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Abstract

We present an advanced algorithm for an extraction tool to compute inductances of interconnect structures. As already pointed out [Proc.

Third Int. Conf. Modeling Simul. Microsyst. (2000) 416] the pursued energy concept leads to a 6-fold integral which can also be evaluated by

use of the Monte Carlo method. A classical implementation of the Monte Carlo method, where the whole geometry has to be hunted for an

associated element loses efficiency. Our approach is applied without time consuming element location for the random point coordinates to

compute this integral. The precalculated current density distribution is computed with the finite element method. Geometrical modeling is

done with an unstructured tetrahedral mesh to gain high flexibility and to ensure a latter integration of the process flow. Hence, some

simplifications compared to the real geometry, as other published approaches usually do implicitly, are not required.

q 2003 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Conventional circuit design techniques were focused

primarily on minimizing the chip size. Thus the influence of

the interconnect structures cannot be neglected anymore,

aspects as signal delay, inductive and capacitive crosstalk,

attenuation of the signal and reliability are becoming

important issues. Because of increasing operating frequen-

cies and the usage of new materials like copper and low-k

dielectrics, inductive effects gain significance especially for

lines, which provide power supply or global busses. A

necessary, but not sufficient condition for consideration of

inductive effects is that the impedance of the inductive part

is of the same order of magnitude as the resistance of the

line. In addition, several inequalities describe the area,

where inductive effects are not negligible and have to be

considered in the design [2].

A suitable choice of the aspect ratio (thickness/width)

improves RC delay. Maximum benefits are achieved at an

aspect ratio of ,2 [3]. To include clock frequency in

the design of multilevel networks, the longest local and

semi-global interconnects on each tier have a time delay less

than 25% of the clock period. The remaining 75% clock

cycle is dedicated to the time delay of the critical paths and

clock skew. A hierarchical approach is given in Ref. [4].

The calculation of crosstalk is usually performed with

closed formulae for certain cases (parallel lines above

ground, parallel lines between two levels) [5]. Efficient

crosstalk calculation is performed by an extended model to

include inductive effects [6]. For long global lines the time

delay is decreased by the insertion of inverters. The signal

shape is improved at the expense of the package density and

the energy consumption. Information about the arrangement

of inverters is given [7]. Global routing techniques and

shielding are required to minimize the inductive crosstalk,

which can involve also far distant lines [8]. Shielding

features are utilized combined with order reduction method

to gain area efficient solution under the constraint of

crosstalk [9].

The calculation of inductive effects needs the concept of

partial inductances [10], because a priori the current path

is not completely known. Beside lengthy analytic formu-

lations, as e.g. for rectangular conductors [11], better suited

formulae for computational evaluation of long, thin lines are

given in Ref. [12]. A closed formula with 16 evaluations of

one function for rectangular conductors provides [13].

Through segmentation the skin effect can be modeled inside
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the conductors. Based on the network theory, not the current

density distribution is explicitly calculated, but the current

density distribution is approximated with small filaments

carrying a certain current with a constant current density.

From filament to filament the current density varies, hence a

step function approximation of the actual current density is

obtained. Solving the current loop equations of the partial

equivalent element circuits the divergenceless magnetic

vector potential is fulfilled. The conceived partial equivalent

element circuits tends to large, sparsely occupied matrices,

hence a model order reduction treatment may be necessary.

Beside FastHenry [14] other simulators [15], are based

on approximation formulae from Grover [16] or other

relevant formulae to obtain partial inductances for simple

geometries. The latter one is restricted to stratified

geometries and conductors with rectangular cross-section,

which can also be exploited to calculate capacitances using

a Green function approach.

2. The program package

The calculation of the current density distribution is

performed with the Smart Analysis Programs [17]. There-

fore, we use the finite element method, because of

advantages, as numerical robustness, the ability to solve

nonlinear systems, high obtained accuracy, and general

applicability. Fig. 1 gives an overview about the Smart

Analysis Programs.

