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SUMMARY For tracking electromigration induced evolution
of voids a diffuse interface model is applied. We assume an in-
terconnect as two-dimensional electrically conducting via which
contains initially a circular void. The diffuse interface governing
equation was solved applying a finite element scheme with a ro-
bust local grid adaptation algorithm. Simulations were carried
out for voids exposed to high current. An influence of the void
dynamics on the resistance of interconnect is investigated. In the
case of the interconnect via it was shown that a migrating void
exactly follows the current flow, retaining its stability, but due
to change of shape and position causes significant fluctuations in
interconnect resistance.
key words: electromigration, diffuse interface model, grid adap-
tation, void evolution, finite element method

1. Introduction

Failure of metallic interconnects in integrated circuits
caused by electromigration has long been a key relia-
bility concern which is further accentuated by the con-
tinuing trend of miniaturization. The phenomenon of
electromigration is a mechanism for transport of matter
by high electric current densities which produce dam-
age in the interconnect lines. Failure results either from
voids growing over the entire line width or extrusions
which cause short circuits to neighboring lines.

Modeling the micromechanics of void evolution is
a long-standing scientific problem. It began with sharp
interface models requiring an explicit finite element
tracking of void surfaces during the course of evolution
[8]. Later, prompted by the complexity of void surfaces,
diffuse interface models were introduced [1]. Diffuse in-
terface models circumvent computationally costly ex-
plicit surface tracking by application of a smooth order
parameter field for representation of void structures.
An alternative diffuse interface model based on the dou-
ble obstacle potential was proposed in [4] where the
computation is simplified by reduction of order parame-
ter profiles evaluation only to the void-metal interfacial
area.

The main disadvantages of these diffuse interface
models [3], [4] is their requirement of structured un-
derlaying grids for the order parameter evaluation and
also their restricted facility to reach higher resolution

Manuscript received September 21, 2002.
†The authors are with Institute for Microelectronics, TU

Vienna, Austria.
a) E-mail: Ceric@iue.tuwien.ac.at
∗This paper was presented at SISPAD 2002.

of an order parameter profile in the void-metal inter-
facial area. To overcome these drawbacks we solve the
diffuse interface model governing equation with a finite
element scheme coupled with a powerful grid adapta-
tion algorithm. The robustness of the developed finite
element approach with respect to the underlying grid
structure makes it possible to efficiently simulate the
damage induced by electromigration in complex inter-
connect geometries.

2. Theoretical Formulation

We assumed unpassivated monocrystal isotropic inter-
connects where stress phenomena can be neglected. An
interconnect is idealized as two-dimensional electrically
conducting via which contains initially a circular void.
For simplicity we also neglect the effects of grain bound-
aries and lattice diffusion. In this case there are two
main forces which influence the shape of the evolving
void interface: the chemical potential gradient and elec-
tron wind. The first force causes self-diffusion of metal
atoms on the void interface and tends to minimize en-
ergy which results in circular void shapes. The electron
wind force produces asymmetry in the void shape de-
pending on the electrical field gradients.

Including contributions from both electromigra-
tion and chemical potential-driven surface diffusion
gives the total surface atomic flux, JA = JAt, where
t is the unit vector tangent to the void surface [8], [9]

JA = Ds(−|e|Z∗Es + γsΩ t · ∇sκ) (1)

Z∗ is the effective valence, e is the charge of an electron,
Es ≡ Es · t is the local component of the electric field
tangential to the void surface, κ is the local surface
curvature, and ∇s is the surface gradient operator; κ ≡
∇ · n, where n is the local unit vector normal to the
void surface. Further, γs is the surface energy, Ω is the
volume of an atom, and Ds is given trough Arrhenius’
law:

Ds =
D0δs
kB T

exp
(−Qs

kB T

)
(2)

Here, δs is the thickness of the diffusion layer, kB is
Boltzmann’s constant, T is the temperature, Qs is the
activation energy for the surface diffusion, and D0 is
the pre-exponential for mass diffusion. Equation (1)
is the Nernst-Einstein equation, where the sum in the
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parentheses on the right side expresses the driving force.
Mass conservation gives the void propagation velocity
normal to the void surface, vn, through the continuity
equations [9]–[11],

vn = −Ω · ∇sJA. (3)

The electric field E in the interconnect is irrotational,
∇×E = 0 and it can be written as the gradient of the
electric potential, i.e.,

E ≡ −∇V. (4)

The field is also solenoidal, i.e.,

∇ ·E = 0. (5)

Equations (4) and (5) imply that the potential V obeys
Laplace’s equation,

∆V = 0 (6)

The void surface and the interconnect’s edges are mod-
eled as insulating boundaries, i.e., ∇V · n = 0 at these
boundaries.

