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The stationary Monte Carlo method for device simulation. I. Theory
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A theoretical analysis of the Monte Carlo method for steady-state semiconductor device simulation,
also known as the single-particle Monte Carlo method, is presented. At the outset of the formal
treatment is the stationary Boltzmann equation supplemented by boundary conditions, which is
transformed into an integral equation. The conjugate equation has been formulated in order to
develop forward Monte Carlo algorithms. The elements of the conjugate Neumann series are
evaluated by means of Monte Carlo integration. Using this mathematically-based approach, the
single-particle Monte Carlo method is derived in a formal way. In particular, the following are
recovered: the probability densities for trajectory construction, both the time averaging and the
synchronous ensemble methods for mean value calculation, and the rule that the initial points of the
trajectories have to be generated from the velocity weighted boundary distribution. Furthermore, the
independent, identically distributed random variables of the simulated process are identified.
© 2003 American Institute of Physic§DOI: 10.1063/1.1544654

I. INTRODUCTION this method for the calculation of steady-state device charac-
teristics.
The Monte CarlgMC) method is known to be a versa- In Sec. Il, the mathematical method used, including

tile tool for the study of carrier transport phenomena in asome basics of integral equations, the iteration series, and
large variety of semiconductor materials and devices. ThéC integration, are outlined. In Sec. lll, the integral form of
method simulates the motion of charge carriers in the sixthe stationary BE is derived. From the corresponding conju-
dimensional phase space formed by position and momenturgate equation, the iteration terms of the Neumann series are
Subjected to the action of an external force field, the pointobtained. Particular emphasis is put on the treatment of
like carriers follow trajectories go\/erned by Newton’s law boundary conditions in the integral equation and the iteration
and the carrier’s dispersion relation. These drift processes atgms. The evaluation of the iteration terms by means of
interrupted by scattering events that are assumed to occMonte Carlo integration, which leads to the single-particle
locally in space and instantaneously in time. The duration oMC algorithm, is discussed in Sec. IV.
a drift process, the type of scattering mechanism, and the
state after scattering are selected randomly according to
given probabilities that are characteristic to the microscopi¢l. THE MATHEMATICAL METHOD
process. In principle, such a procedure yields a carrier distri-
bution that satisfies a Boltzmann equati@E). The method In semiclassical transport theory, the general problem to
of generating sequences of drift processes and scatterifRff considered is that of findirfgto satisfy a Fredholm inte-
events appears so obvious from a physical point of view, tha@"@ €quation of the second kind:
it is frequently interpreted as a direct emulation of the physi-
cal process rather than as a numerical method. The main MC f(X)ZJ fF(xK(X",x)dx" +fo(X). (1)
algorithms used to date were originally devised from merely
physical considerations, viewing a MC simulation as a simu-The kernelK describes the propagation of the particles in
lated experiment. The proof that the used algorithms implicPhase space, while the free terfip accounts for boundary
itly solve the BE was carried out latsP and initial conditions. The variabbestands for k,r,t) in the

In the field of semiconductor transport, the alternativelr@nsient case and fok(r) in steady state. Often one is more
way to use the BE as a starting point and to formulate Mcmterest_ed in statistical averages rather_than in a _p0|nt-W|se
algorithms for its solution was reported end of the 1989s. €valuation of. An average represents a linear functional, of
This mathematically based approach lead to the developmeﬁf(p":“ss'bIe in terms of an inner product:
of algorithms such as the weighted ensemble MC méthod
and the backward MC methdd. These early works focused (f,A):f fO)A(X) dx. 2
on the transient problem.

In the present work, the theoretical background of theSubstituting Eq(1) recursively into itself gives an iteration

single-particle MC method is investigated, in order to proveSeries, known as the Neumann series, which is a formal so-
lution to the integral equatidn
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The iteration terms are defined recursively beginning withtion of the device with the environment. In semiconductor

fO(x)=f4(x): transport, the distribution function is commonly normalized
as
f<“+1>(x)=f FM(X)K(X',x) dx'. 4 1
. . . ) — drf dk f(k,r)=Np, (10
Since the integral form of the BE is a backward equation, the  47%Jp

corresponding forward equation, that is the conjugate equa- . . .
tion, needs to be derived. Its kernel is given KJ(x,x') where Np denotes the number of carriers contained in the

—K(x',) semiconductor domain of volumé, . This normalization is
T based on the notion of discrete statekimpace, having a of
L , , density 2/p/(2)3, such thatf can be viewed both as an

g(x )_f IOIK(x,XT) A+ AX). ®) occupation probability of the discrete stdteand a density
Multiplying Eq. (1) by g(x) and Eq.(5) by f(x'), and inte- function in the continuouk-space. In both cases, however,

: : ; : is to be interpreted as a density function with respeat.to
rating overx andx’, respectively, results in the equalit ; ) . .
g g P Y q Y The force fieldF in Eq. (9) takes into account electric

