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Abstract

The femtosecond relaxation of an initial distribution of electrons which interact with phonons in presence of applied

electric field is studied numerically. The evolution at such a time scale cannot be described in terms of Boltzmann

transport. Here, the Barker–Ferry equation is utilized as a quantum-kinetic model of the process. The numerical

treatment of the original formulation of the Barker–Ferry equation becomes difficult since coordinates and time

variables are coupled by the field. A transformation which decouples coordinates and time variables in the equation is

proposed. A randomized iterative Monte Carlo algorithm is developed to solve the transformed equation. The quantum

character of the equation is investigated. An instantaneously created initial condition is favored above the physically

more adequate generation term in order to point out the quantum effects. Simulation results are obtained for GaAs

material at different evolution times. Effects of collisional broadening and retardation are observed already in the

fieldless case. The intracollisional field effect is clearly demonstrated as an effective change of the phonon energy, which

depends on the field direction and the evolution time. Moreover, the collisional broadening and retardation are affected

by the applied field. The observed phenomena are understood from the structure and the properties of the model

equation. r 2002 Elsevier Science B.V. All rights reserved.
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1. The integral equation

The Barker–Ferry (B–F) equation [1] accounts
for the action of the electric field E during the
process of electron–phonon interaction F the
intracollisional field effect. It has been shown that
the effect plays a negligible role in the regime of
stationary transport [2]. Here, we explore the
transient transport regime F the early time
evolution of an initially excited electron distribu-
tion f: Experimentally, such a process can be

investigated by ultrafast spectroscopy, where the
relaxation of electrons is explored during the first
hundreds femtoseconds after an optical excitation
[3,4]. The low-density regime is considered, where
the interaction with phonons dominates the
carrier–carrier interaction [4].

The B–F equation has the following integro-
differential form:
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where F ¼ eE=_; nq is the Bose function, oq

generally depends on q ¼ k0 	 k;

kðt0Þ ¼ k	 Fðt 	 t0Þ;

OðkðtÞ;k0ðtÞÞ ¼
eðkðtÞÞ 	 eðk0ðtÞÞ þ _oq

_
:

The damping factor G is considered independent
of the electron states k and k0: This is reasonable
since G weakly depends on k and k0 for states in
the energy region above the phonon threshold,
where the majority of the electrons reside due to
the action of the electric field. An application of
the method of characteristics leads to the following
integral form of Eq. (1):
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The equation obtained is rather inconvenient for a
numerical treatment since the solution for a phase
space point k at instant t is related to the solutions
at shifted points k	 Fðt 	 t00Þ: The shift depends
on the electric field and the time interval 0pt00pt

and hence no general integration domain can be
specified in the phase space. This problem can be
solved by the following transformation. A new
variable kt and function f t are introduced such
that

kt
1 ¼ k1 	 Ft; kt

1ðtÞ ¼ kt
1 þ Ft;

f ðk; tÞ ¼ f ðkt þ Ft; tÞ ¼def
f tðkt; tÞ;

where k1 stands for k and k0; respectively. Then
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1; t
00Þ:

The transformation decouples the phase space and
time arguments of the cosine functions in S

according to
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The integral equation becomes (the superscript t is
omitted):
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The symmetry around the direction of the electric
field can be used to reduce the number of variables
in the equation. In cylindrical coordinates ðr; k; yÞ
with r chosen normal to the field direction, the
relevant variables are x ¼ ðr; kÞ: For zero lattice
temperature, S becomes a product of two terms:
Sðx0;x; t0; t00Þ ¼ Kðx;x0ÞS1ðx;x0; t0; t00Þ where K

contains a polar part proportional to ððr 	 r0Þ2 þ
ðk0 	 kÞ2Þ	1=2 and

S1 ¼ expð	Gðt0 	 t00ÞÞ cos
��
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At this temperature the classical solution has a
simple behavior, which will be the reference
background for exploring the effects imposed by
the quantum-kinetic equation.