3. Applied Diffuse Interface Model

Direct numerical implementation of Eqs. (1)–(6) de-
mands explicit tracking of the moving void-metal in-
terface. The interface is described by specifying a large
number of points on it. Over the time the void-metal in-
terface evolves and changes morphology and even more
points may be required to accurately describe it. Such
techniques are very complicated to implement and also
tend to have rather poor numerical stability.

In the diffuse interface models void and metal area
are presented through the order parameter φ which
takes values +1 in the metal area, −1 in the void area
and −1 < φ < +1 in the void-metal interface area. De-
manding explicit tracking of the void-metal interface is
not needed and models do not require boundary condi-
tions to be enforced at the moving boundary. Diffuse
interface models are, as we will see in the next sections,
quite simple to implement numerically.

The model equations for the void evolving in an
unpassivated interconnect line are the balance equation
for the order parameter φ [1]–[4],

∂φ

∂t
=

2Ds

επ
∇ · (∇µ− |e|Z∗∇V ) (7)

µ =
4Ωγs

επ
(f ′(φ)− ε2∆φ) (8)

and for the electrical field

∇ · (σ(φ)∇V ) = 0 (9)

where µ is the chemical potential, f(φ) is the double
obstacle potential as defined in [5], [6], and ε is a pa-
rameter controlling the void-metal interface width. The

electrical conductivity was taken to vary linearly from
the metal (σ = σmetal) to the void area (σ = 0) by
setting σ = σmetal(1 + φ)/2. Equations (7) and (9) are
solved on the two-dimensional polygonal interconnect
area T .

It has been proven [2], [4] that in the asymptotic
limit for ε → 0 the diffuse interface model defined by
Eqs. (7)–(9) describes the same voids-metal interface
behavior like Eqs. (1)–(6). The width of the void-metal
diffuse interface is approximately επ/2, and in order to
numerically handle sufficiently thin interfaces one needs
a very fine locally placed grid around it.

4. Numerical Implementation

Equations (7)–(9) are solved by means of the finite el-
ement method on the sequence of the grids Λh(t0 =
0),Λh(t1),Λh(t2) each one adapted to the position of
the void-metal interface from the previous time step.
The initial grid Λh(0) is produced by refinement of some
basic triangulation Th of area T according to the initial
profile of order parameter φ. The motivation of grid
adaptation is to construct and maintain a fine triangu-
lated belt of width επ in the interconnect area where
−1 < φ < +1, respectively, where the void-metal inter-
face area is placed.

4.1 Setting of the Initial Order Parameter Profile and
Initial Grid Refinement Λh(0)

The initial order parameter profile depends on the ini-
tial shape of the void Γ(0) and can be expressed as

φ(x, y) =




+1 if d >
επ

2
,

sin
(
d

ε

)
if |d| ≤ επ

2
,

−1 if d < −επ
2

(10)

Where d = dist(P (x, y),Γ(0)) is the signed normal dis-
tance of the point from the initial interface Γ(0). To
obtain sufficient resolution of this initial profile, the ba-
sic grid Th is transformed into grid Λh(0) obeying the
following initial grid refinement criterion (IGRC) for
the circular void with center O and radius r:

|dist(CK , O)− r| ≤ επ

2
∧ hK >

επ

n
(11)

n is the chosen number of grid elements across the void-
metal interface width, hK is the longest vertex of the
triangle K, and CK is its center of gravity. Now an
adaptive algorithm defined in Sect. 4.4 transforms the
basic grid Th into initial grid Λh(0) according to IGRC.

4.2 Finite Element Scheme

Let Λh(tn) be a triangulation of the area T at the dis-
crete time tn, and let {φn−1

i }N−1
i=0 be discrete nodal val-

ues of the order parameter on this triangulation.
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A finite element based iteration for solving (7) on
grid Λh(tn) and evaluating the order parameter at the
time tn+1 = tn +∆t consists of two steps [12]:
Step 1. For the kth iteration of n + 1th time step the
linear system of equations has to be solved:

ε
π

2
Miiφ

n+1,k
i +∆tDsKiiµ

n+1,k
i = αi (12)

