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Abstract

In Monte Carlo (MC) simulations of semiconductor devices it is necessary to enhance the statistics in sparsely
populated regions of interest. In this work the Monte Carlo method for stationary carrier transport, known as the
Single-Particle MC method, is considered. It gives a solution to the stationary boundary value problem defined
by the semi-classical Boltzmann equation (BE). Using a formal approach which employs the integral form of the
problem and the Neumann series expansion of the solution, the Single-Particle MC method is derived in a formal
way. The independent, identically distributed random variables of the simulated process are identified. Estimates
of the stochastic error are given. Furthermore, the extension of the MC estimators to the case of biased events
is derived. An event bias technique for particle transport across an energy barrier is developed and simulation re-
sults are discussed.
© 2002 IMACS. Published by Elsevier Science B.V. All rights reserved.
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1. Introduction

In the Monte Carlo (MC) simulation of semiconductor devices measures have to be taken to enhance
the statistics in interesting phase space regions that are sparsely populated. The purpose of statistica
enhancement is to reduce the variance of the MC estimates in those regions. Such a reduction comes a
the expense of increased variance in other, less interesting rdgjofi$iere are two general classes of
statistical enhancement techniques, namely population control techniques and event biasing techniques.
To date, virtually all MC device simulation codes utilize population control techniques. On the other hand,
the event biasing technique has been introduced in the field of semiconductor transport only one decade
ago, when thé\eighted Ensemble MC method has been proposgj3]. However, this method has not
been used in MC device simulation yet. The present work focuses on the steady state, and consequently
aWeighted Sngle-Particle MC method is presented. It is applied to npn-structures and the suitability for
variance reduction is studied.
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2. The Monte Carlo method

The kinetic equation considered is the stationary Boltzmann equation (BE), supplemented by boundary
conditions. MC algorithms for the solution of the stationary boundary value problem can be constructed
formally as outlined in the following.

In a first step, the stationary BE is transformed into an integral equation of the second kind,

Fo) = / FEK G, 0 dx + folx), )

where the six-dimensional variabtestands for(k, r). The kernelK describes the propagation of the
particles, while the free termyf, contains the boundary condition. Since the integral form of the BE
represents a backward equation, and we are aiming at a forward MC algorithm, the conjugate equation

needs to be formulated. Its kernel is givenlcﬁ(x, x) =K', x),
g(x) = fg(x)KT(x,x’) dx + A(x). 2

The two integral equations are stated explicitly[#]. With a forward method, only mean values
of some quantityA(x) can be evaluated, which is due to the necessity of employing the following
equality.

/A(X)f(X)dx Z/fo(X)g(X)dX- 3

Note that usage of this equation precludes a pointwise evaluation of the distribution fuficienause
the choiceA (x) = §(x) can not be treated by the MC method.

Substituting the conjugate equation recursively into the right hand sii® pields an iteration series,
the elements of which are finally evaluated by means of MC integration. Using this procedure, the
Single-Particle MC algorithm is obtained in a formal way. In particular, recovered are the well-known
probability densities for trajectory construction, and bothtih& averaging and thebefore-scattering
methods for mean value calculatifi6].

In addition, the random variable can be identified whose realizations are statistically independent.
Knowledge of the independent random variables form the basis for determination of the variance of the
MC estimators and thus for stating error estimates. In the Single-Particle MC algorithm, a realization of
this random variable, say, is given by a complete numerical trajectory that starts and terminates at the
domain boundary. Theth realization consists of all generated random variables foi-therajectory,
such as the initial state at the domain boundagyro, the free flight timesz;, and the after-scattering
statesk?,

xl={k07r0’t07k§l_’tl""7k“/l"t]""} jSNl’ (4)

whereN; + 1 is the number of free flight segments for the considered trajectory. Another random variable
Y (X) needed below is defined by its realizations:

vi={kl.r1,... . K}.rj....} <N, (5)

which contain all before-scattering stal;ésand the particle locations at the times of scattenngThen,
with any quantity of interestA (k, r), a random variabl&, (Y) is associated. Using the before-scattering
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method, a realization aof, is of the form:

NAKD, )
Vai = Zm (6)

j=1

with A being the total scattering rate. Summatioriéhis over one complete trajectory.