(f,A)=(9,fo). (6)  and magnetic fields. If the electric fielH is dominant and

the magnetic field can be neglected, the force field is ap-
proximated byF=qE/#%, whereq is the charge of the carrier.
The scattering operat@=Qg4— Q, consists of a gain and a
loss term, respectively. If many-body effects, such as
precludes a point-wise evaluation of the distribution functionCarrer—carrier scattering and degeneracy, are neglected, the

using a forward algorithm, because in this caséx) spattering operator will be linear, an assumption that is cru-
= 5(X). cial for the presented approach. The two component® of

The link with the MC method is established by ap- &€

By means of Eq(6), one can calculate a statistical average
not only fromf, but also frong, the solution of the conjugate
equation. The given functioA has to be used as the free
term of the conjugate equation. Note that usage of (By.

proaching the terms of the Neumann series by MC integra- , ’ ,
tion, the basic idea of which is briefly reviewed as follows. ~ Qql ] (k,f)zf f(k’,r)S(k’,k,r)dk’, (11
A way of computing the integral Q] (k) =\ (k) F(K,r), (12)
b b
|=f d(X) dx:f P(X) Y(x) dx, (7)  with \(k,r)=/S(k,k’,r) dk’ denoting the total scattering
a a rate.

is to represent it as an expected value of some random vark, Time invariance of the system
able. Consider a factorizatioth=p«, wherep is a density ) ) ] ] )
To describe a time-invariant system, an absolute time

function; thus,p is non-negative and satisfiefp(x) dx , . . X

=1. Integral(7) denotes the expected value of the randomsScale is obviously not needed. Only the time difference be-
variable W:I=E{¥}. In a MC simulation, a sample tween two consecutive events is significant. The equations of
Xq,...xy Of the random variable is generated from the Motion in phase space are given by Newton's I&8) and

density p, and the sample mean is computed which is arfN€ Carier's group velocity14):

estimate of the expected value: d
1 N G KO=FRM], (13

l=y=15 2 W(x). ® d
- FRO=VIKO] (14

In addition to the result, the MC method gives an estimate

of the error, which is obtained via the sample variance. Sincé phase-space trajectory with the initial conditié(t)
the factorization of the integrand is not unique, different ran-=ko andR (tg) =rq is obtained by formal integration:
dom variables can be introduced depending on the choice of ¢

the densityp. All of them have the same expected value, but  K(t; to,ko,ro)zko+f FIR(Y; tg,kKo,ro)]dy,
different variance. to

t
R(t;toykoyro):rﬁ'ft VIK(Y; tg,Kg,rg) ] dy. (15
0
I1l. THE BOLTZMANN EQUATION . . .
Q In addition to the time argument of the functioKsandR,
Aiming at steady-state device simulation, the position-the parameters,, kq, ro describing the initial condition of
dependent and time-invariant BE is to be considered. Théhe phase-space trajectory are stated explicitly. Expressions
applied field and all material properties are independent of15) can be read as the phase-space position of a particle at
time. timet that passes throuddy andr at timet, . In this regard,
_ the order ofty andt is irrelevant. Fot<t,, ko andr, denote
[v(k)-Vi+F(r)-Vi ] f(k,r)=Q[f](kr), reD. 9 a final condition.
This equation, which is posed in the simulation domajris Invariance under time translation can be proven, pro-
supplemented by boundary conditions modeling the interacvided thatF does not depend explicitly on time:
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oD t;’ means that a particle found &0 on such a closed trajec-
a N tory must have been scattered onto this trajectory at some
timete (—,0) in the past.
t;‘ = 00 Integration of Eg(19) in the time bounds discussed ear-
lier results in the integral form of the stationary BE,

0
k,r o f(k,r)=1_ dt’J dk’ f[k’,R(t") ]S k’,K(t"),R(t")]
tp (k.r)
0
ty = —00 D Xexp[ —f A[K(y),R(y)]dy} +fo(k,r), (20)
t/
J _ _
e fo(k,r)=fp{K[ty (k") .R[ty (k,r)]}
b
0
FIG. 1. lllustration of the function, (k,r) andt; (k,r) which give the time X eXP[ - f, A[K(Y)aR(Y)]dY) , (21
at a trajectory’s entry point and exit point, respectivelk|f r, is the initial tp (ki)

point of a closed trajectory, the times are infinitg(k, ,r,) == . where f, denotes the boundary distribution. The integral

form is a bookkeeping equation for the probability

f(k,r)dk dr of finding a carrier in the volume elemenk dr
K(t+ 7 tg+ 7,Kg,ro) =K(t; tg,Kg,ro), (16) of k andr. The first summand in Eq20) describes the
R(t+ 7; to+ 7,Kg,rg) =R(t; tg,Kg, o). (17)  contribution of carriers that are scattered onto the considered
trajectory at some tim¢ e (t, ,0) and stay on it until time O,
whereas the second summand gives the contribution of car-
riers that stay from the time of entty on the trajectory and
have a collisionless free flight until time 0, reaching the point
B. Integral form of the steady-state Boltzmann of interestk, r.
equation In Eq. (20), the termS(k’,k;)dk’ dt’ denotes the prob-

In this section, the BE is transformed from integrodiffer- ability of a transition from an initial state within the volume
ential form into integral form. Particular care is taken to €lément &' to the final state; during the interval d. This
account for the boundary conditions. probability will in general be different from the forward tran-

Assume a given phase_space pd(ntr This point de- Sition probabilityS(k',kf)dkfdt', Where the initial state iS
termines uniquely a phase-space trajectory, for which the ndixed and the final state is within some volume elemeqt.d
tation K (t) =K (t; 0k,r) andR(t)=R(t; 0k,r) is used. The To obtain a forward MC algorithm, one has to change from
arbitrary initial ime is set td,=0. The left-hand side of Eq. integration over initial states to integration over final states, a
(9) represents the total time derivative off(t) task calling for the introduction of the conjugate equation.

