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The stationary Monte Carlo method for device simulation.
II. Event biasing and variance estimation

M. Nedjalkov, H. Kosina,a) and S. Selberherr
Institute for Microelectronics, TU Vienna, Gußhausstraße 27-29, A-1040 Vienna, Austria

~Received 28 October 2002; accepted 13 December 2002!

A theoretical analysis of the Monte Carlo method for the solution of the stationary boundary value
problem defined by the Boltzmann equation has been presented in Part I. Based on this analysis, the
independent, identically distributed random variables of the simulated process are identified.
Estimates of the stochastic error of the single-particle Monte Carlo method are derived. An
event-biasing technique for carrier transport across an energy barrier is developed and its suitability
for variance reduction is demonstrated. ©2003 American Institute of Physics.
@DOI: 10.1063/1.1544655#
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I. INTRODUCTION

In the Monte Carlo~MC! simulation of semiconducto
devices, measures have to be taken to enhance the sta
in sparsely populated regions of interest. The purpose of
tistical enhancement is to reduce the variance of the
estimates in those regions. Such a reduction comes a
expense of increased variance in other, less interes
regions.1 There are two general classes of statistical enhan
ment techniques, namely, population control techniques
event biasing techniques. To date, virtually all MC dev
simulation codes utilize population control techniques.
the other hand, the event-biasing technique was introduce
the field of semiconductor transport end of the 1980s, w
the weighted ensembleMC method was proposed.2,3 How-
ever, until now, this method has not been used in MC dev
simulation. The present work describes the application of
event-biasing technique to devices with a realistically la
carrier concentration range. It is demonstrated that
method is suitable for variance reduction. On the other ha
the method turned out to have an inherent problem with
particle weights, which show a tendency to decrease ex
nentially in time. A solution to this problem for the stead
state is shown.

II. RANDOM VARIABLES

The single-particle MC algorithm has been derived in
formal way in Part I, where, as one significant result, t
independent, identically distributed random variables of
simulated process were identified. Knowledge of these r
dom variables forms the basis for estimating the variance
the MC results and thus for estimating the stochastic err

In the single-particle MC algorithm, a realization o
some random variable, sayX, is given by a complete numeri
cal trajectory starting and terminating at the domain bou
ary. Theith realization ofx consists of all generated rando
numbers for theith trajectory, such as the initial state at th
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domain boundary,k0 , r0 , the free-flight timest j , and the
after-scattering states,k j

a

xi5$k0, r0, t0, k1
a, t1, ...k j

a, t j , ...%, j <Ni , ~1!

where Ni11 is the number of free-flight segments for th
considered trajectory. The random variabley(X) is defined
by its realizations

yi5$k1
b, r1, ...k j

b, r j , ...%, j <Ni , ~2!

wherekb
j denote the before-scattering states and rj the par-

ticle locations at the times of scattering.
Given a quantity of interest,A(k, r ), a random variable

cA(X) is defined, the realization of which is given by th
time-averaging estimator

cA~xi !5(
j 50

Ni E
0

t j
A@K ~t; 0, k j

a, r j !, R~t; 0, k j
a, r j !# dt.

~3!

Another random variablecA
b(Y) is defined through the

before-scattering estimator

cA
b~yi !5(

j 51

Ni A~k j
b, r j !

l~k j
b, r j !

, ~4!

with l being the total scattering rate. Summation is over o
complete trajectory.

III. THE EVENT-BIASING METHOD

Expressing the solution of the conjugate equation by
Neumann series leads to a series expansion of the statis
average ofA(k, r ):

^̂ A&&5 (
n50

`

^̂ A&&n . ~5!

The explicit expression of a term of that series as given
Eq. ~44! in Part I. There exists a variable transformation su
that the multiple integral may be expressed as
4 © 2003 American Institute of Physics
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^̂ A&&n5GDE dj0 ... djn h~j0!K~j0, j1!

3K~j1, j2! ... K~jn21, jn!
A~jn!

l~jn!
, ~6!

where the before-scattering statesj i5(k i 11
b , r i 11) are cho-

sen as integration variables. The integrand of Eq.~6! con-
tains an initial distributionh and the transition probability
K(xi i , j i 11), given by the kernel of the underlying integr
equation.

