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The stationary Monte Carlo method for device simulation. I. Theory
H. Kosina,a) M. Nedjalkov, and S. Selberherr
Institute for Microelectronics, TU Vienna, Gusshausstrasse 27-29, A-1040 Vienna, Austria

~Received 28 October 2002; accepted 13 December 2002!

A theoretical analysis of the Monte Carlo method for steady-state semiconductor device simulation,
also known as the single-particle Monte Carlo method, is presented. At the outset of the formal
treatment is the stationary Boltzmann equation supplemented by boundary conditions, which is
transformed into an integral equation. The conjugate equation has been formulated in order to
develop forward Monte Carlo algorithms. The elements of the conjugate Neumann series are
evaluated by means of Monte Carlo integration. Using this mathematically-based approach, the
single-particle Monte Carlo method is derived in a formal way. In particular, the following are
recovered: the probability densities for trajectory construction, both the time averaging and the
synchronous ensemble methods for mean value calculation, and the rule that the initial points of the
trajectories have to be generated from the velocity weighted boundary distribution. Furthermore, the
independent, identically distributed random variables of the simulated process are identified.
© 2003 American Institute of Physics.@DOI: 10.1063/1.1544654#
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I. INTRODUCTION

The Monte Carlo~MC! method is known to be a versa
tile tool for the study of carrier transport phenomena in
large variety of semiconductor materials and devices. T
method simulates the motion of charge carriers in the
dimensional phase space formed by position and momen
Subjected to the action of an external force field, the po
like carriers follow trajectories governed by Newton’s la
and the carrier’s dispersion relation. These drift processes
interrupted by scattering events that are assumed to o
locally in space and instantaneously in time. The duration
a drift process, the type of scattering mechanism, and
state after scattering are selected randomly according
given probabilities that are characteristic to the microsco
process. In principle, such a procedure yields a carrier di
bution that satisfies a Boltzmann equation~BE!. The method
of generating sequences of drift processes and scatte
events appears so obvious from a physical point of view,
it is frequently interpreted as a direct emulation of the phy
cal process rather than as a numerical method. The main
algorithms used to date were originally devised from mer
physical considerations, viewing a MC simulation as a sim
lated experiment. The proof that the used algorithms imp
itly solve the BE was carried out later.1–3

In the field of semiconductor transport, the alternat
way to use the BE as a starting point and to formulate M
algorithms for its solution was reported end of the 1980s4,5

This mathematically based approach lead to the developm
of algorithms such as the weighted ensemble MC metho6,7

and the backward MC method.4,5 These early works focuse
on the transient problem.

In the present work, the theoretical background of
single-particle MC method is investigated, in order to pro

a!Electronic mail: kosina@iue.tuwien.ac.at
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this method for the calculation of steady-state device cha
teristics.

In Sec. II, the mathematical method used, includi
some basics of integral equations, the iteration series,
MC integration, are outlined. In Sec. III, the integral form
the stationary BE is derived. From the corresponding con
gate equation, the iteration terms of the Neumann series
obtained. Particular emphasis is put on the treatment
boundary conditions in the integral equation and the iterat
terms. The evaluation of the iteration terms by means
Monte Carlo integration, which leads to the single-partic
MC algorithm, is discussed in Sec. IV.

II. THE MATHEMATICAL METHOD

In semiclassical transport theory, the general problem
be considered is that of findingf to satisfy a Fredholm inte-
gral equation of the second kind:

f ~x!5E f ~x8!K~x8,x!dx81 f 0~x!. ~1!

The kernelK describes the propagation of the particles
phase space, while the free termf 0 accounts for boundary
and initial conditions. The variablex stands for (k,r ,t) in the
transient case and for (k,r ) in steady state. Often one is mor
interested in statistical averages rather than in a point-w
evaluation off. An average represents a linear functional of,
expressible in terms of an inner product:

~ f ,A!5E f ~x!A~x!dx. ~2!

Substituting Eq.~1! recursively into itself gives an iteration
series, known as the Neumann series, which is a formal
lution to the integral equation8

f 5 f (0)1 f (1)1 f (2)1¯ . ~3!
3 © 2003 American Institute of Physics
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The iteration terms are defined recursively beginning w
f (0)(x)5 f 0(x):

f (n11)~x!5E f (n)~x8!K~x8,x! dx8. ~4!

Since the integral form of the BE is a backward equation,
corresponding forward equation, that is the conjugate eq
tion, needs to be derived. Its kernel is given byK†(x,x8)
5K(x8, x).

g~x8!5E g~x!K~x,x8! dx1A~x8!. ~5!

Multiplying Eq. ~1! by g(x) and Eq.~5! by f (x8), and inte-
grating overx andx8, respectively, results in the equality

~ f ,A!5~g, f 0!. ~6!

By means of Eq.~6!, one can calculate a statistical avera
not only fromf, but also fromg, the solution of the conjugate
equation. The given functionA has to be used as the fre
term of the conjugate equation. Note that usage of Eq.~6!
precludes a point-wise evaluation of the distribution funct
using a forward algorithm, because in this caseA(x)
5d(x).

The link with the MC method is established by a
proaching the terms of the Neumann series by MC integ
tion, the basic idea of which is briefly reviewed as follow

A way of computing the integral

I 5E
a

b

f~x! dx5E
a

b

p~x!c~x! dx, ~7!

is to represent it as an expected value of some random
able. Consider a factorizationf5pc, wherep is a density
function; thus, p is non-negative and satisfies*a

bp(x) dx
51. Integral~7! denotes the expected value of the rand
variable C:I 5E$C%. In a MC simulation, a sample
x1 ,... xN of the random variableX is generated from the
density p, and the sample mean is computed which is
estimate of the expected value:

I .c̄5
1

N (
i 51

N

c~xi !. ~8!