2. The stochastic algorithm

The equation is solved by a randomized iterative
Monte Carlo algorithm. A preliminary step uses
the equality

R t

0 dt0
R t0

0 dt00 ¼
R t

0 dt00
R t

t00
dt0 in order

to assign the t0 integral to the kernels. This
analytically formal operation increases signifi-
cantly the efficiency of the algorithm. The solution
at the fixed point ðx0; t0Þ is evaluated by N
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realizations of the random variable xlE :
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Here naðx; x0; t; t00Þ is the estimator of the integrals
f
R t

t00
dt0Saðx;x0; t0; t00Þg: qðt00Þ and pðx; x0Þ are transi-

tion density functions in the Markov chain and pa

ða ¼ 1; 2Þ are probabilities related to the choice of
one of the kernels. lE determines the precision for
truncation of the Neumann series of the solution.
The estimators na are evaluated by N1 random
values of t0 sampled with a uniform density in
ðt00; tÞ: An important point is the choice of the
transition density p to be proportional to the polar
part of the kernels: pðx;x0Þ ¼ Cððr 	 r0Þ2 þ ðk 	
k0Þ2Þ	1=2: In this way, the variance of the Monte
Carlo estimator remains bounded which allows to
control the precision of the results. The algorithm
can be generalized for finite temperatures in a
straightforward way.

3. Results and discussions

The simulation results are obtained for GaAs
with standard material parameters [5,6] and
effective mass 0.063. The PO phonon energy is a
constant, _o ¼ 36 meV: The finite duration of the
initial optical excitation can be taken into account
by a generation term. Instead, in order to
demonstrate the quantum effects, as an instanta-
neous initial condition a sharp (corresponding to
200 femtoseconds laser pulse) Gaussian function
of the energy is assumed.

Classical electrons can only emit phonons and
loose energy equal to a multiple of _o: They evolve
according to a distribution, patterned by replicas
of the initial condition shifted towards low
energies. The electrons cannot appear in the region
above the initial distribution.

Fig. 1 compares classical and quantum solutions
on the cutline along the field, (r ¼ 0), for 200
femtoseconds evolution time. The quantity jkj2 is
proportional to the electron energy in units
1014 m	2; where the negative values denote the
direction opposite to the field. Collisional broad-
ening and retardation are observed already at zero
field. There is a retardation in the build up of the
remote with respect to the initial condition peaks.
The replicas are broadened and the broadening
increases with the distance to the initial peak.
These quantum effects are associated with the
memory character of the equation and the fact
that the long time limit of the kernel does not
recover the classical delta function [6]. The electric
field introduces important effects in the quantum
kinetics. The first replica peak of the 12 kV=cm
solution is shifted in the field direction. For
negative states the distance to the initial peak
increases. Moreover, the solution in the classically
forbidden region, to the left of the initial condi-
tion, demonstrates enhancement of the electron
population. This effect can be associated with the
structure of the first kernel of Eq. (2) which
controls the electron transfer between the states.
Responsible for the build up of the peak is the first
iteration term, obtained from the first integral in
Eq. (2) by replacing f with the initial condition f:
The cosine in Eq. (3) has a permanent contribution
to the solution if the prefactor of ðt0 	 t00Þ is around
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Fig. 1. Classical and quantum solutions at 200 femtoseconds

evolution time. The electric field is 0 and 12 kV=cm:
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zero. States with k0 to the left of the k region of the
first peak become important. For such states k0 	
ko0 and since F is positive the energy of the field
is added to the phonon energy. Accordingly, the
solution behaves as if in the presence of a phonon
with energy higher than _o; the distance between
the first replica and the initial condition increases.
In the classically forbidden region, k0 	 k > 0; so
that the energy of the field is subtracted from the
phonon energy. The prefactor is small for states k

close to the k0 region of the initial condition.
Accordingly, the electron population in the vici-
nity to the left of the initial condition increases.
Just the opposite effects must appear in the region
of positive k values. Indeed, the first peaks are
shifted to the right since now k0 	 k > 0 and the
energy of the field is subtracted from the phonon
energy. In the semiclassically forbidden region, to
the right of the initial condition, the prefactor is
large and there is no enhancement of the electron
population.

A comparison of the first replicas and the main
peaks under the initial condition shows that the
field has a pronounced influence on the collisional
broadening and retardation. As demonstrated by
additional numerical experiments, this effect de-
pends on the field strength and direction.

The field term in Eq. (3) depends also on the
factor ðt0 þ t00Þ: Since the two times are integration
variables bounded by t; the shift of the replicas
must depend also on the evolution time t: Fig. 2
compares quantum solutions for different evolu-
tion times. The electric field is 6 kV=cm: This
dependence is well demonstrated on the left part of
the figure by an increase of the distance to the
main peak with the evolution time. On the right
part of the figure, for positive k values, the
dependence is suppressed by the retardation effect.

We conclude that the intracollisional field effect
is well demonstrated in the early time evolution of

the electron–phonon relaxation. The electric field
causes shift in the replicas, population of the
semiclassically forbidden regions and influences
the broadening and retardation of the solution.
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Fig. 2. Quantum solutions at 100, 200 and 300 femtoseconds

evolution times. The electric field is 6 kV=cm:
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