The integral~6! can be written as

^̂ A&&n5GDE p~y!c~y!dy, ~7!

y5~j0, j1, ... jn!, ~8!

p5h0~j0!K~j0, j1! ... K~jn21, jn!, ~9!

c5
A~jn!

l~jn!
. ~10!

Since p(y) satisfies the properties of a probability dens
function, the integral can interpreted as the expected valu
a random variablec(y). The MC method can now be use
to approximate the expected valueE$c% by a sample mean
c̄5N21(c i .

In Eq. ~6!, the initial densityh and the transition prob
ability K reflect the physical properties of the system. The
fore, these physically interpreted probability distributions a
the natural choice for the construction of the particle traj
tory. However, it is possible to choose other than the nat
probabilities for the MC integration obeying certain rules.
that case, one constructs numerical trajectories that in
ticular aim at statistical enhancement, for example, by gu
ing particles towards a sparsely populated region of inter

One can choose an arbitrary initial distributionp0 and
arbitrary transition probabilitiesP for numerical trajectory
construction. Since the productpc has to remain unchanged
the random variablec has to compensate for the changes
the densityp.

p~y!5p0~j0!P~j0, j1! ... P~jn21, jn!, ~11!

c5
h0~j0!K~j0, j1! ... K~jn21, jn!

p0~j0!P~j0, j1! ... P~jn21, jn!

A~jn!

l~jn!
. ~12!

The numerical initial distributionp0 and the numerical tran
sition probabilityP have to be nonzero where the physic
counterparts are nonzero; that is,p0(j0)Þ0 if h0(j0)Þ0,
andP(j i , j j )Þ0 if K(j i , j j )Þ0.

Furthermore, only normalized densities are consider
*p0(j0) dj051 and*P(j i , j j ) dj j51 for all j i .

The ratio of the physically interpreted density over t
numerically interpreted density determines the weight o
particle:

wn5
h0~j0!K~j0, j1! ... K~jn21, jn!

p0~j0!P~j0, j1! ... P~jn21, jn!
. ~13!

This formula states the rule that, whenever in the proces
numerical trajectory construction a random variable, for
ample, a free-flight time or an after-scattering state, is
lected from a numerically constructed density rather th
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from the physically interpreted density, the weight of t
trajectory changes by the ratio of the two densities.

While Eq. ~12! is an estimator for one iteration term, i
the single-particle Monte Carlo method, one uses estima
for the whole iteration series, such as Eqs.~3! and ~4!. In
these estimators, each element of the sum has to be m
plied by the weight defined earlier. In the case of event
asing, the time-averaging and the before-scattering esti
tors, Eqs.~3! and ~4!, respectively, get extended to

cA~xi !5(
j 50

Ni

wjE
0

t j
A@K ~t; 0, k j

a, r j !, R~t; 0, k j
a, r j !# dt,

~14!

cA
b~yi !5(

j 51

Ni

wj

A~k j
b, r j !

l~k j
b, r j !

. ~15!

A. Modified probabilities

The purpose of the event-biasing method is to enha
the statistics in phase-space regions of interest. To guide
particle trajectory towards such regions, various probabilit
used for trajectory construction can be modified,4 including
those for selecting the free-flight time, the scattering mec
nism, the after scattering state, or the initial state at a cont

1. Biasing the phonon-absorption probability

On the rising edge of an energy barrier, carrier diffusi
can be increased by introducing artificial carrier heatin
Controlled by a parameterM1>1, the probability for phonon
absorption is increased at the expense of phonon emiss

la85la1leS 12
1

M1
D , le85

le

M1
. ~16!

If, in the MC simulation, phonon absorption is selected, t
particle weight must be multiplied byla /la8 , otherwise by
le /le85M1 . The distribution of the flight time is not af
fected, because the sum of emission and absorption ra
not changed.