=f[K(t),R(t)], which allows the BE to be rewritten as an
ordinary differential equation of first order:

This property will be used repeatedly in the following to
adjust conveniently the time reference for each free flight.

C. The conjugate equation

d. o - : . . :
af(»[)Jr)\(»[)f(t):Qg[f](t)_ (18) Using the notation of _Sec. I, the co_njugate t_aquanor_] ha_s
the same kernel as the integral equation, but integration is

The structure of the BE is more compact if multiplied by ancarried out over the unprimed variables. To apply this rule,
integrating factor of the form e} A(y)dy]: the integral form of the BE first has to be transformed into

g the standard fornfl):
EEX[{
(19 22)

This equation can be integrated straightforwardly. Tf]e UPPErhe required’ integration is introduced by augmenting the
bound of integration should bé=0 to obtain f(0) kernel by as-function.

=f(k,r), the value off at the given phase-space point. The .
lower-time bound has to be chosen such that the functions
. L K(K',r'",k,r =f dt’ k', K(t"),r’
K(t) andR(t) take on values at which the distribution func- ( ) tp (k.r) s (t).r]
tion is known. In the steady state, the distribution function is o
known only at the domain boundary. An appropriate lower X ex _f N[K(y),R(y)]dy
time bound is therefore the time, sgy, at which the tra- t' ’
jectory enters the simulation domdaisee Fig. 1 Apparently, o ,
this time depends on the poikt r under consideration. XoLr' =R(t)]6p(r), 23
If the real-space trajectorR(t; O k,r) never intersects where#y is the indicator function of the simulation domain.
the domain boundary, that is, when the trajectory forms &ince the integral equatiori22) is posed in the six-
closed loop, thert, =—< is an appropriate choice. This dimensional phase space, it must contain a sixfold integral.

t,\ N t,\ N
f x(y)dy}f(t)=exp[ f x(y)dy}Qg[f]a).

0 0 f(k,r)=J dk’j dr’ f(k',r")K(k'r",k,r)+fo(k,r).
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The time integral in Eq(20), therefore, cannot stay in Eq. exponential function, and therefore the integral odey is
(22), and has to be assigned consequently to the kernel. Thigero, and is sufficient to restrict the integration domain to
means that the kernel of the stationary BE is given by thep, .
kernel of the transient BE integrated over time. Another decomposition needed in the following is that of
After changing variables and reversing time, as shown irthek-space at a boundary point.r{r,) denotes the outward
Appendix A, the conjugate equation can be stated explicitlydirected normal vector in a point, at the domain boundary,
the two subspaces are defined by

’ I — t;(kavr’) ’ ’
g(k"r )‘f dkafo dr Stk ka, ") K., (o) ={k:v(K) - n(rp) <O}, 28
i K_(rp)={k:v(k)-n(r,)=0}. (29
><exp{ B fo )\[K(y),R(y)]dy] All k-points inK, (rp) have an inward directed component
. of the group velocity and are therefore initial points of tra-
XgLK(7),R(m)J+AK'I'). (249 jectories entering the domainmt. Conversely, points i _

This equation has now the desired properties that integratioﬁIre Eggﬁmgtiitoé’trra}J)eCgrlecsa:??\\g\?vgb??ngom:énéne-to-one
is carried out over final states and that the time variable is P A P

positive. The iteration series of E(4) will lead to forward onto a boundary pointi, ,ry) and a positive “r?ef}’ yvhere
MC algorithms. kpe K, (rp) andr,edD. The timety=—t, (k',r’) is the

time necessary for a particle to drift from the boundary point
D. Expressing mean values (kp,rp) to the inner point K',r"). This transformation is

Assume we are interested in the mean value of Sc)mgarried out formally in Appendix B. The volume element
quantity A(k,r): transforms as

((A>)=f drf dk A(k,r)f(k,r). (25)
b A7
A will typically be a product of som&-dependent func-
tion and anr-dependent charge assignment funcfiofhe
mean value per particle is obtained (@) = (A)/ (1)) K;(7)
Equation(25) is an inner productA,f), which can be
transformed into {,g) by means of Eq(6):

(an= [ ar | ok Kty Ryt )

0
xex% _ ft,x[Kmeb(y)]dy gk, (26)

Here,t,, is an abbreviation fot, (k',r’) andKy andRy, is
the phase-space trajectory that passes thrddgandr’ at
t=0.