The geometry can be defined either directly from the

layout by specifying layer thicknesses, or by a rigorous

topography simulation [18,19]. So the inductance extraction

is in principle not limited to idealized Manhattan-like

geometries as in the approaches presented in the introduc-

tion. The layout of the interconnect structure can also be

imported from CIF or GDSII files, or created interactively

with a graphical layout editor [20]. Furthermore, the

program package includes three preprocessors, one for

two-dimensional applications (CUTGRID) the other for

three-dimensional applications. The preprocessor LAY-

GRID allows a layer-based input of the simulation geometry

and the specification of the boundary conditions on the

borders of each subdomain. The fully unstructured three-

dimensional Delaunay grid generator DELINK [21] utilize

an advanced-front algorithm, whereby the mesh generation

starts from an initial front to fill up the solids with

tetrahedrons.

A preconditioned conjugate gradient solver (ICCG),

which has been optimized specifically for the discretized

Laplace operator, is used to solve the linear systems for

domains of conducting materials [22]. By applying

Ohm’s law to the derivative of the electrostatic potential

the distribution of the electric current density is obtained.

The simulation is performed with the module STAP (Smart

Thermal Analysis Program), where both inductance

extraction methods have been implemented.

Two postprocessors complete the program package,

whereby the visualization tool SV is based on VTK [23],

a flexible and powerful visualization library. Both post-

processors can be used to verify the grid quality, and for the

visualization of several distributions (e.g. electric potential,

temperature, current density), whereby SV provides numer-

ous features, as e.g. cutting plains, volume rendering and

contour faces representation of distributions.

3. Physical approach

We compare two stationary inductance calculation

methods both based on a numerical solution of Neumann’s

formula [16] for a precalculated current density distribution:

Lik ¼
m

4p

1

IiIk

ð
Vi

ð
V 0

k

JiðrÞ·Jkðr
0Þ

lr 2 r0l
dV dV 0

: ð1Þ

The integration is carried out numerically, where special

attention has to be paid on the singularities of the integrand,

or with the Monte Carlo method. For both methods the

stationary current density is calculated with the finite

element method. The first method [1] employs a summation

of the contributions of all pairs of finite elements to solve the

integral (1), where different kinds of approximation are

used, depending on the term lr 2 r0l: For a large distance

(compared to the tetrahedron diameter) simple integration

formulae are sufficient. The evaluation for small distances

demands special formulae with certain integration points,

published by Stroud [24] who presented various integration

formulae which are applicable for n-simplexes (e.g. the unit

triangle, the unit tetrahedron) as integration region. If r and

r0 are in the same tetrahedron, a partially analytic integration

scheme is used to increase the accuracy of the integration.

4. The Monte Carlo method

A well-known choice for the evaluation of multiple

integrals is to apply the Monte Carlo method. Associated

with this method, where by random the point coordinates are

chosen, is a fairly high demand on CPU-time, because of the

time consuming search for the associated element of the

random point coordinates. To reduce the error a high number

of function evaluations has to be carried out, whereby for

each evaluation the aligned element with the precalculated

current density must be found. To improve the convergence

during the Monte Carlo sampling several variance reduction

schemes (e.g. importance sampling, control variates) are

known to accelerate the computation procedure [25].

4.1. Implementation

One big advantage of our implementation is to bypass the

high computational effort for the element location. We first
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determine the associated element to the evaluated proba-

bility function, and then locate the point inside the

tetrahedron. For this purpose we take two arrays for every

conductive segment. The first one holds the volume of

each element, whereby the sum of all entries is scaled to

one. The second one stores the probability function already

evaluated for each conductor element by adding up all

entries from the beginning to the current index of the first

array. Then the random generator chooses a number

between zero and one. The associated element complying

to the probability function is found by a binary search. The

procedure is pictured in Fig. 2. To ensure a uniform

probability the local coordinates of the integration points are

found by shooting into the unit cube. The first point inside

the registered unit tetrahedron is taken. For the interpolation

of the current density inside each element quadratic shape

functions are used.