2. Biasing the scattering-angle distribution

Carrier diffusion can also be enhanced by modifying t
distribution of the scattering angle. The event bias techni
is applied only to isotropic processes. For these, the distr
tion of x5cosu is constant:p(x)51/2 for xP(21, 1).
Here,u is defined as the angle between the after-scatte
momentum and the field direction. The following modifie
density function increases the probability for forward scatt
ing at the expense of backscattering:

p8~x!5H 1

2M2
21<x,x0

M2

2
x0<x,1,

~17!

where M2>1 is a given parameter andx0 is determined
from the normalization. The cumulative probability at th
IP license or copyright, see http://ojps.aip.org/japo/japcr.jsp
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point evaluates toP8(x0)5(11M2)21. With a random
numberr, evenly distributed between 0 and 1, one obta
for r ,P8(x0),

x r52M2r 21,
p

p8
5M2 ,

and otherwise

x r512
2~r 21!

M2
,

p

p8
5

1

M2
.

This means that the particle weight is either reduced or
creased by the factorM2 wheneverx is generated from the
density in Eq.~17!.

3. Biasing the boundary distribution

In the emitter region, artificial carrier heating can
introduced by increasing the probability for phonon abso
tion as described earlier. Additionally, at the emitter conta
carriers can be injected from some heated distribution to s
port the formation of a hot carrier distribution at the emitte
base energy barrier.

Consider a Maxwellian distribution at lattice temperatu
T0 and a heated Maxwellian distribution at temperatureT8
5M3T0 , with M3.1:

f b~k, r !5C~r !expF2
«~k!

kBT0
G , ~18!

f b8~k, r !5C8~r !expF2
«~k!

kBT8
G . ~19!

The incident current density at some boundary pointr with
outward directed normal vectorn(r ) is given by

j'~r !52C~r !E
n•v,0

n~r !•y~k!expF2
«~k!

kBT0
G d3k. ~20!

Substituting the group velocityy5(1/\)¹«(k) and assum-
ing without loss of generality thex-axis to be parallel ton,
one obtains

j'~r !5
kB

\
C~r !T0E

n•v,0
n•¹expF2

«~k!

kBT0
G d3k, ~21!

5
kB

\
C~r !T0E E expF2

«~0, ky, kz!

kBT0
G dkydkz . ~22!

In the last equation, the integral theorem of Gauss has b
applied. From the integral over the closed surface, only
contribution from the (ky, kz) plane is nonzero.

Note that Eq.~18! is the physical boundary distribution
and hence the parameterC(r ) is known. The normalization
factor C8(r ) in Eq. ~19! is obtained from the conditionj'8
5 j' . This requires evaluation of the double integral~22!.
For simple nonparabolic bands

«~11a«!5
\2k2

2m*
, ~23!

C8 must satisfy
Downloaded 12 Mar 2003 to 128.130.68.69. Redistribution subject to A
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C8~r !
5

T82~112aT8!

T0
2~112aT0!

. ~24!

If the initial momentum is generated from a heated Ma
wellian distribution, the initial weight of the particle has t
be set to the ratio of the physical probability density over
numerical probability density.

w05
y' f b~k, r !

y' f b8~k, r !

5M3
2 112aM3T0

112aT0
expF2

«~k!

kBT0
S 12

1

M3
D G . ~25!

The velocitiesy' in the velocity-weighted boundary distri
butions do not depend on the parameters of the distribut
and therefore cancel.

4. Biasing the injection probabilities

The initial weight ~25! can become considerably large
than 1 for a large value ofM3 and not too high energies with
respect tokBT0 . However, particles with high weight are no
desirable, especially at high energies, as their occurrence
resents rare events which increase the variance. Therefo
is better to inject the particles at a smaller weight and
crease the rate of injection instead.

We consider the iteration term of ordern, given by Eq.
~44! in Part I, and write only the surface integral explictl
while for the sake of brevity the remaining integral is d
noted by some functionRn .

^̂ A&&n5GD R
]D

H j'~r !

GD
J Rn~r !ds~r !. ~26!

The domain boundary]D consists ofNc contacts, at which
particles are exchanged with the environment, and Neum
boundaries, at which particles are reflected and hence
normal current densityj' vanishes. Thus, one can partitio
the integral~26!,

^̂ A&&n5GD(
l 51

Nc H G l

GD
J E

Al
H j'~r !

G l
J Rn~r !ds~r !, ~27!

whereAl denotes the area of thelth contact. The probability
of injecting a particle at contactl is given by

pl5
G l

GD
, G l5E

Al

j'~r !ds. ~28!