Miiµ
n+1,k
i − τ

(
1
ε
Mii + εKii

)
φn+1,k

i = βi, (13)

where

αi = ε
π

2
Miiφ

n
i −∆tDs

∑
i �= j

Kijµ
n+1,k−1
j (14)

βi = τε
∑
i �=j

Kijφ
n+1,k−1
j − |e|Z∗MiiV

n
i (15)

for each i = 0, N − 1 of the nodal values (φn+1
i , µn+1

i )
of the triangulation Λh(tn). [M ]ij and [K]ij are the
lumped mass and stiffness matrix, respectively and τ =
4Ωγs

π .
Step 2. All nodal values {φn+1

i }N−1
i=0 are projected on

[−1, 1] by a function

ρ(x) = max(−1,min(1, x)). (16)

For solving (9) a conventional finite element scheme is
applied [13].

4.3 Maintaining the Grid During Simulation

After an order parameter was evaluated on the Λh(tn)
a grid needs to be adapted according to the new void-
metal interface position. Therefore it is necessary to
extract all elements which are cut by the void-metal
interface in grid Λh(tn). The following condition is
used: Let us take a triangle K ∈ Λh(tn) and denote
its vertices as P0, P1, P2. The triangle K belongs to the
interfacial elements if for the values of the order param-
eter φ at the triangle’s vertices holds φ(P0)φ(P1) < 0
or φ(P1)φ(P2) < 0. We assume that an interface inter-
sects each edge of the element only once. The set of all
interfacial elements at the time tn is denoted as E(tn).
The centers of gravity of each triangle from the E(tn)
build the interface point list L(tn). The distance of the
arbitrary point Q from L(tn) is defined as

dist(Q,L(tn)) = min
P∈L(tn)

dist(Q,P ). (17)

Thus we can define the transitional grid refinement cri-
terion TGRC

dist(CK , L(tn)) ≤
επ

2
∧ hK >

επ

n
(18)

The grid adaption for the next time step evaluation of
the order parameter φ is now completed with respect
to TGRC by as defined in the next section.

Fig. 1 Atomic refinement operation.

4.4 Grid Adaptation

The grid adaption algorithm used in this work is a ver-
sion of the algorithm introduced in [7] and consists of
a grid refinement algorithm and a grid coarsening algo-
rithm. The refinement algorithm is based on recursive
bisecting of triangles. A triangle is marked for refine-
ment if it complies with some specific refinement cri-
terion COND. In our application we used COND =
IGRC for the initial refinement and COND = TGRC
for the grid maintaining refinement. For every trian-
gle of the grid, the longest one of its edges is marked
as refinement edge. The element and its neighbor ele-
ment which also contains the same refinement edge are
refined by bisecting this edge (Fig. 1). We can define
refinement of the element in the following way:

Algorithm 1. refinement of the element
subroutine recursive refine(element)

{
if neighbor has no compatible ref edge
recursive refine(neighbor)

bisect(element)
bisect(neighbor)

}

Now, the overall refinement algorithm can be for-
mulated as follows:

Algorithm 2. refinement of the grid
subroutine refine grid(COND)

{
for n ≤ max refinement depth
{
for all elements
if (COND) mark element for refinement

if no element is marked
break refinement loop

for all elements
recursive refine(element)

}
}

The parameter max refinement depth limits the num-
ber of bisecting of each triangles of the grid. The grid
is refined until there is no more element marked for re-
finement or the maximal refinement depth is reached.

The coarsening algorithm is more or less the in-
verse of the refinement algorithm. Each element that
does not fullfil criterion COND is marked for coarsen-
ing. The basic idea is to find the father element whose
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refinement produced the element in consideration.

Algorithm 3. coarsening of the element
subroutine coarsen(element)

{
get the element father
get the father neighbor on ref edge
coarse the element father
coarse the father neighbor

}

The following routine coarsens as many elements as
possible, even more than once if allowed:

Algorithm 4. coarsening of the grid
subroutine coarsen grid(COND)

{
for all elements
if (!COND) mark element for coarsening

do
{
do coarsen once more = false
for all elements
if element is marked for coarsening
do coarsen once more |= coarsen(element)

} until do coarsen once more is false
}

The complete adaption of the grid is reached by se-
quential invoking of the grid refinement and of the grid
coarsening algorithm.

4.5 Solving Procedure

Combining all the components described in Sects. 4.1–

Fig. 2 Void evolution solving procedure.

4.4 we obtain the complete void evolution solving pro-
cedure (Fig. 2).

