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A Space Dependent Wigner Equation Including Phonon Interaction
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Abstract. We present a kinetic equation which is obtained after a hierarchy of approximations from the generalized
Wigner function equation which accounts for interaction with phonons. The equation treats the coherent part of
the transport imposed by the nanostructure potential at a rigorous quantum level. It is general enough to account
for the quantum effects in the dissipative part of the transport due to the electron-phonon interaction. Numerical
experiments demonstrate the effects of collisional broadening, retardation and the intra-collisional field effect. The
obtained equation can be regarded as a generalization of the Levinson equation for space dependence. An analysis
shows that the equation is nonlocal in the real space. This quantum effect is due to the correlation between the

interaction process and the space component of the Wigner path.
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Introduction

The quantum transport in far from equilibrium con-
ditions is determined not only by the nanoscale of
the device potential, but also by dissipative processes
due to interaction with phonons. Usually the boundary
conditions are given by electrons in traveling states
entering into a nanodevice from the leads. If only
the coherent part of the transport is considered, these
states remain isolated from the notch states, which ex-
ist at the lower energy regions of the device poten-
tial. In this case unphysical simulation results can be
obtained (Frensley 1990). Thus dissipative processes
which are due to interaction with phonons must be
taken into account. The electron-phonon interaction
links the traveling and the notch states and correctly
redistributes the electrons into the device. It has been
shown that the electron phonon interaction greatly af-
fects the device parameters of the resonant tunnel-
ing diodes (Zhao et al. 2001). While the theoretical
and numerical aspects of the application of the coher-
ent Wigner equation are well established, the inclu-
sion of the electron-phonon interaction is still under
investigation.

Approximations

A rigorous inclusion of the phonon interaction is
provided by the generalized Wigner function (WF)
(Bordone et al. 1999) £, (r, p, {n}, {m}, t) which along
with the electron coordinates r, p depends also on the
phonon coordinates {n} = {ny,...,nq,...} with nq
being the number of phonons in mode q. Of interest is
the reduced WF f,,(r, p, t), which is obtained by taking
the trace of the generalized WF over the phonon system
and thus depends only on the electron coordinates. An
exact equation for the reduced WF can not be obtained
from the generalized Wigner equation, since the trace
operation does not commute with the electron-phonon
interaction Hamiltonian.

The task is to obtain from the generalized Wigner
equation a closed equation for the reduced WF. The
approximations include a weak scattering limit in
the phonon interaction, assumption of an equilibrium
phonon system, mean phonon number approximation,
and an effective field in the scattering-Wigner potential
correlation.

The generalized Wigner equation couples an element
fw( .., {n}, {m},t) to four neighborhood elements
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givenby f, (..., {n} £1q, {m}, 1), fu(.., {n}, {m} £
14, ) for any phonon mode q. The equations for the
four neighboring elements involve elements which are
secondary neighbors with respect to the ({n}, {m}) el-
ement. In this way the diagonal elements, involved in
the trace operation are linked to all off-diagonal ele-
ments. As a first approximation we consider the weak
scattering limit, which neglects all links to the elements
placed outside the nearest off-diagonals. This assump-
tion ignores higher order electron phonon interactions.

The evolution process begins with an initially de-
coupled electron-phonon system and involves transi-
tions between the diagonal and the first off-diagonal
elements. The next approximation is to replace the oc-
cupation numbers n4 involved in the transitions with
the equilibrium phonon number n(q): This is done by
performing the trace operation at the consecutive time
steps of the evolution. With this it is assumed that
the phonons stay in equilibrium during the evolution
(phonon bath). This allows to perform the trace opera-
tion and to obtain a closed equation set for the reduced
WFE. The set consists of a main equation for the reduced
WF coupled to two auxiliary equations. The latter arise
from the first off-diagonal terms of the generalized WF
and describe the electron-phonon interaction. While the
equation for the reduced WF is real, the two auxiliary
equations are complex and mutually conjugated. The
formal solution of the auxiliary equations is given by
the Neumann series, which can be substituted into the
main equation.

The implicit inclusion of the Neumann expansions
in the main equation is rather inconvenient and we look
for an approximation where the two auxiliary equations
can be solved explicitly. If the potential term in the
two auxiliary equations is approximated by the mean
homogeneous electric field E throughout the device
(mean field approximation), the solution to the two
auxiliary equations can be explicitly expressed in terms
of the reduced WF. This approximation concerns only
the phonon interaction, while the potential term in the
equation for the reduced WF is treated exactly. A single
equation for the reduced WF is obtained.
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Here V, is obtained by the Wigner transform of the
device potential V' corrected by the potential of the
homogeneous field E. The rest of the notations will be
explained below.

Analysis of the Equation

The reduced WF is expressed as a sum of contributions
coming from the initial distribution, the interaction of
the electron with the device potential and the electron-
phonon interaction.

The contributions from the first two terms to the
value of f,(r,p,t) occur on the Newton trajectory
(rep,)> Pery) initialized by r, p at time 7. The initial con-
dition fy evolves on this trajectory and adds to f,, its
value at point (r, o), P(0))-

The term from the potential provides information
to f,(¢) from f,(t') at previous times ¢’ € (0, ¢). This
information is nonlocal in the momentum part of the
phase space, but it is local in the real space part of
the trajectory r, 1, t’ € (¢, 0). The contribution of this
term can be evaluated from the knowledge of f,(rp, 1,
p’, t') at the past of the evolution defined on the real
space part of the trajectory.