In a real simulation thepl are known, for example, from the
area and the equilibrium concentration of a contact, wher
the GD and theG l are commonly not known in advance.

In the following, we increase the probability of injectio
for the mth contact byM4.1 and reformulate Eq.~27! ac-
cordingly.
IP license or copyright, see http://ojps.aip.org/japo/japcr.jsp
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^̂ A&&n5GDS (
lÞm

plE
Al

1M4pm

1

M4
E

Am
D ~29!

5GD8 S (
lÞm

pl8E
Al

1pm8
1

M4
E

Am
D , ~30!

with GD8 5sGD and modified probabilities defined as

pl85H pl /s, lÞm

M4pl /s, l 5m
. ~31!

The normalization factors is obtained from

s5 (
lÞm

pl1M4pm511~M421!pm . ~32!

Using these probabilities, the rate of injection at contactm is
increased byM4 and the rates at all other contacts are
duced accordingly. The factorM4

21 in Eq. ~30! determines
the initial weight of a particle injected at contactm. The
modified normalization coefficientGD8 is obtained from com-
puting the averagê̂1&& ~see Sec. IV D in Part I!.

One can combine a biased boundary distribution and
ased injection probabilities. For example, one is free
chooseM4 equal to the energy-independent part ofw0 given
by Eq. ~25!. Since now the initial weight also contains th
multiplier M4

21 from Eq. ~30!, the initial weight will be re-
duced:

M45M3
2 112aM3T0

112aT0
, ~33!

w05expF2
«~k!

kBT0
S 12

1

M3
D G . ~34!

The algorithm assuming a modified injection probability a
a heated Maxwellian distribution at contactm can be sum-
marized as follows. When a particle has left the simulat
domain, a new one must be injected at a contact selecte
the probabilities~31!. If lÞm, the initial momentum must be
generated from a cold Maxwellian distribution with an t
initial weight set to one; otherwise the initial momentu
must be generated from a heated Maxwellian, and the in
weight set to Eq.~34!.

B. Evolution of the weights

The particle weight~13! evolves randomly along a tra
jectory. MC simulations show that at a given time t
weights on different trajectories show a large spreadi
Most of the weights evolve to fairly small values, such th
new terms in the weighted sums~14! or ~15! sooner or later
become negligible.

This behavior can be investigated analytically for t
simple case of the density function~17!, which assumes only
two discrete values, say, 0.5M and 0.5M 21. With a probabil-
ity of p05(11M )21, the valueM is selected as the multi
plier of the weight, and with probabilityp15M (11M )21

the valueM 21 is selected, respectively. The expected va
of the selected multipliers equalsp0M1p1M 2151.

Consider a trajectory containingB biased events. On av
erage, the multiplierM will appearp0B times, andM 21 will
appearp1B times. The particle weight can be estimated a
Downloaded 12 Mar 2003 to 128.130.68.69. Redistribution subject to A
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wB5M p0B
•M 2p1B5exp~2aB!, ~35!

a5
M21

M11
logM . ~36!

Since the functiona(M ) is positive for all positiveMÞ1 the
weight wB tends to zero exponentially forB→`. An inter-
pretation is that the significance of the trajectory diminish
with increasing number of biased events, as the contributi
to the estimator~15! continuously decreases.

As discussed in Part I, settingA51, the before-
scattering estimator~15! gives an estimate for the real tim
of the trajectory. Assuming a simple physical system with
constant scattering rateG, the estimated real time of the tra
jectory equals

T5(
n

wn

G
5

1

G (
n50

`

exp~2an!5
1

G@12exp~2a!#
.

~37!

As the series converges, even a trajectory with infinit
many scattering events covers only a finite physical ti
interval. Only forM51, that is, when the physical probabi
ity density is used,a vanishes and the particle weight sta
constant.

IV. VARIANCE ESTIMATION

Most generally, the result of a stationary MC devi
simulation can be expressed as a ratio of statistical avera

C5
^̂ A&&

^̂ B&&
, ~38!

with the statistical average defined as^̂ •&&5*Ddr*dk
• f (k, r ). D denotes the simulation domain.

The random variable to be considered now is given
CC5CA /CB . In the MC simulation, one has to genera
the samplescAi andcBi using estimators~14! or ~15!. The
so-called classical estimator ofC is given by the ratio of the
sample means:

C.C̄5
c̄A

c̄B

, c̄a5
1

N (
i 51

N

ca i , a5A, B. ~39!