In addition to the resultI, the MC method gives an estima
of the error, which is obtained via the sample variance. Si
the factorization of the integrand is not unique, different ra
dom variables can be introduced depending on the choic
the densityp. All of them have the same expected value, b
different variance.

III. THE BOLTZMANN EQUATION

Aiming at steady-state device simulation, the positio
dependent and time-invariant BE is to be considered.
applied field and all material properties are independen
time.

@v~k!•¹r1F~r !•¹k# f ~k,r !5Q@ f # ~k,r !, rPD. ~9!

This equation, which is posed in the simulation domainD, is
supplemented by boundary conditions modeling the inte
Downloaded 12 Mar 2003 to 128.130.68.69. Redistribution subject to A
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tion of the device with the environment. In semiconduc
transport, the distribution function is commonly normaliz
as

1

4p3ED
drE dk f ~k,r !5ND , ~10!

where ND denotes the number of carriers contained in
semiconductor domain of volumeVD . This normalization is
based on the notion of discrete states ink-space, having a of
density 2VD /(2p)3, such thatf can be viewed both as a
occupation probability of the discrete statek and a density
function in the continuousk-space. In both cases, howeverf
is to be interpreted as a density function with respect tor .

The force fieldF in Eq. ~9! takes into account electric
and magnetic fields. If the electric fieldE is dominant and
the magnetic field can be neglected, the force field is
proximated byF5qE/\, whereq is the charge of the carrier
The scattering operatorQ5Qg2Ql consists of a gain and a
loss term, respectively. If many-body effects, such
carrier–carrier scattering and degeneracy, are neglected
scattering operator will be linear, an assumption that is c
cial for the presented approach. The two components oQ
are

Qg@ f # ~k,r !5E f ~k8,r !S~k8,k,r !dk8, ~11!

Ql@ f # ~k,r !5l~k,r ! f ~k,r !, ~12!

with l(k,r )5*S(k,k8,r ) dk8 denoting the total scattering
rate.

A. Time invariance of the system

To describe a time-invariant system, an absolute ti
scale is obviously not needed. Only the time difference
tween two consecutive events is significant. The equation
motion in phase space are given by Newton’s law~13! and
the carrier’s group velocity~14!:

d

dt
K ~ t !5F@R~ t !#, ~13!

d

dt
R~ t !5v@K ~ t !#. ~14!

A phase-space trajectory with the initial conditionK (t0)
5k0 andR (t0)5r0 is obtained by formal integration:

K ~ t; t0 ,k0 ,r0!5k01E
t0

t

F @R~y; t0 ,k0 ,r0!# dy,

R~ t; t0 ,k0 ,r0!5r01E
t0

t

v @K ~y; t0 ,k0 ,r0!# dy. ~15!

In addition to the time argument of the functionsK andR,
the parameterst0 , k0 , r0 describing the initial condition of
the phase-space trajectory are stated explicitly. Express
~15! can be read as the phase-space position of a partic
time t that passes throughk0 andr0 at timet0 . In this regard,
the order oft0 andt is irrelevant. Fort<t0 , k0 andr0 denote
a final condition.

Invariance under time translation can be proven, p
vided thatF does not depend explicitly on time:
IP license or copyright, see http://ojps.aip.org/japo/japcr.jsp
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K ~ t1t; t01t,k0 ,r0!5K ~ t; t0 ,k0 ,r0!, ~16!

R~ t1t; t01t,k0 ,r0!5R~ t; t0 ,k0 ,r0!. ~17!

This property will be used repeatedly in the following
adjust conveniently the time reference for each free fligh

B. Integral form of the steady-state Boltzmann
equation

In this section, the BE is transformed from integrodiffe
ential form into integral form. Particular care is taken
account for the boundary conditions.

Assume a given phase-space pointk, r . This point de-
termines uniquely a phase-space trajectory, for which the
tationK (t)5K (t; 0,k,r ) andR(t)5R(t; 0,k,r ) is used. The
arbitrary initial time is set tot050. The left-hand side of Eq
~9! represents the total time derivative off̂ (t)
5 f @K (t),R(t)#, which allows the BE to be rewritten as a
ordinary differential equation of first order:

d

dt
f̂ ~ t !1l̂~ t ! f̂ ~ t !5Q̂g@ f #~ t !. ~18!

The structure of the BE is more compact if multiplied by
integrating factor of the form exp@*0

t l̂(y)dy#:

d

dt
expF E

0

t

l̂~y!dyG f̂ ~ t !5expF E
0

t

l̂~y!dyGQ̂g@ f #~ t !.

~19!

This equation can be integrated straightforwardly. The up
bound of integration should bet50 to obtain f̂ (0)
5 f (k,r ), the value off at the given phase-space point. T
lower-time bound has to be chosen such that the funct
K (t) andR(t) take on values at which the distribution fun
tion is known. In the steady state, the distribution function
known only at the domain boundary. An appropriate low
time bound is therefore the time, saytb

2 , at which the tra-
jectory enters the simulation domain~see Fig. 1!. Apparently,
this time depends on the pointk, r under consideration.

If the real-space trajectoryR(t; 0,k,r ) never intersects
the domain boundary, that is, when the trajectory form
closed loop, thentb

252` is an appropriate choice. Thi

FIG. 1. Illustration of the functionstb
2(k,r ) andtb

1(k,r ) which give the time
at a trajectory’s entry point and exit point, respectively. Ifk1 , r1 is the initial
point of a closed trajectory, the times are infinite,tb

6(k1 ,r1)56`.
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means that a particle found att50 on such a closed trajec
tory must have been scattered onto this trajectory at so
time tP(2`,0) in the past.