A novel effect arrises due to the correlation between
the phonon momentum %q’ and the space component
of the trajectory in the scattering terms. At the begin-
ning of the scattering, the real trajectory is shifted by
% (t'—1t"). The interaction proceeds in two steps, e.g.
for the terms in the first curly brackets: The first half



of a phonon momentum is absorbed (emitted) at ¢”. At
t' the second half is absorbed—real absorption, or the
first half is absorbed back (virtual emission). In both
cases the position at ¢’ is just the right one, Fp.)s Pe))s
which evolves to r, p at 7. The term related to the last
curly brackets is analyzed in similar way. In contrast
to the Wigner equation without phonon interaction,
the obtained equation becomes nonlocal in the real
space.

The classical limit # — 0 in the phonon interaction
leads to a Wigner equation with a Boltzmann scattering
term. For a bulk semiconductor with an applied elec-
tric field E the equation resembles the Levinson equa-
tion (Rammer 1991), or equivalently the Barker-Ferry
equation without damping of the electron lifetime.

Simulation Results

We investigate equation for quantum effects which are
purely due to the electron-phonon interaction. Equation
(1) is written for a bulk semiconductor in presence of an
applied electric field. Cylindrical coordinates (7, k, ¢)
with r chosen normal to the field direction are used in
the wave vector space. A transformation is used which
shifts the coordinate system in time with the electric
field. To solve (1) arandomized backward Monte Carlo
algorithm is applied (Gurov and Whitlock 2001).

Simulation results for GaAs with a PO phonon with
constant energy fiw are presented. The initial condi-
tion is a sharp Gaussian function of the energy. A
very low temperature, where the physical system has
a transparent semiclassical behavior is assumed. The
solutions are obtained on cut lines parallel to the field,
(k > 0,r = 0), opposite to the field, (k < 0,r = 0)
and normal to the field, (k = 0,r > 0).

Collisional Broadening and Retardation

The effects of collisional broadening and retardation
exist already at zero electric field. Figures 1-3 present
snapshots of the evolution of the semiclassical and
quantum solutions |k|f(0, |k|, ) for times 100 fs,
200 fsand 300 fs as a function of |k|?. The quantity
|k|? is proportional to the electron energy in units 10'#
m~2. Semiclassical electrons can only emit phonons
and loose energy equal to a multiple of the phonon
energy hw. They evolve according to a distribution,
patterned by replicas of the initial condition shifted to-
wards low energies.
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Figure 1. Initial distribution function (initial d.f.), semiclassical
(SC) and quantum (Q) solutions kf (0, k, t) for 100 fs evolution
time at zero electric field.
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Figure 2. Initial distribution function (initial d.f.), semiclassical
(SC) and quantum (Q) solutions kf (0, k, t) for 200 f's evolution
time at zero electric field.
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Figure 3. Initial distribution function (initial d.f.), semiclassical
(SC) and quantum (Q) solutions kf (0, k, t) for 300 fs evolution
time at zero electric field.
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The electrons cannot appear in the region above the
initial distribution. The quantum solutions demonstrate
two effects of deviation from the semiclassical behav-
ior. There is a retardation in the build up of the remote
peaks with respect to the initial condition peaks. The
replicas are broadened and the broadening increases
with the distance to the initial peak. The broadening
is due to the lack of energy conservation in the inter-
action. At low evolution times the cosine function in
(1) weakly depends on the phase space variables. With
the increase of the time, the cosine term becomes a
sharper function of these variables and in the long time
limit tends to the semiclassical delta function. Accord-
ingly the first replica of the 100 f's is broadened. The
quantum solution resembles the main pack and the first
replica of the semiclassical solution after 300 f's evolu-
tion time while the remote replicas remain broadened.
The retardation of the quantum solutions is associated
with the memory character of the equation. The two
time integrals in (1) lead to a delay of the build up of
the replicas as compared to the single time integral in
the Boltzmann case.

Intra-Collisional Field Effect

Figure 4 compares the 200 f's solutions as a function of
k < 0 for different positive values of the field. The first
replica peaks are shifted to the left by the increasing
electric field. The numerical solution in the semiclas-
sically forbidden region, above the initial condition,
demonstrates enhancement of the electron population
with the growth of the field.
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Figure4. Solutions |k|f(0, k, t), at negative k values, and evolution
time 200 f's. The electric field is 0, 6 kV/cm, and 12 kV/cm.
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Figure 5. Solutions kf (0, k, t) for positive k values and evolution
time 200 f's. The electric field is 0, 6 kV/cm, and 12 kV/cm.

For states below the initial condition the energy of
the field is added to the phonon energy. Accordingly
the solution behaves as in presence of a phonon with
energy higher than %w; the distance between the first
replica and the initial condition increases. For states
above the initial condition the energy of the field re-
duces the phonon energy and thus the electron popu-
lation in the vicinity of the initial condition increases.
Just the opposite effects appear in the region of posi-
tive k values. This is demonstrated in Fig. 5. The peaks
of the first replica are shifted to the right and there is
no enhancement of the electron population above the
initial condition. The field has a pronounced effect on
the broadening and retardation of the solutions: A com-
parison of the first replicas and the main peaks under
the initial condition on Figs. 4 and 5 show that the field
influences the effects of collisional broadening and the
retardation.

Conclusion

Starting from a full quantum mechanical model we
have identified the physical assumptions necessary to
derive an approximate but closed model for the re-
duced Wigner function. The obtained equation can be
regarded as a generalization of the Levinson equation
that includes the real space dependence. It is shown
that the finite duration of the phonon interaction gives
rise to a space non-locality of the quantum transport
process. Quantum effects in electron phonon interac-
tion have been demonstrated numerically. Observed
are collisional broadening, retardation and the intra-
collisional field effect.
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