Additionally, the sample variances,sA
2 and sB

2 , and the
sample covariancesAB

2 have to be evaluated using the de
nitions

sa
25

1

N21 F(
i 51

N

ca i
2 2

1

N S (
i 51

N

ca i D 2G , a5A, B, ~40!

sAB
2 5

1

N21 F(
i 51

N

cAicBi2
1

N (
i 51

N

cAi(
i 51

N

cBiG , ~41!

where N is the number of trajectories constructed in t
simulation. From these inputs the variance of the rand
variableCC can be estimated.5

sC
2 5sA

222C̄sAB
2 1C̄2sB

2 . ~42!
IP license or copyright, see http://ojps.aip.org/japo/japcr.jsp
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The standard deviation of the resultC̄ is finally given by

s$C%5
sC

c̄BAN
. ~43!

For a confidence coefficient (12d), a confidence inter-
val Ī can be constructed:5

Ī 5@C̄6zds$C%, ~44!

zd5F21S 12
d

2D , ~45!

whereF denotes the standard normal distribution functio
An often used value iszd53, which gives 12d50.997.

V. RESULTS AND DISCUSSION

A one-dimensionaln2p2n structure has been ana
lyzed. The three segments of the device are referred t

FIG. 1. Mean energy of the physical system~mean! and of the simulated
carriers~num.! in the n2p2n2structure with 0.8-eV barrier height. Com
parison of the event-bias method~W-MC! and a particle-split method is
shown.

FIG. 2. Mean energy in the 0.8-eV structure. In addition to Fig. 1, electr
are injected at the left contact at 1500 K, whereas at the right conta
Maxwellian at 300 K is assumed.
Downloaded 12 Mar 2003 to 128.130.68.69. Redistribution subject to A
.

as

emitter, base, and collector. The semiconductor model of
con assumes analytical bands and the phonon spectrum
ported in Ref. 6.

A. The Event-biasing technique

The modified probabilities described in Sec. III ha
been used to simulate electron transport through then2p
2n structure, assuming an emitter–base barrier of 0.8
and a collector–emitter voltage of 1 V.

To enhance statistics in the emitter–base barrier reg
artificial carrier heating is introduced. In the barrier and t
base region, the distribution of the scattering angle is bia
in order to induce artificial carrier diffusion towards the co
lector. Optimal values for the parametersM1 and M2 con-
trolling the bias are not knowna priori. For instance, ifM1

is chosen too small, not enough particles will surmount
barrier, rendering statistical enhancement inefficient. Cho
ing M1 and M2 too large, plenty of numerical trajectorie
will pass through the low-concentration region. Howev
due to the aggressive bias, the individual particle weig

s
a

FIG. 3. The electron concentration varies by more than 14 orders. In
base region the event bias method gives significantly less variance tha
split method.

FIG. 4. Evolution of the device current for extremely long simulation tim
evaluated every 108 scattering events. W-MC converges faster and sho
better stability than the split method.
IP license or copyright, see http://ojps.aip.org/japo/japcr.jsp
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will evolve to extremely different values. Because of t
large spreading of the particle weights the recorded avera
will again show a large variance. Reasonable values fo
for the considered structure areM152 andM252.

The described behavior of the event-biasing techni
suggests the usage of additional variance reduc
techniques.7 The general goal must be a reduction of t
spreading of the weights. Such techniques are not subje
this study. Here, we investigate the event-bias algorith
which is predominantly used to govern the evolution of t
particle weight. Explicit measures are taken only to prev
weights from getting extremely high or low. The rare eve
in which a particle gains a very large weight is treated
splitting that particle. On the other hand, when a parti
weight falls below a predefined limit, event biasing is d
abled such that the weight is not further changed.

The event-biasing method has been compared wit
simple particle-split method. To first order such a comparis
is fair since the lightweight particles generated with eith
method are not further recycled. Figure 1 demonstrates
the mean energy that, with event biasing, the correct phys
mean values are reproduced. Also shown is the mean en
of the simulated particles, which is considerably higher th
the actual physical mean energy.