In Eq. (26), variables need to be changed such that the
arguments of , become integration variables. The new vari-
ables,k, andr,, represent the initial state of a particle in-
jected at the domain boundary. Sinfggis defined only at the
boundarydD, the transformation must lead from a volume
integral to a boundary integral.

In deriving the transformation first the domains of the
involved variables have to be analyzed. The integration do-
main ® is the direct product oD andK, the k-space; thus,
the following decomposition ofd can be considered:

O=DoK=D,Ud,. (27)

The subdomainby, is formed by all points for whicl, is
finite. Each pointk’, r’ e ®, is connected with a boundary
point k,, r, by a free-flight trajectory. The complementary
subdomain®,, contains all points for which,, = —o, that
are those points that lie on closed trajectories. The mtegranp]G 2. Sketch of a trajectory which starts at the boundary péiire) and
of Eqg. (26) vanishes for all points inb, because of the evolves until the third free flight. The symbols used in E2f) are shown.

- [r]
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dr’ dk’=|v, (kp)|do(rp) dkydto, (30  tion is sufficient to determine arbitrary volume integrals de-
. fined by Eq.(25 and therefore to determirfeuniquely.
ggg;gg(rb) is the surface element ap,, and Eq.(26) Note that fromf,, only the part inK, determines the

boundary condition, whereas the partdn is unknown and
is a result of the simulation.
Required for the purpose of normalization are the inte-

(= § dotrn) [

grals
o Kofo) g 1y (k)| Fp(K
Xfo tofo (ko) o(ks o) jL(r):f ()dk|vL(k)|fb(k,r), reaD, (32)
Ky (r
to
XeXp[‘fo ”Kb(y)’Rb(y”"y} Ip= 39 jL(ndo(r). (33
dD

X 9LKp(to),Ro(to) ] (3D Taking into account the normalization given ifL0),
The accomplished change from volume to boundary integraj, /(47°) represents the normal component of the incident
tion is a key step in the treatment of the boundary valugparticle current density anld, /(47°) the total incident par-
problem. It proves that knowledge of the boundary distribu-ticle current.

E. The Neumann series

Substituting the Neumann series of the conjugate equagierf,gg(i), into Eq.(31) results in a series for the mean value,
for which the following notation is adopted:

(AD=2, (A (34
As an instructive example the term of second order is stated explicitly:

+ + +
(A= dotry | k[ O atg [ ok, [0 e, [ a2 Do, (ko r
9D K, (rp) 0 0

0

t 51
xexp{ - fo°x[Kb<y>,Rb<y>]dy]S[Kbao),kl,Rb(to)]exp{ - | N Ru Ty | STt K Rt

t
Xexp{ - fozﬂ[sz,Rz(y)]dVJA[K2<t2>,k2,R2<tz>]. @9

Initial conditions for thek-space trajectories are given i 1=Ri(t), (39
by k, and the after-scattering statdés, respectively, as b .t
shown in Fig. 2: ki =Ki(t). (39
Kp(0)=kp (36) IV. THE MONTE CARLO METHOD
Ki(O):ki, i:1,2,... . (37)

As a next step, the integrand of the iteration te(3B)
r[pust be decomposed into a probability dengitgnd a ran-
dom variabley, as shown in Eq(7). For this purpose we
The iteration term(35) describes the contribution of all repeat the well-known probability densities used in MC de-

particles that propagate from the boundary to the interior ovice simulation, which are the distribution _of t.he free-flight
the device, having undergone two scattering events and fin“—me' Py, and that of the state after scatteripg;

ished the third free flight. Analogously, thid iteration term,
{AY;, represents the contribution of all particles which

The real space trajectory is continuous at the time of scatte
ing. It holdsR,(0)=r, andR;(t;) =R;; 1(0).

propagate into the device withscattering events anidt 1
free flights.

Furthermore, the symbolkib and r; are introduced,
which denote the before-scattering momentum and the par-
ticle position for theith scattering event, respectively. They

are related to the trajectories by

t
pe(t; k,r)=>\[K(t).R(t)]exW' - fOA[K(y),R(y)]dy},
(40)

S(k.k',r)

pk(k/;k,r): )\(k,r) .

(42)

Both distributions are normalized as they satisfy forkall:
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% modifications outlined above are applied in such a way that
JO pu(t; k,r) dt=1, (42 the value of the multiple integral remains unchanged. The
remaining product of the form exp(f\) A can be treated in
f (k' ko) dk’=1. (43) two different ways, leading to either th&nchronous en-
semblemethod or thetime-integrationmethod of average

In the integrand of Eq(35), terms representing an unnormal- recording.
ized probability density are divided by the respective nor-
malization factors. Beginning with the left-most term, the
velocity-weighted boundary distributiam, f,, these factors
are given by Egs.(32 and (33). Products of the form One option is to multiply exp{/\) A again by\/\ to
exp(—/\) Sare extended by/\ in order to obtain the free- obtain a product op; andA/\. For the sake of brevity, the
flight-time distribution of the formp,=\exp(—f\) and the position-dependence of the scattering rate is suppressed in
distribution of the after-scattering statep,=S/A. The the following. Equation35) becomes:

B th th th, o | 1i(rp) |UJ_(kb)|fb(kbvrb)]
R R R R R K e e
. STKy(to) k) s
<akataen - A[wa)]dy)](WHA[Km)]eXF{ -y |

X{S[Kl( )kz]H [K,( ]e)q{ j A[K )}A[Kz(tz)-Rz(tz)]. (a4)

A. The synchronous ensemble method

AN Kq(ty)] A Ko(tp)]

Each term representing a probability density is enclosed in e selection of the after scattering state with dengity

curly brackets. In Eq.(44) we designate the multi- . the synchronous ensemble method of average

dimensional integration variable &s, the probability den- recording**

S;'tyd as pz, and ah random  variable asf;:(A). |, Eq. (44), the bounds of time integration are ({)), where

=% p2(X2) o), where ty; can be either finite or infinite. Note that the distribution of
Xo=(Iy,Kp,t0,K1,t1,Ks,15), (45) the free-flight time(40) is normalized in the bounds (©).

_J ; The issue of normalization is related to trajectories that ter-
={j IT fo! , (46 ) X

P2(x2) ={j. MoHv fo /I HPHPHPHPHP, (40 L e domain boun dafsf. Sec. IV O.

Yo%) =AIN (47)

To evaluate Eq(44) by MC integration one has to generate a

samplex, ;... X,y from the densityp,. Arealizationx,; IS g The time averaging method

referred to as a numerical trajectory, its generation as nu-

merical trajectory construction. A secopd option is to process theintegral in Eq.(35)
In the following, we consider the construction of tile by integration by parts:

numerical trajectory,; . Since all factors in E((46), except . .

j. /T'p, denote conditional probability densities, one first se- f exp[ _J ZA[Kz(y),Rz(y)]dy]

lects a boundary point, ; with the densityj, /T’y . We gen- 0 0

erateky, ; from the velocity-weighted boundary distribution,

we generate; from the free-flight time distributiop,, we

selectk,; with densityp,, and so forth. Finally, at the end of

the third free flight we evaluat@/\. After construction oiN = fxdtz)\[Kz(tz)]exp{ - ftZ)\[Kz(y)]dy}
numerical trajectories, the following sample mean is formed: 0 0

X H(tg,—t2) A[Ko(t,),Ra(t2) ]dt,

N 6
<<A>>22% 2 Pa(Xa)). (48 Xfo H(tgz_T)A[Kz(T)-Rz(T)]dT, (49
= ‘

This procedure contains all basic steps known from singlewhereH stands for the unit step function. On the left-hand
particle MC algorithm: side, exp(-[) represents the probability that a particle drifts
without scattering from 0 td,. Differentiating this probabil-
e generation of an initial state from the velocity-weighted ity gives the probability densitp, appearing on the right
boundary distributiony , f,, (see for example, Ref. 10  gjge. In this way, the density, defined by Eq(46) is recov-
« free-flight time generation from densipy ered, and the iteration term can be reformulated as
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+ + o
(AN,=Tp fﬁ do f dk, f gt J dk, J P, (Ao+ (AN =Tp ;ﬁ do j dkp J dto J ok,
aD K. 0 0 D K. 0
Xf dszo dtopa(rp Ky to, Kty ko, to) on dt1pa(rp.Kp.to. Ky ts)
& A(KS
Xf A[Ky(7),Ry(7)] dT, (50 % H(t;o—to)[(;,rl)
0 b
A (K1)
with 7,=min(t,,,t,). The random variable, in this expres- . AKS,rp)
sion is identified as the path integral overAs opposed to +H(tb1_tl))\(T : (54)
2

Eq. (44), the integration domain df, is now (0s), which

means that the random variable is nonzero regardless of thgere the electron momentum before scatterkfly, is de-

selected value fot,. If t,<ty,, the wintegration is per-  fined by Eq.(39). Since the integration domain of, for in-

formed until the next scattering event occurs, otherwise untlgtanceh, is different in Eqs(44) and(54), time integration

the boundary is reached. is generally carried out in (®), while the integrand is set to
zero above the actual time bound using the unit step func-
tion. Multiplying Eqg. (54) by an integral similar to Eq(53)

C. Monte Carlo evaluation of the iteration series and adding((A)),, gives the partial sum of the first three
iteration terms expressed as one multiple integral. This pro-