5. Results

In all simulations a circle was chosen as initial void
shape. The resolution of the parameter φ profile can be
manipulated by setting parameter n which is the mean
number of triangles across the void-metal interface. On
Fig. 3 initial grids for n = 1 and n = 5 are presented.
We consider a two-dimensional, stress free, electricaly
conducting interconnect via. A constant voltage is ap-
plied between points A and B (Fig. 4). At B a refrac-
tory layer is assumed. Because of geometrical reasons
there is current crowding in the adjacencies of the cor-
ners C and D. The analytical solution of Eq. (9) has at
these points actually a singularity [13].

High electrical field gradients in the area around
the corner points increase overall error of finite element
scheme for Eq. (9) which is overcome by applying an ad-
ditional refinement of the basic mesh Th according to
the local value of the electric field gradient (Fig. 5). A
fine triangulated belt area which is attached to the void-
metal interface at the initial simulations step follows the
interfacial area throughout the simulations whereby the
interconnect area outside the interface is coarsened to
the level of the basic grid Th (Fig. 6). In our simula-
tions a void evolving through straight part of the in-
terconnect geometry exhibits similar shape changes as
observed in the earlier models [4], [8]. There is also no

Fig. 3 Initial grid refinements.

Fig. 4 Interconnect via with initial void.
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Fig. 5 Profile of the current density (in A/m2) at the corners
of the interconnect.

Fig. 6 Refined grid around the void in the proximity of the
interconnect corner.

significant fluctuation of the resistance during this pe-
riod of interconnect evolution. The situation changes
when the void evolves in the proximity of the intercon-
nect corner. Due to current crowding in this area the
influence of the electromigration force on the material
transport on the void surface is more pronounced than
the chemical potential gradient. This unbalance leads
to higher asymmetry in the void shape then observed in
the straight part of the interconnect. A void evolving
in the proximity of the interconnect corner causes sig-
nificant fluctuations in the interconnect resistance due
to void asymmetry and position. The resistance change
shows a charasteristical profile with the two peaks and
a valley (Fig. 7). The extremes are more pronounced
for the larger initial voids.

The capability of the applied adaptation scheme is
also presented in the simulation of void collision with
the interconnect refractory layer (Fig. 8).

The time step ∆t for the numerical scheme (12)–
(15) is fitted at the simulations begin taking into ac-
count inverse proportionality of the speed of the evolv-
ing void-metal interface to the initial void radius [8]:

Fig. 7 Time dependent resistance change during void evolution
for the different initial void radius r.

Fig. 8 Grid adaptation in the case of void collision with the
refractory layer.

∆t =
επrl

2Ds|e|Z∗V0
(19)

l is the characteristical length of via geometry. Appro-
priate choice of the time step ensures that the evolv-
ing void-metal interface will stay inside the fine grid
belt during the simulation. The dynamics of the evolv-
ing void-metal interface simulated with a the presented
numerical scheme complies with the mass conservation
law, the void area (where φ = −1) remains approxi-
mately the same during the whole simulation. Notable
area deviations during the simulation appear only if a
relatively large factor ε has been chosen. As scaling
length we took l = 1µm and for the initial void radius
r0 = 0.035 l, r1 = 0.045 l, and r2 = 0.065 l. Our sim-
ulations have shown that for all considered initial void
radii, voids follow the electric current direction (Fig. 9)
and do not transform in slit or wedge like formations
which have been found to be a main cause for a com-
plete interconnect failure [14]. Already with ε = 0.003 l
good approximations are achieved. The number of el-
ements on the cross section of the void-metal interface
was chosen between 6 and 10 with the interface width
of 0.0015 lπ.
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Fig. 9 Void evolving through interconnect in the electric
current direction.

6. Conclusion

A governing diffuse interface equation for the or-
der parameter coupled with the Laplace equation for
the electrical field is solved using the finite element
scheme. A dynamically adapted grid is maintained by
a refinement-coarsening algorithm controlled by posi-
tion, curvature, and width of the simulated void-metal
interface which distributes the grid density in such a
way that it allows an efficient simulation of evolving
voids through large portions of a complex interconnect
geometry. Due to high electrical current gradients in
the proximity of the interconnect corners and overall
asymmetry of the electrical field, voids exhibit specific
faceting which was not observed in the case of straight
interconnect geometries. The presented method is well
suited for long time prediction of resistance change due
to electromigration during the interconnect life time.
The applied diffuse interface model extends readily
to incorporate additional physical phenomena such as
anisotropy, temperature variations, and bulk and grain
boundary diffusion.
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