Integration of Eg.~19! in the time bounds discussed ea
lier results in the integral form of the stationary BE,

f ~k,r !5E
tb
2(k,r )

0

dt8E dk8 f @k8,R~ t8!#S@k8,K ~ t8!,R~ t8!#

3expH 2E
t8

0

l@K ~y!,R~y!#dyJ 1 f 0~k,r !, ~20!

f 0~k,r !5 f b$K @ tb
2~k,r !#,R@ tb

2~k,r !#%

3expH 2E
tb
2(k,r )

0

l@K ~y!,R~y!#dyJ , ~21!

where f b denotes the boundary distribution. The integ
form is a bookkeeping equation for the probabili
f (k,r )dk dr of finding a carrier in the volume element dk dr
of k and r . The first summand in Eq.~20! describes the
contribution of carriers that are scattered onto the conside
trajectory at some timet8P(tb

2,0) and stay on it until time 0,
whereas the second summand gives the contribution of
riers that stay from the time of entrytb

2 on the trajectory and
have a collisionless free flight until time 0, reaching the po
of interestk, r .

In Eq. ~20!, the termS(k8,k f)dk8 dt8 denotes the prob-
ability of a transition from an initial state within the volum
element dk8 to the final statek f during the interval dt8. This
probability will in general be different from the forward tran
sition probability S(k8,k f)dk fdt8, where the initial state is
fixed and the final state is within some volume element dk f .
To obtain a forward MC algorithm, one has to change fro
integration over initial states to integration over final states
task calling for the introduction of the conjugate equation

C. The conjugate equation

Using the notation of Sec. II, the conjugate equation h
the same kernel as the integral equation, but integratio
carried out over the unprimed variables. To apply this ru
the integral form of the BE first has to be transformed in
the standard form~1!:

f ~k,r !5E dk8E dr 8 f ~k8,r 8!K~k8,r 8,k,r !1 f 0~k,r ! .

~22!

The requiredr 8 integration is introduced by augmenting th
kernel by ad-function.

K~k8,r 8,k,r !5E
tb
2(k,r )

0

dt8 S@k8,K ~ t8!,r 8#

3expH 2E
t8

0

l@K ~y!,R~y!#dyJ
3d@r 82R~ t8!#uD~r 8!, ~23!

whereuD is the indicator function of the simulation domain
Since the integral equation~22! is posed in the six-
dimensional phase space, it must contain a sixfold integ
IP license or copyright, see http://ojps.aip.org/japo/japcr.jsp
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The time integral in Eq.~20!, therefore, cannot stay in Eq
~22!, and has to be assigned consequently to the kernel.
means that the kernel of the stationary BE is given by
kernel of the transient BE integrated over time.

After changing variables and reversing time, as shown
Appendix A, the conjugate equation can be stated explici

g~k8,r 8!5E dkaE
0

tb
1(ka ,r8)

dt S~k8,ka ,r 8!

3expH 2E
0

t

l@K ~y!,R~y!#dyJ
3g@K ~t!,R~t!#1A~k8,r 8!. ~24!

This equation has now the desired properties that integra
is carried out over final states and that the time variable
positive. The iteration series of Eq.~24! will lead to forward
MC algorithms.

D. Expressing mean values

Assume we are interested in the mean value of so
quantityA(k,r ):

^̂ A&&5E
D

drE dk A~k,r ! f ~k,r !. ~25!

A will typically be a product of somek-dependent func-
tion and anr -dependent charge assignment function.9 The
mean value per particle is obtained as^A&5 ^̂ A&&/ ^̂ 1&&.

Equation~25! is an inner product (A, f ), which can be
transformed into (f 0 ,g) by means of Eq.~6!:

^̂ A&&5E
D

dr 8E dk8 f b@Kb~ tb
2!,Rb~ tb

2!#

3expH 2E
tb
2

0

l@Kb~y!,Rb~y!#dyJ g~k8,r 8!. ~26!

Here, tb
2 is an abbreviation fortb

2(k8,r 8) andKb andRb is
the phase-space trajectory that passes throughk8 and r 8 at
t50.

In Eq. ~26!, variables need to be changed such that
arguments off b become integration variables. The new va
ables,kb and rb , represent the initial state of a particle in
jected at the domain boundary. Sincef b is defined only at the
boundary]D, the transformation must lead from a volum
integral to a boundary integral.

In deriving the transformation first the domains of t
involved variables have to be analyzed. The integration
main F is the direct product ofD andK, the k-space; thus,
the following decomposition ofF can be considered:

F5D ^ K5FbøF̄b . ~27!

The subdomainFb is formed by all points for whichtb
2 is

finite. Each pointk8, r 8PFb is connected with a boundar
point kb , rb by a free-flight trajectory. The complementa
subdomainF̄b contains all points for whichtb

252`, that
are those points that lie on closed trajectories. The integr
of Eq. ~26! vanishes for all points inF̄b because of the
Downloaded 12 Mar 2003 to 128.130.68.69. Redistribution subject to A
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exponential function, and therefore the integral overF̄b is
zero, and is sufficient to restrict the integration domain
Fb .

Another decomposition needed in the following is that
thek-space at a boundary point. Ifn(rb) denotes the outward
directed normal vector in a pointrb at the domain boundary
the two subspaces are defined by

K1~rb!5$k:v~k!•n~rb!,0%, ~28!

K2~rb!5$k:v~k!•n~rb!>0%. ~29!

