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A Wigner equation with quantum electron–phonon interaction
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Abstract

We present a kinetic equation which is obtained after a hierarchy of approximations from the generalized
electron–phonon Wigner function. The equation accounts for quantum effects in the electron–phonon interaction
which are investigated by numerical experiments. An analysis shows that in contrast to the potential term, which
is non local in momentum but local in space, the interaction term is non local also in the real space. 2002
Elsevier Science B.V. All rights reserved.
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1 . The equation for the reduced Wigner function

The quantum transport in far from equilibrium conditions is determined not only by the nanoscale
of the device potential, but also by dissipative processes due to interaction with phonons. It has been
shown that the electron phonon interaction greatly affects the device parameters of the resonant
tunneling diodes [1,2]. A rigorous inclusion of the phonon interaction is provided by the generalized
Wigner function (WF) [3] f (r, p, hnj, hmj, t) which, along with the electron coordinatesr, p, dependsw

also on the phonon coordinateshnj5 hn , . . . , n , . . . j with n being the number of phonons in mode1 q q

q. Of interest is the reduced WFf (r, p, t) which is obtained by taking the trace of the generalized WFw

over the phonon system and thus depends only on the electron coordinates. An exact equation for the
reduced WF can not be obtained from the generalized Wigner equation, since the diagonal elements
are indirectly linked to all off-diagonal elements. The equation is obtained after a hierarchy of
approximations. As a first approximation we consider the weak scattering limit which neglects all
links to the elements placed outside the nearest off-diagonals. In the next step a trace operation at the
consecutive time steps of the evolution replaces the occupation numbersn involved in the transitionsq

with the equilibrium phonon numbersn(q). Obtained is a set of a main equation for the reduced WF
coupled to two auxiliary equations. The solution to the two auxiliary equations can be explicitly
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expressed in terms of the reduced WF using a mean fieldE approximation in the potential term. This
approximation concerns only the phonon interaction, while the potential term in the main equation is
treated exactly. A single equation is derived:

f (r, p, t)5 f (r , p , 0)w 0 (p,0) (0)
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9V is the Wigner transform of the device potential corrected by the potential of the homogeneous fieldw

E. The rest of the notations are explained below.

2 . Quantum effects

The obtained equation is first analyzed by theoretical considerations.f is expressed as a sum ofw

contributions coming from the initial distribution, the interaction of the electron with the device
potential and the electron–phonon interaction. The contributions from the first two terms to the value
of f (r, p, t) occur on the Newton trajectory (r , p ) initialized by r, p at time t. The initialw (p,t9) (t9)

conditionf evolves on this trajectory and adds tof its value at point (r , p ). The term from the0 w (p,0) (0)

potential provides information tof (t) from f (t9) at previous timest9[ (0, t). This information is nonw w

local in the momentum part of the phase space, but it is local in the real space part of the trajectory
r , t9[ (t, 0). The contribution of this term can be evaluated from the knowledge off (r , p ,(p,t9) w (p,t9) (t9)

t9) at the past of the evolution defined on the real space part of the trajectory. The scattering term
introduces a space non locality due to the correlation between the phonon momentum"q9 and the
space component of the trajectory:r 5 r 1"q9(t92 t0) /2m. At the beginning of the(p,q9) (p,t9)

scattering, the real trajectory is shifted by"q /2 /m(t92 t99). The interaction proceeds in two steps, e.g.
at t0 the first half of a phonon momentum is absorbed (emitted). Att9 the second half is
absorbed—real absorption, or the first half is absorbed back (virtual emission). In both cases the
position att9 is just the right one, (r , p ), which evolves tor, p at t. In contrast to the Wigner(p,t9) (t9)
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equation without phonon interaction, the obtained equation becomes non local in the real space. The
classical limit"→ 0 in the phonon interaction leads to a Wigner equation with a Boltzmann term.

For a bulk semiconductor with an applied electric fieldE the equation resembles the Levinson
equation [4], or equivalently the Barker–Ferry equation [5] with infinite electron lifetime. In this case
the quantum effects introduced by the electron–phonon interaction are numerically investigated. The
bulk equation is solved by a randomized backward Monte Carlo algorithm [6]. Simulation results for
GaAs with a PO phonon with constant energy"v are presented on cut lines parallel and opposite to
the field direction. A reference frame moving with the field is assumed. The initial condition is a sharp
Gaussian function of the energy. At very low temperature, the physical system is assumed to have a
transparent semiclassical behavior. Semiclassical electrons can only emit phonons and lose energy
equal to a multiple of the phonon energy"v. They evolve according to a distribution, patterned by
replicas of the initial peak. The electrons cannot appear in the region above the initial peak.

The quantum solutions demonstrate effects of deviation from the semiclassical behavior. Collisional
broadening and retardation exist already at zero electric field. Fig. 1 compares the zero field quantum

2solution with the corresponding semiclassical solution. The quantityuku is proportional to the electron
14 22energy in units 10 m . There is a retardation in the build up of the remote with respect to the initial

condition peaks. The replicas are broadened and the broadening increases with the distance to the
initial peak. The broadening is due to the lack of energy conservation in the interaction. The quantum
solution resembles the main pack and the first replica of the semiclassical solution after 300 fs
evolution time while the remote replicas remain broadened. The retardation of the quantum solutions
is associated with the memory character of the equation. The two time integrals in the scattering term
lead to a delay of the build up of the replicas as compared to the single time integral in the Boltzmann
case.

The electric field is responsible for the appearance of the intra-collisional field effect (ICFE). The
first replica peak of the 12 kV/cm solution on Fig. 1 is shifted in the field direction. The numerical
solution in the semiclassically forbidden region, above the initial condition, demonstrates an increase
of the electron population. For states below the initial condition the energy of the field is added to the

Fig. 1. 300 fs semiclassical (0 kV/cm) and quantum solutions (0 kV/cm and 12 kV/cm). The field points to the left.
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Fig. 2. 300 fs quantum solutions (0 kV/cm, 6 kV/cm and 12 kV/cm). The field points to the right.

phonon energy. Accordingly the solution behaves as in the presence of a phonon with energy higher
than"v ; the distance between the first replica and the initial condition increases. For states above the
initial condition the energy of the field reduces the phonon energy and thus the electron population in
the vicinity of the initial condition increases. Just the opposite effects are demonstrated by the solution
if the field changes its direction. In Fig. 2 the first replica peaks of the 6 kV/cm and 12 kV/cm are
shifted to the right and the shift is proportional to the field strength. There is no increase of the
electron population above the initial condition. A comparison of the first replicas and the main peaks
under the initial condition in the two figures shows that the field enhances the broadening and the
retardation.

We conclude that the quantum effects are well demonstrated in the solution of the homogeneous
equation. A more rigorous study of these effects will consider the general space dependent equation
with a quantum correlation term replacing the simple initial condition [7].
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