression for nS is obtained from the fourth moment of the BTE

. _psSkely . psbrke
n§=-Llo e 3_ pz( ) QYT (59)

whlch should be used to replace (34) to give a four moments ET modei Comparmg {59) with
(54} reveals that a consistent three moment ET mode! can be obtained with pg/p = 1and p== 0.
However, 13/ strongly depends on the carrier temperature and shows a pronounced hysteresis
as shown in Fig. 1 where the points B and ) are from the rising and decreasing temperature
regrions, respectively The energy relaxation time and the momentum relaxation time are shown
in Fig. 2 and both are not single valued functions of the temperature,
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Figure 1: Ratio of ig and pas afunction ofthe  Figure 2: Relaxation times as a function of the
carrier temperature inside the nt-n-nt teste  carrier temperature inside the nt.pn® test
structare obtained from MC simulations. structure obtained from MC simulations.

6 Comparison

One of the extensively discussed differeaces between Bletelgar's (A1) and Stratton's {A2) ap-
proach isthat in A2 the mobility stands inside the gradient whereas in Al it stands infront of the
grachent in the current relation

Bletekjeer (A} i1 VinTy)
Stratton (A2):  V(nuaZy)

This issue was addressed by Stratton himself {29} and by Landsberg {30, 311. It is important to
note, that although this parameter is called mebility in both approaches, their definition differs
significantly. Tang and Gan [32] compared both approaches and found that both formulations are
justified, provided that the respective mobilities are modeled accondingly. For bulk simulations
the mobilities are equat and can be properly modeled using conventional energy-dependent ex-
pressions [33, 34]. However, in inhomogeneocus samples where the electric field vartes rapidly,
the mobilities are no longer single-valued fundtions of the average carrier energy. The advantage
of the y; formulation lies in the fact, that for increasing valugs of the clectric field, it can be
roughly approximated by its bulk value whereas #2 is always different. Thus g4 can be expected
to be more sitable because in most cornmercial simulators the mobility is modeled as a function
of the carrier encrgy only. By expressing Cp empiricaily as .

C+4v-U (60)

where €, is the homogeneous componcnt and Ay a dimensionless transport cocfficient, Tang ¢
al {35} dwwcd that A2 can be obtained from A1 with Ay = —u,. Other compan sons of the two
approaches can be found in {12, 32, 36, 37, 38].
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7 Conclusions

Many different hydrodynamic and energy-transport models have been published so far, They rely
on either Stratton’s or Blatekjar’s approach to find a suitable set of balance and flux equations.
In Stratton’s approach there is no need to invoke Fourier's law to close the equation system due
to the relationship (23). Blaotekjmr used only three moments and closed the equation system by
approximating the heat flux with Fourier's law. This closure has frequently been replaced by
equations obtained from the fourth moment of the BTE.

Uncertainties are introduced by the approximation of the collision terms which are modeled via
relaxation tmes and by the derivation of closure relations. Expression for these are normally
extracted from homogeneous MC simulations. As has been clearly shown, homogeneous MC
simulation data are nof sufficient for the simulation of state-ofuthe-art devices as neither the re-
lation times nor the closure relations are single-valued functions of the average energy. This
used to be one of the advantages of the macroscopic transport models over the MC method be-
cause measured u{E} characteristics could be directly incorporated info the simulation which
is not possible for the microscopic approach taken in the MC method. Unfortunately, data for
inhomogeneous situations are difficult to extract from measurements duc to the complex interac-
tion between the various parameters. Therefore, MC simulations of a+-n-nt test-structure were
performed to extract the desired data,

Another probiem is directly related to the MC simulations itself, As has been frequently re-
ported. the results obtained by available MC codes differ significantly {39], Especially impurity
scattering is difficult to model {40 and any error in the mobility influences the simulated energy
refaxation times were jarge differences were found in the pubiished data,
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