All k-points inK1(rb) have an inward directed compone
of the group velocity and are therefore initial points of tr
jectories entering the domain atrb . Conversely, points inK2

are endpoints of trajectories leaving the domain.
Each point (k8,r 8)PFb can now be mapped one-to-on

onto a boundary point (kb ,rb) and a positive timet0 , where
kbPK1(rb) and rbP]D. The time t052tb

2(k8,r 8) is the
time necessary for a particle to drift from the boundary po
(kb ,rb) to the inner point (k8,r 8). This transformation is
carried out formally in Appendix B. The volume eleme
transforms as

FIG. 2. Sketch of a trajectory which starts at the boundary point (kb ,rb) and
evolves until the third free flight. The symbols used in Eq.~35! are shown.
IP license or copyright, see http://ojps.aip.org/japo/japcr.jsp
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dr 8 dk85uv'~kb!uds~rb! dkbdt0 , ~30!

where ds(rb) is the surface element atrb , and Eq.~26!
becomes

^̂ A&&5 R
]D

ds~rb!E
K1(rb)

dkb

3E
0

tb
1(kb,rb)

dt0uv'~kb!u f b~kb ,rb!

3expH 2E
0

t0
l@Kb~y!,Rb~y!#dyJ

3g@Kb~ t0!,Rb~ t0!#. ~31!

The accomplished change from volume to boundary integ
tion is a key step in the treatment of the boundary va
problem. It proves that knowledge of the boundary distrib
n

tte

ll
r o
fi

ch

pa
y
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tion is sufficient to determine arbitrary volume integrals d
fined by Eq.~25! and therefore to determinef uniquely.

Note that fromf b , only the part inK1 determines the
boundary condition, whereas the part inK2 is unknown and
is a result of the simulation.

Required for the purpose of normalization are the in
grals

j'~r !5E
K1(r )

dkuv'~k!u f b~k,r !, rP]D, ~32!

GD5 R
]D

j'~r !ds~r !. ~33!

Taking into account the normalization given in~10!,
j' /(4p3) represents the normal component of the incid
particle current density andGD /(4p3) the total incident par-
ticle current.
e,
E. The Neumann series

Substituting the Neumann series of the conjugate equation,g5(0
`g( i ), into Eq.~31! results in a series for the mean valu

for which the following notation is adopted:

^̂ A&&5(
i 50

`

^̂ A&&i . ~34!

As an instructive example the term of second order is stated explicitly:

^̂ A&&25 R
]D

ds~rb!E
K1(rb)

dkbE
0

tb
1(kb ,rb)

dt0E dk1E
0

tb
1(k1 ,r1)

dt1E dk2E
0

tb
1(k2 ,r2)

dt2uv'~kb!u f b~kb ,rb!

3expH 2E
0

t0
l@Kb~y!,Rb~y!#dyJ S@Kb~ t0!,k1 ,Rb~ t0!#expH 2E

0

t1
l@K1~y!,R1~y!#dyJ S@K1~ t1!,k2 ,R1~ t1!#

3expH 2E
0

t2
l@K2~y!,R2~y!#dyJ A@K2~ t2!,k2 ,R2~ t2!#. ~35!
e-
ht
Initial conditions for thek-space trajectories are give
by kb and the after-scattering statesk i , respectively, as
shown in Fig. 2:

Kb~0!5kb ~36!

K i~0!5k i , i 51,2, . . . . ~37!

The real space trajectory is continuous at the time of sca
ing. It holdsRb(0)5rb andRi(t i)5Ri 11(0).

The iteration term~35! describes the contribution of a
particles that propagate from the boundary to the interio
the device, having undergone two scattering events and
ished the third free flight. Analogously, theith iteration term,
^̂ A&&i , represents the contribution of all particles whi
propagate into the device withi scattering events andi 11
free flights.

Furthermore, the symbolsk i
b and r i are introduced,

which denote the before-scattering momentum and the
ticle position for theith scattering event, respectively. The
are related to the trajectories by
r-

f
n-

r-

r i 115Ri~ t i !, ~38!

k i 11
b 5K i~ t i !. ~39!

IV. THE MONTE CARLO METHOD

As a next step, the integrand of the iteration term~35!
must be decomposed into a probability densityp and a ran-
dom variablec, as shown in Eq.~7!. For this purpose we
repeat the well-known probability densities used in MC d
vice simulation, which are the distribution of the free-flig
time, pt , and that of the state after scattering,pk :

pt~ t; k,r !5l@K ~ t !,R~ t !#expH 2E
0

t

l@K ~y!,R~y!#dyJ ,

~40!

pk~k8; k,r !5
S~k,k8,r !

l~k,r !
. ~41!

Both distributions are normalized as they satisfy for allk, r :
IP license or copyright, see http://ojps.aip.org/japo/japcr.jsp
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E
0

`

pt~ t; k,r ! dt51, ~42!

E pk~k8; k,r ! dk851. ~43!

In the integrand of Eq.~35!, terms representing an unnorma
ized probability density are divided by the respective n
malization factors. Beginning with the left-most term, t
velocity-weighted boundary distributionv' f b , these factors
are given by Eqs.~32! and ~33!. Products of the form
exp(2*l) S are extended byl/l in order to obtain the free
flight-time distribution of the formpt5lexp(2*l) and the
distribution of the after-scattering states,pk5S/l. The
-
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,
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le

ed
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modifications outlined above are applied in such a way t
the value of the multiple integral remains unchanged. T
remaining product of the form exp(2*l) A can be treated in
two different ways, leading to either thesynchronous en-
semblemethod or thetime-integrationmethod of average
recording.

A. The synchronous ensemble method

One option is to multiply exp(2*l) A again byl/l to
obtain a product ofpt andA/l. For the sake of brevity, the
position-dependence of the scattering rate is suppresse
the following. Equation~35! becomes:
^̂ A&&25GD R
]D

dsE
K1

dkbE
0

tb0
1

dt0E dk1E
0

tb1
1

dt1E dk2E
0

tb2
1

dt2H j'~rb!