3. Theevent bias method

The kernek T ofthe conjugaté&q. (2)yields the natural probability distributions that can be used for the
construction of the particle trajectory. However, it is possible to choose other than the natural probabilities
for the MC integration of the terms of the iteration series. In that case one constructs numerical trajectories
that are different from the physical ones.

Changing probability distributions requires compensatory changes of random variables. Whenever in
the course of numerical trajectory construction a random variable, for example, a free flight time or an
after-scattering state, is selected from a numerical density rather than from a physical density, the weight
of the test particle changes by the ratio of the physical over the numerical density, evaluated at the selected
value. Introducingp ;, the weight of the particle constructed by this rule, the estin{@@ets extended to:

N AWS )
VA=) wi———. ()
; LAk
The weight of each injected particle is setdp = 1, the subsequent weights evolve randomly. This gives
rise to increasing variance in the MC estimates with increasing time cumulated by a trajectory. However,
since the particle weight is reset whenever a particle leaves and reenters the domain, the variance stays
bounded.

The motivation for using arbitrary probabilities is the possibility to guide particles towards a region of
interesy7]. Such situation occurs when carrier transport is controlled by an energy barrier. On the rising
edge of such a barrier, we increase carrier diffusion by introducing artificial carrier heating. Controlled by
aparameteds; > 1, the probability for phonon absorption is increased at the expense of phonon emission,

1 A
A;=Aa+xe(1—ﬁl), '\;:ﬁel' (8)
If in the MC simulation phonon absorption is selected, the particle weight is to be multiplieg/by,
otherwise byie/A, = M1. The distribution of the flight time is not affected, because the sum of emission
and absorption rate are not changed.

Carrier diffusion can be enhanced by modifying the distribution of the scattering angle. The event bias
techniqgue is applied only to isotropic processes. For these the distributipn=efcosé is constant:
p(x) = 1/2forx € (—1, 1). Here,0 is defined as the angle between the after-scattering momentum and
the field direction. The following modified probability density is assumed:

1
2M,’
M ’

-1<x<xo

p(x) = (9)
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whereM, > 1is a given parametey, is determined from the normalization. The cumulative probability
at this point evaluates tB’(xo) = (1 + M>)~. With a random number, evenly distributed between 0
and 1, one obtains for < P’(xo)

X =2Mor —1, L = m,,

;=

and otherwise

This means that the particle weight is either reduced or increased by theMgatdrenevery is generated
from the density9).

4. Variance estimation

The result of a stationary MC device simulation can be expressed most generally as a ratio of statistical
averages,
A
_ U ))’ (10)
((B))
with the definition((x)) = [, dr [dkx(k,r)f(k,r). Here, D denotes the simulation domain. The
function, A is typically a product of som&-dependent function and andependent charge assignment
function[8], whereas the denominator accounts for the normalization.
The random variable to be considered now is givewpy= ¥, /¥. In the MC simulation one has to
generate the samplgs; andyg; using estimators of the fori7). The so-called classical estimator©®f
is given by the ratio of the sample means.
n N
= Yao - 1
C=—_a WCY:_ wozi» a=AvB (11)
o VTN

Additionally, the sample variances;, ands2, and the sample covariancg, have to be evaluated from
the following definitions.

1 N 1 (X 2
2 Z 2 Z
= — L — 'l/ozi ’ = A, B, 12
Sa N-1 — Vai N (i—l ) * (12)

1 N 1 N N
ShB = N1 |:Z¢Aﬁ//5i —NZIM Zlﬁsi] (13)
i=1 i=1 i=1

N isthe number of trajectories constructed in the simulation. From these inputs the variance of the random
variable¥ can be estimate®].

s =52 — 2Csig + C32. (14)
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The error estimate for the resditis finally given by the standard deviation

_ Sc
Cl=— . 15
o{C} TIN (15)

5. Application and discussion

The following example demonstrates how the presented method of error estimation can be applied. As
a first example am + /n/n+ silicon structure with a 0.2 eV energy barrier has been simulated using
an unbiased MC method. In all, 6 10® scattering events have been processed, which resulted in the
simulation of N = 5.48 x 10’ trajectories.