One peculiarity of the single-particle MC method is that cequre can be repeated to express the partial sum of any
the sample for the iteration term of orders not generated 5,4ern as one multiple integral

independently from that for the term of ordeer 1. Instead,

X; is generated by adding t®,_, another after-scattering [l
statek; and another free-flight timg . The aim of this sec- <<A>>0+<<A>>l+"-+<<A>>n:J Pn(Xn) ™ (Xn)dXq, (55)
tion is to find that random variable whose realizations are
independent from each other. using the recursive definitions
We begin the analysis with the iteration term of order _ K 56
zero. Settingg®=A it follows from Eq. (31), Xn=(Xn-1,Kn,tn), (56)
S(kn kn)
i Pn=Pn-1X) —— 5 M Kn(t)]
(ADo=Tp fﬁ d“f dks f "dtoPo(rs .Kp to) Mkn)
dD Ky 0 ;
A[Kp(to),Rp(to)] Xex%—f A[Kn(y)]dy)}, (57)
, (51 °
)\[Kb(to)] n A(kb r )
= =1 TT H(t—t) — e 0L (58)
with v = N
; At the beginning of the recursions axg=(ky,r,,to), Po
Po(Tp Ky to) = “(rb)” |vi(k?)|fb(kb’rb)] given by Eq.(52), andy!~1=0. Clearly, Eqs(56) and(57)
I'o J1(rp) are generalizations for arbitraryof Eqgs.(45) and(46), re-
to spectively.
X X[Kb(to)]exﬁ{ - fo )\[Kb(y)]dy) ] : At the moment, it is assumed that the series given by Eq.

(52) (55 is convergent, which means that there exists always
somen such that the series of the truncated elements is be-
Qow a desired limit. To evaluate E¢5 by MC integration,
one has to generatérealizations of the random variabtg .
As described in Sec. Ill E first the initial state at the bound-
ary, r,, ky, and the first free-flight timet,, have to be
f S Kp(to) Kyl fwdt N[K(t;) generated fronp. If ty is less thart,, the unit step function
HONKp(te)] [ Jo 1t [Ka(t)] in Eq. (58 evaluates to one and henceyl’l
t =A(k®,r)/\(k®). In this case, numerical trajectory con-
><exp( B f l)\[Kl(y)] dy) } -1 (53 struction is continued by realizing a scattering event flldjn
0 to k, and by choosing, . Again, if t;<t,,, one must com-
pute 1= 01+ A(k5,r,)/\ (kD). In principle, this process
the product of two normalization integrals. In this way,is  should be continued unti)!" is obtained. However, if in the
multiplied by two factors such that the product gives. course of numerical trajectory construction a titpe t,, is
This allows the partial sum of the first two iteration terms togenerated, the unit step function in EG8) evaluates to
be rewritten as one multiple integral: zero, such that the recursion terminates and the random vari-

The idea is now to add a scattering term and another fre
flight term to the densityp,. The formal procedure is to
multiply Eq. (51) by
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able keeps the valug!' 1. This is the realization of a nu-
merical trajectory terminating at the boundary during ltine
free flight.

For a numerical trajectory of arbitrary ordering number

i<N, which terminates after+ 1 free-flight segments, the
random variable takes the value

(kkl)vrl)
——+
A(KD)

Ak ,r))

M(kP) 59

The ¢; given by Eq.(59) are summed up in the sample mean

(8). This gives a double sum that can be replaced by one sum

over all generated before-scattering states:
A(kb b)

2 Y= 2 NS

b
Choosingn a priori implies that a numerical trajectory

cannot contain more than+1 free-flight segments. This

restriction can be omitted by always following a numerical

AY=Toy (60)

trajectory until it terminates at the boundary, permitting nu-

merical trajectories with arbitrary many free-flight segments.
In this case the infinite series represent{#)) is evaluated
exactly rather than the partial sum given by Esp).

There exists another representation for the séBBsin
which all possible realizations of the random variailep-

pear explicitly. At the outset of this expansion is again Eq.

(51); however, in the multipliers of the fornb3) the time
integral is split at the boundary time:

f dkiftbidti+fdki Ldy=
0 by

Following the same steps that have led to the s€BBsone
obtains

(AN=11(A)+15(A)+---

As examples, the lowest-order elements are shown:

f do olkbolklftbooltof+ dt; pyx
0 tbl
(63)

f dor dk, dk, dk, f o, f blgt, f dt, p,

(61)

(62

AK® ry)

Il(A):FD )\(kb)
1

I(A)=

A(KS.15)
A(KB)

2
After augmentation of the time integration domains to
(0,»), one finds that the integrand bf(A) is the product of

p, and " defined by
n—-1

&/[“]:j]:[() H(tg,—t)H(t,

A(KYr)
M(KD)

(64)

J)'

)\(kb) (65

tbn)z
j=1

Kosina, Nedjalkov, and Selberherr

t,>t.,, then thenth random variable is nonzero, with a

value given by Eq(59), while all the other ones evaluate
identically to zero.