GD
J H uy'~kb!u f b~kb,rb!

j'~rb! J
3H l@Kb~ t0!#expS 2E

0

t0
l@Kb~y!#dyD J H S@Kb~ t0!,k1#

l@Kb~ t0!# J H l@K1~ t1!#expS 2E
0

t1
l@K1~y!#dyD J

3H S@K1~ t1!,k2#

l@K1~ t1!# J H l@K2~ t2!#expS 2E
0

t2
l@K2~y!#dyD J A@K2~ t2!,R2~ t2!#

l@K2~ t2!#
. ~44!
ge

of

ter-

nd
ts

t

Each term representing a probability density is enclosed
curly brackets. In Eq. ~44! we designate the multi
dimensional integration variable asx2 , the probability den-
sity as p2 , and a random variable asc2 : ^̂ A&&2

5*dx2 p2(x2)c2(x2), where

x25~rb ,kb ,t0 ,k1,t1 ,k2 ,t2!, ~45!

p2~x2!5$ j' /GD%$y' f b / j'%$pt%$pk%$pt%$pk%$pt%, ~46!

c2~x2!5A/l ~47!

To evaluate Eq.~44! by MC integration one has to generate
samplex2,1 ... x2,N from the densityp2 . A realizationx2,j is
referred to as a numerical trajectory, its generation as
merical trajectory construction.

In the following, we consider the construction of thejth
numerical trajectoryx2,j . Since all factors in Eq.~46!, except
j' /GD , denote conditional probability densities, one first s
lects a boundary pointrb, j with the densityj' /GD . We gen-
eratekb, j from the velocity-weighted boundary distribution
we generatet0,j from the free-flight time distributionpt , we
selectk1,j with densitypk , and so forth. Finally, at the end o
the third free flight we evaluateA/l. After construction ofN
numerical trajectories, the following sample mean is form

^̂ A&&2.
GD

N (
j 51

N

c2~x2,j !. ~48!

This procedure contains all basic steps known from sing
particle MC algorithm:

• generation of an initial state from the velocity-weight
boundary distribution,v' f b ~see for example, Ref. 10!

• free-flight time generation from densitypt
in

u-

-

:

-

• selection of the after scattering state with densitypk

• the synchronous ensemble method of avera
recording.11

In Eq. ~44!, the bounds of time integration are (0,tb j
1 ), where

tb j
1 can be either finite or infinite. Note that the distribution

the free-flight time~40! is normalized in the bounds (0,`).
The issue of normalization is related to trajectories that
minate at the domain boundary~cf. Sec. IV C!.

B. The time averaging method

A second option is to process thet2-integral in Eq.~35!
by integration by parts:

E
0

`

expH 2E
0

t2
l@K2~y!,R2~y!#dyJ

3H~ tb2
1 2t2!A@K2~ t2!,R2~ t2!#dt2

5E
0

`

dt2l@K2~ t2!#expH 2E
0

t2
l@K2~y!#dyJ

3E
0

t2
H~ tb2

1 2t!A@K2~t!,R2~t!#dt, ~49!

whereH stands for the unit step function. On the left-ha
side, exp(2*) represents the probability that a particle drif
without scattering from 0 tot2 . Differentiating this probabil-
ity gives the probability densitypt appearing on the righ
side. In this way, the densityp2 defined by Eq.~46! is recov-
ered, and the iteration term can be reformulated as
IP license or copyright, see http://ojps.aip.org/japo/japcr.jsp
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^̂ A&&25GD R
]D

dsE
K1

dkbE
0

tb0
1

dt0E dk1E
0

tb1
1

dt1

3E dk2E
0

`

dt2p2~rb ,kb ,t0 ,k1,t1 ,k2 ,t2!

3E
0

t2
A@K2~t!,R2~t!# dt, ~50!

with t25min(tb2
1 ,t2). The random variablec2 in this expres-

sion is identified as the path integral overt. As opposed to
Eq. ~44!, the integration domain oft2 is now (0,̀ ), which
means that the random variable is nonzero regardless o
selected value fort2 . If t2,tb2

1 , the t-integration is per-
formed until the next scattering event occurs, otherwise u
the boundary is reached.

C. Monte Carlo evaluation of the iteration series

One peculiarity of the single-particle MC method is th
the sample for the iteration term of orderi is not generated
independently from that for the term of orderi 21. Instead,
xi is generated by adding toxi 21 another after-scattering
statek i and another free-flight timet i . The aim of this sec-
tion is to find that random variable whose realizations
independent from each other.

We begin the analysis with the iteration term of ord
zero. Settingg(0)5A it follows from Eq. ~31!,

^̂ A&&05GD R
]D

dsE
K1

dkbE
0

tb0
1

dt0p0~rb ,kb ,t0!

3
A@Kb~ t0!,Rb~ t0!#

l@Kb~ t0!#
, ~51!

with

p0~rb ,kb ,t0!5H j'~rb!

GD
J H uv'~kb!u f b~kb ,rb!

j'~rb! J
3H l@Kb~ t0!#expS 2E

0

t0
l@Kb~y!#dyD J .

~52!

The idea is now to add a scattering term and another f
flight term to the densityp0 . The formal procedure is to
multiply Eq. ~51! by

E dk1H S@Kb~ t0!,k1#

l@Kb~ t0!# J E
0

`

dt1H l@K1~ t1!#

3expS 2E
0

t1
l@K1~y!# dyD J 51, ~53!

the product of two normalization integrals. In this way,p0 is
multiplied by two factors such that the product givesp1 .
This allows the partial sum of the first two iteration terms
be rewritten as one multiple integral:
Downloaded 12 Mar 2003 to 128.130.68.69. Redistribution subject to A
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^̂ A&&01 ^̂ A&&15GD R
]D

dsE
K1

dkbE
0

`

dt0E dk1

3E
0

`

dt1p1~rb ,kb ,t0 ,k1 ,t1!

3 H~ tb0
1 2t0!FA~k1

b ,r1!

l~k1
b!

1H~ tb1
1 2t1!

A~k2
b ,r2!

l~k2
b!

G . ~54!