When computing the mean velocity usifi), ((A)) represents the particle current density &(sl))
the particle density. The correlation facigg = s,iB/(sAsB) of the MC estimate of the two densities is
plotted inFig. 1. An important result is the high positive correlation of the energy density and the particle
density, which gives a significant reduction in standard deviation accordifig#}oA consequence of
positive correlation is that a mean value per carrier has less variance than a mean value per unit volume
(Fig. 2) [10].

As a second example, the modified probabilities describefeiction 3have been used to simu-
late electron transport through the npn-structure with a 0.8 eV energy barrier. To enhance statistics in
the emitter—base barrier region artificial carrier heating is introduced. In the barrier and the base region
the distribution of the scattering angle is biased so as to induce artificial carrier diffusion towards the
collector. Optimal values for the parametéfs and M, controlling the bias are not known a priori. For
instance, ifM; is chosen too small, not enough particles will surmount the barrier, rendering statistical
enhancement inefficient. On the other hand, choo&thg@nd M, too large, plenty of numerical trajecto-
ries will pass through the low concentration region. However, due to the aggressive biasing the individual
particle weights will evolve to extremely different values, predominantly to extreme small ones. Because
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Fig. 1. Correlation coefficients of the energy density) and the particle density, and of the particle curremt(v,) andn.
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Fig. 2. Mean energy and its standard deviation, including the fluctuations of energy density and particle density (std.dev.), and
neglecting the fluctuation of particle density (std.dev.A).

of the large spreading of the particle weights the recorded averages will again show a large variance.
Reasonable values found for the considered structur@/are 2 andM, = 2.

The described behavior of the event biasing scheme suggests the usage of additional variance reductio
technique$l1]. The general goal must be a reduction of the spreading of the weights. Such techniques are
not used in this study. Instead, the evolution of the particle weight is governed predominantly by the event
bias algorithm. Explicit measures are taken only to prevent weights from getting extremely high or low.

The event bias method has been compared with a simple particle split method. To first order such
comparison is fair since the light-weight particles generated with either method are not further recycled.
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Fig. 3. Mean energy of the physical system (mean) and of the simulated carriers (num.) in the npn-structure with 0.8 eV barrier
height. Comparison of the event bias method (W-MC) and a particle split method is shown.
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Fig. 4. Mean energy in the 0.8 eV structure. In additiofri. 3, electrons are injected at the left contact at 1500 K, whereas at
the right contact a Maxwellian at 300 K is assumed.

Fig. 3demonstrates that with event biasing the correct physical mean energy is reproduced. The mean
energy of the simulated particles is considerably higher than the physical mean energy.

In the simulation shown irfrig. 4, a biased boundary distribution is assumed in addition. Electrons
are injected from the emitter contact with a Maxwellian distribution at five times the lattice temperature.
Again the correct physical mean energy is obtaineéid¢n 5, the electron concentration and the standard
deviations of the two MC methods are depicted. In the quasi-neutral base region (75-90 nm) event biasing
gives a standard deviation reduced by more than one order of magritigdeés shows the superior
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Fig. 5. The electron concentration varies by more than 14 orders. In the base region the event bias method gives significantly
less variance than the split method.
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Fig. 6. Evolution of the device current for extremely long simulation times, evaluated evBrgca@ering events. W-MC
converges faster and shows better stability than the split method.

convergence of the event bias method. Because of the poor convergence of the split method for the 0.8 e\
barrier structure 5 x 10'° scattering events needed to be processed to permit realistic compétigpns

6. Conclusion

For the Single-Particle MC method it has been demonstrated that event biasing is a competitive sta-
tistical enhancement technique. It can be used on its own or in combination with other, presently used
variance reduction techniques. Implementation of the method does not require structural changes of ar
existing code. The independent, identically distributed random variables underlying the Single-Particle
MC method have been identified. Based on these random variables the stochastic error is estimated. With
out variance estimation, the statistics can be collected after each free flight of the test particle, whereas
variance estimation requires that over one particle trajectory a sub-statistics is collected, which is added
to the total statistics when the trajectory terminates at the domain boundary. If mean values per particle
on a mesh are to be computed, correlation of the mean value per volume and the particle number pe
volume has to be taken into account, which leads to partial cancellation of statistical fluctuations.
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