In the remainder of this section, expressions for the time-
recording formalism are summarized. The starting point is
the zero order iteration term reformulated as

(ADo=Tp ﬁDdeK dkbfo dto Po(rp .Kp.to)

x f P A[Ky(7).Ry(7)] dr. 66)
0

This expression showg!°! explicitly. The recursive defini-
tion of the random variable changes fr@s8) to

ylol= f OT°A[Kb< 7).Ry(7)] dr, (67)
n—-1
ytnl = yln= ”+H H(tp;— t)f A[Kn(7),Rn(7)]dr,
(68)

where 7= mln(tb 4)-
For a numerlcal trajectory comprisingt1 free-flight
segments, the random variable takes on the value

to t—1
lﬂi:f AdT‘f’f
0 0

This sum is over free flights and contains, therefore, one
element more than E@59).

t
Adr+ f "Adr. (69)
0

D. Normalization of the distribution function

The normalization constadty should not be evaluated
from the theoretical definitio{10). Instead, by settingA
=1, a relation betweeh'y and the total number of particles
Np is obtained:

1

47T3ND=1“DN ; A(KkP)7L, (70)
whereNy is usually known, for instance, from the constraint
of total charge neutrality in the device. N is the number of
trajectories constructed. In the special cAsel, the realiza-
tion (69) represents the total time of tlign numerical trajec-

tory, ¢;=T;. With T=XT,; denoting the total time the par-
ticle has been followed, one finds from EG0):

T=>

b

A(kP) 7L, (71

The finite sum recorded during the simulation is an unbiased
estimate of the total time the particle path is followed.

E. Convergence of the iteration series

Since the one-particle MC method has been applied suc-

The task is to evaluate an infinite number of integrals.cessfully to a large variety of materials, systems, and condi-

By construction of one numerical trajectory, a realization oftions, it can be expected that the series expansion of the BE

the infinite set of random variableg® y!!1... is obtained converges for a wide range of models, such as scattering rate
simultaneously. If the sequence of generated free-flightind band structure models. In the following, convergence of
times, to, ..., t, satisfies the conditiong<t,, for i<n and the serie€62) is proven for the simple case that the subspace
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@, (see Sec. Il Dis empty. Then, every point iD®K is  averaging and the before-scattering estimators.
connected to a boundary point via a free-flight trajectory, and3€gin (single particle MC algorithm using time-averaging
the functiont, (k,r) is bounded. Furthermore, it is assumed estimators

that the total scattering rate, which is non-negative, has upper #1=0, ua=0 (initialize estimators

and lower bounds and that A has an upper bound. For all For i=1 to N do (construct N trajectorigs

(r,k) e D®K it must hold n=0, §,=0, Yo=0
ty (K,N)<tm, AKI)=\p, generatexy=(rq.,kq,tg) from density p, [see Eq.
Ak, D=An,  AK)=Np>0. (72) (52)]

While t, <t (k,,rp)

Note that in systems with phonon absorptianis nonzero [path integrals of 1 ané over free-flight path, see

even for zero energy, such that a nonzarg, does exist.

The following proof is similar to that for the transient prob- Eq. (69)]
lem reported in Ref. 12. Using the constants defined earlier, — it R ‘nA K(7 0k d
an upper bound for Eq64) can be derived: i=datte, Ya=yat | [K(7; 0kn,rn)]dr
2A + + o0 . . T
12(A)<Tp+ mf do dky, dk; dethOdtoftbldtlf+ dt, p,. (determine end point of free-flight path
m ° 0 b2 rn+l:R(tn; Oaknvrn)a ngrl:K(tn; 0,kn,rn)

(73

The integral with respect tb, can be evaluated explicitly
and estimated by

n=n+1 [next step in the recursiorn56) and(57)]
generate after-scattering state, from density
S(kn.kn)/\(Kp) [see Eq(57)]
Jm AT Kt J'tz)\ K g generate free-flight timet, from density

o A RaAtIeR = | M) oy MK (t) lexpl~ [N (y) Iy}

EndWhile (trajectory terminates at boundary
+ 4+ ;
=exp{ _ ftbz)\[Kz(y)]dy] <1 (74) tn=t, (k,,rn) (time to reach boundayy
0 th

After having replaced this integral with its upper bound be- 1=datte da=dat fo ALK (7 Ok 1) Jd7
ing 1, in the resulting inequality thk, integration of the
distribution S/A can be carried out, giving one. After this
step integration ovet is possible.

[sum up the realizations af, and i, for the sample
means, see Eq8)]:

B " 1= pmit b, A= pat da
J‘t;ldtl)\[Kl(tl)]eX% - jo )\[Kl(Y)]dY] EndFor

(A)=palpy (resuly
I'p=47NpN/u, [normalization coefficient, see Eq.

=1—exp{ - f;blx[Kl(y)]dy] <C, (79) (70]

. nd
whereC=1—exp(—Anly). The described steps are repeatedgggin (single particle MC algorithm using before-scattering
for the integrals ovek,; andtgy. Finally, integration over the estimators

pormalized boundary distrzibution gives 1. It is found th_@\t 11=0, ua=0 (initialize estimators
is less thal" 5 (A /A min)2C4, a result that can be generalized For i=1 to N do (construct N trajectorigs
to arbitrary ordem:

n=0, =0, ya=0

A
In(A)<I'p+ m nC". (76) generatex,=(rq,Kq,to) from density py [see Eq.
min (52)]
The seriesSTnC" 1=(1—C) 2 is convergent sinc€<1, While t, <t (Kn,rn)
which proofs convergence of the serié®).
xp 9 M+1=R(ty; Ok Iy), k2+1:K(tn; 0kn.rn)
A =
S 1L (A)<Tp—™ exp 2\ o). (77) n=ntl
=1 N Yr= i+t N, da= diat+ACKD ) IN(KD)
V. SUMMARY generate after scattering statg, from densjty
S(k2 k,)/\ (kD) [see Eq.(57)] generate free-flight
The single-particle Monte Carlo algorithm is formulated time t, from density)\[K(tn)]exp{fg‘)\[K(y)]dy}
consistently with the formalism presented in the previous EndWhile (trajectory terminates at boundary