Here, the electron momentum before scattering,k i
b , is de-

fined by Eq.~39!. Since the integration domain of, for in
stance,t1 , is different in Eqs.~44! and~54!, time integration
is generally carried out in (0,̀), while the integrand is set to
zero above the actual time bound using the unit step fu
tion. Multiplying Eq. ~54! by an integral similar to Eq.~53!
and adding^̂ A&&2 , gives the partial sum of the first thre
iteration terms expressed as one multiple integral. This p
cedure can be repeated to express the partial sum of
ordern as one multiple integral

^̂ A&&01 ^̂ A&&11...1 ^̂ A&&n5E pn~xn!c [n]~xn!dxn , ~55!

using the recursive definitions

xn5~xn21 ,kn ,tn!, ~56!

pn5pn213H S~kn
b ,kn!

l~kn
b!

J H l@Kn~ tn!#

3expS 2E
0

tn
l@Kn~y!#dyD J , ~57!

c [n]5c [n21]1)
j 50

n

H~ tb j
1 2t j !

A~kn11
b ,rn11!

l~kn11
b !

. ~58!

At the beginning of the recursions arex05(kb,rb ,t0), p0

given by Eq.~52!, andc [ 21]50. Clearly, Eqs.~56! and~57!
are generalizations for arbitraryn of Eqs.~45! and ~46!, re-
spectively.

At the moment, it is assumed that the series given by
~55! is convergent, which means that there exists alw
somen such that the series of the truncated elements is
low a desired limit. To evaluate Eq.~55! by MC integration,
one has to generateN realizations of the random variablexn .
As described in Sec. III E first the initial state at the boun
ary, rb , kb , and the first free-flight time,t0 , have to be
generated fromp0 . If t0 is less thantb0

1 the unit step function
in Eq. ~58! evaluates to one and hencec [0]

5A(k1
b ,r1)/l(k1

b). In this case, numerical trajectory con
struction is continued by realizing a scattering event fromk1

b

to k1 and by choosingt1 . Again, if t1,tb1
1 , one must com-

putec [1]5c [0]1A(k2
b ,r2)/l(k2

b). In principle, this process
should be continued untilc [n] is obtained. However, if in the
course of numerical trajectory construction a timet l.tbl

1 is
generated, the unit step function in Eq.~58! evaluates to
zero, such that the recursion terminates and the random
IP license or copyright, see http://ojps.aip.org/japo/japcr.jsp
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able keeps the valuec [ l 21]. This is the realization of a nu
merical trajectory terminating at the boundary during thelth
free flight.

For a numerical trajectory of arbitrary ordering numb
i<N, which terminates afterl 11 free-flight segments, the
random variable takes the value

c i5
A~k1

b ,r1!

l~k1
b!

1¯1
A~k l

b ,r l !

l~k l
b!

. ~59!

Thec i given by Eq.~59! are summed up in the sample me
~8!. This gives a double sum that can be replaced by one
over all generated before-scattering states:

^̂ A&&.GD

1

N (
i 51

N

c i5GD

1

N (
b

A~kb,rb!

l~kb!
. ~60!

Choosingn a priori implies that a numerical trajector
cannot contain more thann11 free-flight segments. This
restriction can be omitted by always following a numeric
trajectory until it terminates at the boundary, permitting n
merical trajectories with arbitrary many free-flight segmen
In this case the infinite series representing^̂ A&& is evaluated
exactly rather than the partial sum given by Eq.~55!.

There exists another representation for the series~55! in
which all possible realizations of the random variablec ap-
pear explicitly. At the outset of this expansion is again E
~51!; however, in the multipliers of the form~53! the time
integral is split at the boundary time:

E dk iE
0

tbi
1

dt i1E dk iE
tbi
1

`

dt i51. ~61!

Following the same steps that have led to the series~55! one
obtains

^̂ A&&5I 1~A!1I 2~A!1¯ . ~62!

As examples, the lowest-order elements are shown:

I 1~A!5GDE ds dkb dk1E
0

tb0
1

dt0E
tb1
1

`

dt1 p13
A~k1

b ,r1!

l~k1
b!

,

~63!

I 2~A!5GDE ds dkb dk1 dk2E
0

tb0
1

dt0E
0

tb1
1

dt1E
tb2
1

`

dt2 p2

3FA~k1
b,r1!

l~k1
b!

1
A~k2

b,r2!

l~k2
b!

G . ~64!

After augmentation of the time integration domains
(0,̀ ), one finds that the integrand ofI n(A) is the product of
pn and ĉ [n] , defined by

ĉ [n]5 )
j 50

n21

H~ tb j
1 2t j !H~ tn2tbn!(

j 51

n A~k j
b ,r j !

l~k j
b!

. ~65!

The task is to evaluate an infinite number of integra
By construction of one numerical trajectory, a realization
the infinite set of random variablesc [0] ,c [1] ... is obtained
simultaneously. If the sequence of generated free-fli
times, t0 ,..., tn satisfies the conditionst i,tbi

1 for i ,n and
Downloaded 12 Mar 2003 to 128.130.68.69. Redistribution subject to A
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tn.tbn
1 , then thenth random variable is nonzero, with

value given by Eq.~59!, while all the other ones evaluat
identically to zero.

In the remainder of this section, expressions for the tim
recording formalism are summarized. The starting point
the zero order iteration term reformulated as

^̂ A&&05GD R
]D

dsE
K1

dkbE
0

`

dt0 p0~rb ,kb,t0!

3E
0

t0
A@Kb~t!,Rb~t!# dt. ~66!

This expression showsc [0] explicitly. The recursive defini-
tion of the random variable changes from~58! to

c [0]5E
0

t0
A@Kb~t!,Rb~t!# dt, ~67!

c [n]5c [n21]1 )
j 50

n21

H~ tb j
1 2t j !E

0

tn
A@Kn~t!,Rn~t!# dt,

~68!

wheret j5min(tbj
1 ,tj).