4.2. Application example

Figs. 3 and 4 show the current density of two planar

transformers. These transformers are built of two

interwound spirals each of 3, respectively, 5-turns metal

with 5 mm width, a spacing of 15 mm, and an inner

length of 54 mm.

By utilizing the preprocessor LAYGRID three different

grids were made. In Table 1 the simulation times for the

current density and the Monte Carlo method, respectively,

Fig. 1. The Smart Analysis Programs: tools and dataflow.
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the first numeric method as accomplished above, and the

calculated inductances are listed. The simulations were

performed on a Digital Alpha workstation (DEC600/

333 MHz). The minimum number of samples for the

Monte Carlo method was 1 million. This gives due to the

Monte Carlo error estimation for the 99.99% confidence

interval the mutual inductance with ^0.9% and the self

inductance with ^1.8% in Table 1 according to Eq. (3).

The first column of Table 1 implies all elements of the

conductive segments, whereby tetrahedral grid elements

with quadratic shape functions were used. The analysis

time for the Monte Carlo method is not so strongly

influenced by the number of elements ðnÞ; because the

computational effort for the binary search grows with lnðnÞ:

The simple integration formulae for the mutual inductances

demand almost the same time with increasing n: Table 1

emphasizes the advantage of the Monte Carlo method

explicitly.

4.3. Convergence, estimation of the simulation error

Figs. 5 and 6 give details about the convergence

behavior for the calculation of the self and mutual

inductance. Both curves show explicitly the continuous

decrease of the fluctuation margin, in Fig. 5 quicker than

in Fig. 6. For the mutual inductance the variance is

smaller, therefore, fewer samples suffice to reach the

same accuracy as for the self inductance, due to the term

lr 2 r0l in the denominator. The evaluation of the mutual

inductance is characterized by a larger distance between

the evaluation points, thereby the integrand fluctuates not

in the extent as for the self inductance. Errors sources are

in the evaluation of Eq. (1) and the computation of the

current density. These independent error sources can be

handled separately. In order to minimize the influence of

Fig. 2. Illustration of the element determination.

Fig. 3. Current density distribution of the planar transformer with 3-turns

metal.

Fig. 4. Current density distribution of the planar transformer with 5-turns

metal.
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inaccuracies from the current density, techniques for mesh

refinements can be applied. Corresponding to the resulting

changes of the calculated inductances only a differential—

not an absolute—error can be specified (except a

comparison with analytic solutions).

The error estimation within the Monte Carlo method is

feasible without big effort according the Eqs. (2) and (3),

thereby the specification for the abort criteria of the

procedure is possible. The Monte Carlo algorithm

terminates, if the fluctuation of the results is below

a given level. The error DLik can be calculated with

the variance s2
ik of the samples Likt

s2
ik ¼

1

N

X
t

L2
ikt

2
1

N

X
t

Likt

 !2

ð2Þ

and the number of samples N (99.99% confidence

interval)

DLik ¼ 3
sikffiffiffi

N
p : ð3Þ

The Monte Carlo method with the abort criteria needs

only a continuous computation of the standard deviation

from Eq. (3) with Eq. (2). If DLik=Lik , e is fulfilled,

the algorithm is terminated. The error bounds of the

estimation value decreases with 1=
ffiffiffi
N

p
: To reduce the limit

by a factor c, the required number of samples (and effort)

increases with c2:

4.4. Influence of the singularities

The integrand in Eq. (4) is singular for r ¼ r0: To

investigate the influence of the singularity the integral

is separated in two integrals over the same region, I1

and I2;