section. Given is a functioA(k,r), the number of trajecto- _ _
riesN, andNp , the number of particles inside the simulation ma=patin, pa=pat Ya
domain. As an example, the calculation of the normalized EndFor
average(A)={A)/{(1)) is demonstrated, using the time- (Ay=pualpq (resulh
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I'p=4m3NpN/ 14 [normalization constant, see E§0)]
End

In this example, only the result is estimated, while the
stochastic error is not considered. Error estimation is dis
cussed in Part Il of this article.
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APPENDIX A: THE CONJUGATE EQUATION

Using the kernel given by Ed23) the conjugate equa-
tion becomes

0
g(k’,r )=f ko dr g(k,r)th(k’r)dt Sk’ K (t"),r")

0
xexp{ - L,X[K(Y),R(Y)]CW}

X O[r'=R(t")]6p(r) +go(k',r"). (78)
In this equationt, and hence’ is negative. The following

Kosina, Nedjalkov, and Selberherr

0
@ar= [aran [ oot Kyt IRyt

[ b

0
xexp{—L,A[wa),Rb(y)]dyJg(k',r'>. (81)

Strictly speaking, the functionk and R are defined only
inside D, that is fort’=t, . Fort’'<t, these functions can
be thought to be arbitrarily continued in such a way that they
do not reenter the domain.

The derivation of the proposed transformation makes use
of the following property of the3-function,

o(t—t;)
Sb(t)]= - , 82
POI=2 o (
and the three-dimensional counterpart
B é(ry)
Jo 2B § gt 63

Here,t; denote the roots db, and ¢ is some test function.
Assume the domain boundary is defined implicitly by
B(r)=0. This gives an implicit definition for the boundary
time as the root oB[Ry(t')]=0. In (—»,0) the one and
only solution ist, . Owing to the definition of®, every

steps can be formalized by using the extended notation of theonsidered trajectory will reach the boundary such that a

free-flight trajectories introduced in Sec. Il A. The integra-
tion variables are changed froknandr, denoting the trajec-
tory end point, tdk®=K(t’; 0k,r) andr’=R(t’; 0 k,r), de-
noting the trajectory starting point.

According to the Liouville theorem, the volume element
is invariant under this transformationk dr =dk®dr”. The
trajectory end point is now expressed as

k=K(0;t",k,,r")=K(—t"; 0k,,r"),
r=R(0;t",ky,r")=R(—=t"; 0k,,r"),

where the time invariance stated in Sec. Ill A is used to

perform a time-shift by—t’. This time-shift affects the path
integral in Eq.(78) as follows:

0
Jt’ NK(y; t' ks, r"),R(y; t/,k,,r”) ]dy

,t’
B fo A[K(y; 0kqa,r"),R(y; Okg,r")]dy.

In the next step, time is reversed by setting —t’. The
lower bound ofris 0 in the trajectory starting poirit, , r".

solution exists. Settindp(t’) =B[Ry(t')] one obtains from
Eq. (82),

8(t'—t,)=a[b(t")]|b(ty)]
=8[b(t")]|(V,B)[Rp(t")]-V[Kp(t)]|.

In the latter equation,, is replaced byt for convenience.
Since V;B(r) is normal to the surface defined B(r)=0,
the normal component of the group velocity can be intro-
duced.

8(t' —ty,) = o{B[Rp(t") IH(VB)[Ry(t") ][ [v [K(t")]]
(86)

This expression is now inserted into E§1). Then the inte-
gration variables are changed frdmh andr’, denoting the
trajectory end point, to k,=Ky(t";0k’,r’') and r”

=Ry(t"; 0k’,r"). The original variables are expressed as

K'=K'(0;t" Ky, ") =K'(~1'; 0kp,1"),
r'=R’(0;t",ky,,r")=R’(—=t"; 0ky,r").

(84)
(89

(87)
Applying the Liouville theorem, kI’ dr’'=dky, dr”, and re-

The domain indicator function is taken into account by theversing time by setting,=—t’, one obtains

upper bound (k,,r"”) which is the time of the trajectory
exit point on the domain boundary. Finally, theintegration
is carried out by means of(r'—r"), yielding Eq.(24).

APPENDIX B: TRANSFORMATION TO A BOUNDARY
INTEGRAL

Augmenting Eq.(26) by a time integral and using the
restricted integration domaid,, gives

(A= f f dr"dk, fo‘b(kb’r"’dto6[B<r">]|<vr8><r">|

oy,

X|v, (Kp)| fo(kp,r")
to
XeXﬁ’ _jo R[Kb(Y)be(Y)]dY]

X g[Kp(to),Rp(to)]. (88)
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