For a numerical trajectory comprisingl 11 free-flight
segments, the random variable takes on the value

c i5E
0

t0
A dt1...E

0

t l 21
A dt1E

0

tbl
A dt. ~69!

This sum is over free flights and contains, therefore, o
element more than Eq.~59!.

D. Normalization of the distribution function

The normalization constantGD should not be evaluated
from the theoretical definition~10!. Instead, by settingA
51, a relation betweenGD and the total number of particle
ND is obtained:

4p3ND5GD

1

N (
b

l~kb!21, ~70!

whereND is usually known, for instance, from the constrai
of total charge neutrality in the device. N is the number
trajectories constructed. In the special caseA51, the realiza-
tion ~69! represents the total time of theith numerical trajec-
tory, c i5Ti . With T5(Ti denoting the total time the par
ticle has been followed, one finds from Eq.~70!:

T5(
b

l~kb!21. ~71!

The finite sum recorded during the simulation is an unbia
estimate of the total time the particle path is followed.

E. Convergence of the iteration series

Since the one-particle MC method has been applied s
cessfully to a large variety of materials, systems, and con
tions, it can be expected that the series expansion of the
converges for a wide range of models, such as scattering
and band structure models. In the following, convergence
the series~62! is proven for the simple case that the subspa
IP license or copyright, see http://ojps.aip.org/japo/japcr.jsp
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F̄b ~see Sec. III D! is empty. Then, every point inD ^ K is
connected to a boundary point via a free-flight trajectory, a
the functiontb

1(k,r ) is bounded. Furthermore, it is assum
that the total scattering rate, which is non-negative, has up
and lower bounds and that A has an upper bound. For
(r ,k)PD ^ K it must hold

tb
1~k,r !<tm, l~k,r !<lm ,

A~k,r !<Am, l~k,r !>lmin.0. ~72!

Note that in systems with phonon absorption,l is nonzero
even for zero energy, such that a nonzerolmin does exist.
The following proof is similar to that for the transient pro
lem reported in Ref. 12. Using the constants defined ear
an upper bound for Eq.~64! can be derived:

I 2~A!<GD

2Am

lmin
E ds dkb dk1 dk2E

0

tb0
1

dt0E
0

tb1
1

dt1E
tb2
1

`

dt2 p2 .

~73!

The integral with respect tot2 can be evaluated explicitly
and estimated by

E
tb2
1

`

dt2l@K2~ t2!#expH 2E
0

t2
l@K2~y!#dyJ

5expH 2E
0

tb2
1

l@K2~y!#dyJ <1. ~74!

After having replaced this integral with its upper bound b
ing 1, in the resulting inequality thek2 integration of the
distribution S/l can be carried out, giving one. After th
step integration overt1 is possible.

E
tb1
1

`

dt1l@K1~ t1!#expH 2E
0

t1
l@K1~y!#dyJ

512expH 2E
0

tb1
1

l@K1~y!#dyJ <C, ~75!

whereC512exp(2lmtm). The described steps are repeat
for the integrals overk1 andt0 . Finally, integration over the
normalized boundary distribution gives 1. It is found thatI 2

is less thanGD(Am /lmin)2C2, a result that can be generalize
to arbitrary ordern:

I n~A!<GD

Am

lmin
nCn. ~76!

The series(1
`nCn215(12C)22 is convergent sinceC,1,

which proofs convergence of the series~62!.

(
n51

`

I n~A!<GD

Am

lmin
exp~2lmtm!. ~77!

V. SUMMARY

The single-particle Monte Carlo algorithm is formulate
consistently with the formalism presented in the previo
section. Given is a functionA(k,r ), the number of trajecto-
riesN, andND , the number of particles inside the simulatio
domain. As an example, the calculation of the normaliz
average^A&5 ^̂ A&&/ ^̂ 1&& is demonstrated, using the time
Downloaded 12 Mar 2003 to 128.130.68.69. Redistribution subject to A
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averaging and the before-scattering estimators.
Begin ~single particle MC algorithm using time-averagin

estimators!
m150, mA50 ~initialize estimators!
For i 51 to N do ~construct N trajectories!

n50, c150, cA50

generatex05(r0 ,k0 ,t0) from density p0 @see Eq.
~52!#
While tn,tb

1(kn ,r n)
@path integrals of 1 andA over free-flight path, see
Eq. ~69!#

c15c11tn, cA5cA1E
0

tn
A@K ~t; 0,kn ,r n!#dt

~determine end point of free-flight path!

rn115R~ tn; 0,kn,rn!, kn11
b 5K ~ tn; 0,kn ,rn!

n5n11 @next step in the recursions~56! and~57!#
generate after-scattering statekn from density
S(kn

b ,kn)/l(kn
b) @see Eq.~57!#

generate free-flight time tn from density
l@K (tn)#exp$2*0

tnl@K (y)#dy%
EndWhile ~trajectory terminates at boundary!
tn5tb

1(kn ,rn) ~time to reach boundary!

c15c11tn, cA5cA1E
0

tn
A@K ~t; 0,kn ,rn!#dt

@sum up the realizations ofc1 andcA for the sample
means, see Eq.~8!#:

m15m11c1, mA5mA1cA

EndFor
^A&5mA /m1 ~result!
GD54p3NDN/m1 @normalization coefficient, see Eq
~70!#

End
Begin ~single particle MC algorithm using before-scatterin

estimators!
m150, mA50 ~initialize estimators!
For i 51 to N do ~construct N trajectories!

n50, c150, cA50

generatex05(r0 ,k0 ,t0) from density p0 @see Eq.
~52!#
While tn,tb

1(kn ,r n)

rn115R~ tn; 0,kn,rn!, kn11
b 5K ~ tn; 0,kn ,rn!