I ¼ I1 þ I2 ¼
ð

V
dV

ð
V

dV 0 JðrÞ·Jðr0Þ

lr 2 r0l
: ð4Þ

The first integral excludes the singularity

I1 ¼
ðð

lr2r0l.d
dV dV 0 JðrÞ·Jðr0Þ

lr 2 r0l
ð5Þ

Table 1

Analysis time and results of the planar transformers: M and L stand for

mutual and self inductance, respectively, and MC refers to the Monte Carlo

method

Number

of elements

Time (s) Results (nH)

MC Method [1] MC Method [1]

M L M L M L M L

3-turns

1800 17 33 1 327 0.67 1.04 0.67 1.06

1968 17 34 1 627 0.67 1.05 0.67 1.06

2648 18 34 3 1764 0.67 1.06 0.67 1.06

5-turns

4383 18 35 7 1945 2.71 3.58 2.70 3.62

4653 19 35 8 2088 2.71 3.60 2.70 3.62

5697 19 36 15 7885 2.70 3.60 2.69 3.63

Fig. 5. Convergence diagram for the computation of the mutual inductance over the first 10% of the minimum number of samples (transformer with three

windings).
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and is evaluated as before. The region for the second

integral is a small sphere around the singularity

I2 ¼
ðð

lr2r0l,d
dV dV 0 JðrÞ·Jðr0Þ

lr 2 r0l
: ð6Þ

Because of the small distance r 2 r0 the current density

Jðr0Þ can be enveloped linearly about r

Jðr0Þ < JðrÞ þ 7JðrÞ·ðr 2 r0Þ: ð7Þ

Set in I2 results

I2 ¼
ð

V
dVJðrÞ·JðrÞ

ð
lr2r0l,d

dV 0 1

lr 2 r0l

zfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflffl{I21

þ
ð

V
dVJðrÞ7JðrÞ

ð
lr2r0l,d

dV 0 r 2 r0

lr 2 r0l

zfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflffl{I22

; ð8Þ

I21 ¼
ð
lr2r0l,d

dV 0 1

lr 2 r0l
¼
ðd

0

4pR2

R
dR ¼ 2pd2

: ð9Þ

The integral I22 vanishes due to symmetry reasons

I22¼
ðd

0

ð2p

0

ðp

0
R2sinqdqdwdR

1

R

Rsinqcosw

Rsinqsinw

Rcosq

0
BB@

1
CCA¼0: ð10Þ

With the representation

I¼
ðð

lr2r0l.d
dV dV 0 JðrÞ·Jðr

0Þ

lr2r0l
þ
ð

V
dVJðrÞ·JðrÞ·2pd2 ð11Þ

a sensitivity analysis is possible, to work out the

influence of the parameter d. On the basis of a simple

demonstration example this is realized (Fig. 7). The

cross-section of the geometric loop amounts 1 £ 1 mm2.

The whole loop can be wrapped into a box with

9£9£3 mm3. The evaluation from Eq. (11) shows that

with increasing reduction of d the contribution from the

second term disappears. A typical magnitude of d¼2nm

for the geometric loop, below no contribution is yielded

from the second term. For lr2r0l,2nm this term can be

neglected. d is not a constant factor. It depends on the

actual example. As reference value for the geometric

Fig. 6. Convergence diagram for the computation of the self inductance over the first 10% of the minimum number of samples (transformer with three

windings).

Fig. 7. Current density distribution of the geometrical loop.
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loop can be stated that d is about 2% of the shortest

edge length of a typical tetrahedron. Hence it is shown

that for d!0 the formulation Eq. (11) is equivalent to

the original one. The Monte Carlo method is not

influenced by the singularity, because the probability to

evaluate the integrand there is zero.

5. Conclusion

An advanced Monte Carlo algorithm for effective

inductance calculation in interconnect structures has been

presented. The presented approach is not limited to

idealized geometries of interconnect structures. We have

compared two numerical techniques for the computation

of inductances. Both methods are implemented into the

package Smart Analysis Programs, which allows

simultaneous extraction of three-dimensional effective

parameters of VLSI circuits.
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