n5n11

c15c111/l~kn
b!, cA5cA1A~kn

b ,rn!/l~kn
b!

generate after scattering statekn from density
S(kn

b ,kn)/l(kn
b) @see Eq.~57!# generate free-flight

time tn from densityl@K (tn)#exp$*0
tnl@K (y)#dy%

EndWhile ~trajectory terminates at boundary!

m15m11c1, mA5mA1cA

EndFor
^A&5mA /m1 ~result!
IP license or copyright, see http://ojps.aip.org/japo/japcr.jsp
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GD54p3NDN/m1 @normalization constant, see Eq.~70!#
End

In this example, only the result is estimated, while t
stochastic error is not considered. Error estimation is d
cussed in Part II of this article.
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APPENDIX A: THE CONJUGATE EQUATION

Using the kernel given by Eq.~23! the conjugate equa
tion becomes

g~k8,r 8!5E dkE dr g~k,r !E
tb
2(k,r )

0

dt8 S„k8,K ~ t8!,r 8…

3expH 2E
t8

0

l@K ~y!,R~y!#dyJ
3 d@r 82R~ t8!#uD~r 8!1g0~k8,r 8!. ~78!

In this equation,tb
2 and hencet8 is negative. The following

steps can be formalized by using the extended notation o
free-flight trajectories introduced in Sec. III A. The integr
tion variables are changed fromk andr , denoting the trajec-
tory end point, toka5K (t8; 0,k,r ) andr 95R(t8; 0,k,r ), de-
noting the trajectory starting point.

According to the Liouville theorem, the volume eleme
is invariant under this transformation, dk dr5dka dr 9. The
trajectory end point is now expressed as

k5K ~0; t8,ka ,r 9!5K ~2t8; 0,ka ,r 9!,

r5R~0; t8,ka ,r 9!5R~2t8; 0,ka ,r 9!,

where the time invariance stated in Sec. III A is used
perform a time-shift by2t8. This time-shift affects the path
integral in Eq.~78! as follows:

E
t8

0

l@K ~y; t8,ka ,r 9!,R~y; t8,ka,r 9!#dy

5E
0

2t8
l@K ~y; 0,ka ,r 9!,R~y; 0,ka ,r 9!#dy.

In the next step, time is reversed by settingt52t8. The
lower bound oft is 0 in the trajectory starting pointka , r 9.
The domain indicator function is taken into account by t
upper boundtb

1(ka ,r 9) which is the time of the trajectory
exit point on the domain boundary. Finally, ther 9 integration
is carried out by means ofd(r 82r 9), yielding Eq.~24!.

APPENDIX B: TRANSFORMATION TO A BOUNDARY
INTEGRAL

Augmenting Eq.~26! by a time integral and using th
restricted integration domainFb gives
Downloaded 12 Mar 2003 to 128.130.68.69. Redistribution subject to A
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^̂ A&&5E E
Fb

dr 8dk8E
2`

0

dt8d~ t82tb
2! f b@Kb~ t8!Rb~ t8!#

3expH 2E
t8

0

l@Kb~y!,Rb~y!# dyJ g~k8,r 8!. ~81!

Strictly speaking, the functionsK and R are defined only
insideD, that is for t8>tb

2 . For t8,tb
2 these functions can

be thought to be arbitrarily continued in such a way that th
do not reenter the domain.

The derivation of the proposed transformation makes
of the following property of thed-function,

d@b~ t !#5(
i

d~ t2t i !

uḃ~ t i !u
, ~82!

and the three-dimensional counterpart

E
D

d@B~r !#f~r !dr5 R
]D

f~rb!

u~¹rB!~rb!u
ds~rb!. ~83!

Here,t i denote the roots ofb, andf is some test function.
Assume the domain boundary is defined implicitly b

B(r )50. This gives an implicit definition for the boundar
time as the root ofB@Rb(t8)#50. In (2`,0) the one and
only solution is tb

2 . Owing to the definition ofFb every
considered trajectory will reach the boundary such tha
solution exists. Settingb(t8)5B@Rb(t8)# one obtains from
Eq. ~82!,

d~ t82tb
2!5d@b~ t8!#uḃ~ tb

2!u ~84!

5d@b~ t8!#u~¹rB!@Rb~ t8!#•v@Kb~ t8!#u. ~85!

In the latter equationtb
2 is replaced byt8 for convenience.

Since¹rB(r ) is normal to the surface defined byB(r )50,
the normal component of the group velocity can be int
duced.

d~ t82tb
2!5d$B@Rb~ t8!#%u~¹rB!@Rb~ t8!#uuv'@K ~ t8!#u

~86!

This expression is now inserted into Eq.~81!. Then the inte-
gration variables are changed fromk8 and r 8, denoting the
trajectory end point, to kb5Kb(t8; 0,k8,r 8) and r 9
5Rb(t8; 0,k8,r 8). The original variables are expressed as

k85K 8~0; t8,kb ,r 9!5K 8~2t8; 0,kb ,r 9!,

r 85R8~0; t8,kb ,r 9!5R8~2t8; 0,kb ,r 9!. ~87!

Applying the Liouville theorem, dk8 dr 85dkb dr 9, and re-
versing time by settingt052t8, one obtains

^̂ A&&5E E
Fb

dr 9dkbE
0

tb
1(kb,r9)

dt0 d@B~r 9!#u~¹rB!~r 9!u

3uv'~kb!u f b~kb ,r 9!

3expH 2E
0

t0
l@Kb~y!,Rb~y!#dyJ

3g@Kb~ t0!,Rb~ t0!#. ~88!
IP license or copyright, see http://ojps.aip.org/japo/japcr.jsp
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Using Eq.~83!, the volume integral overr 9 is transformed
into a boundary integral leading to Eq.~31!.
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