In the simulation shown in Fig. 2, a biased bounda
distribution is also assumed. Electrons are injected from
emitter contact with a Maxwellian distribution at five time
the lattice temperature. Again, the correct physical mean
ergy is obtained. In Fig. 3, the electron concentration and
standard deviations of the two MC methods are depicted
the quasineutral base region~75–90 nm! event biasing gives
a standard deviation reduced by more than one order of m

TABLE I. Examples of physical quantities used in Eq.~38!.

Quantity C A B

Carrier concentration n (ND /Vp)Wp(r ) 1
Current density j (qND /Vp)v(k)Wp(r ) 1
Mean velocity ^v& v(k)Wp(r ) Wp(r )
Mean energy ^«& «(k)Wp(r ) Wp(r )

FIG. 5. Correlation coefficients of the the energy densityn^«& andn, and of
the particle currentn^vx& andn.
Downloaded 12 Mar 2003 to 128.130.68.69. Redistribution subject to A
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nitude. Figure 4 shows the superior convergence of
event-biasing technique. Because of the poor convergenc
the split method for the 0.8-eV barrier structure, 1.531010

scattering events needed to be processed to permit rea
comparisons.8

B. Variance of distributed quantities

The variances of the distributed quantities summariz
in Table I have been calculated, using the single-particle M
method without statistical enhancement. The emitter–b
barrier of then2p2n diode was set to 0.2 eV. The simula
tion of 53108 scattering events resulted in the constructi
of N55.483107 trajectories.

For the sake of simplicity, the nearest grid point sche
is used for charge assignment.9 The assignment function
Wp(x) for grid pointxp is given by the indicator function o
the finite box associated with that grid point. The box vo
ume isVp5*Wp(r )dr .

When computing the mean velocity using Eq.~38!, ^̂ A&&
represents the particle current density and^̂ B&& the particle
density. The correlation factor of the MC estimate of the
two densities is plotted in Fig. 5~dashed line!. In the base
region, a large positive correlation exists.

The energy density and the particle density show a la
positive correlation throughout the device~Fig. 5, solid line!.
According to Eq.~42!, such a correlation gives a significan
reduction in standard deviation. This means that a m
value per carrier has less variance than a mean value per
volume, as demonstrated in Fig. 6. Accounting for the flu
tuations of both the energy density and the particle den
gives the lower standard deviation~curve std. dev.!, while by
neglecting the fluctuation of the particle density the stand
deviation is clearly increased~curve std. dev. A!.

The presented method of variance estimation is par
eter free. Neither has the particle’s history to be divided in
subhistories of some artificially predefined length,6 nor does
an unknown parameter of a stochastic process, such as
correlation time, need to be estimated.10 Instead, the total
history is divided naturally into independent subhistories

FIG. 6. Mean energy and its standard deviation, including the fluctuation
energy density and particle density~std. dev.!, and neglecting the fluctuation
of particle density~std. dev. A!.
IP license or copyright, see http://ojps.aip.org/japo/japcr.jsp
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the times when the particle reenters the simulation domai
process with such a property is referred to as regenera
stochastic process.5

C. Variance of terminal currents

A stationary terminal current can be expressed as an
tegral over the device domainD:

I l5E
D

j ~r !•¹hl~r ! dr , ~46!

wherehl is a test function, which assumes 1 at thelth contact
and 0 at all other contacts.11 In this section, we discuss how
the choice of the test function and MC estimators affect
variance of the estimated current.
e
te

or
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For the one-dimensional structure considered here, it
easily be shown that calculating the current density by
time-averaging method is equivalent to counting partic
passing through a normal plane. We consider a control v
ume formed by the normal planesx5xp and x5xp1Dx.
The time integral*v@k(t)# dt over that part of a trajectory
which is inside the control volume can take on only thr
values:1Dx if the particle enters through the left plane an
exits through the right one,2Dx in the opposite case, and
if the particle leaves and exits through the same plane. S
only a constantDx is added or subtracted from the estimat
this method corresponds to particle counting. In the lim
Dx→0 particles passing through a single plane are coun

To determine the current at contactl, we define a random
variable which has the realizationsc l :
c l55
1 trajectory starts at contactl and terminates atmÞ l ,

2 1 trajectory starts at contactmÞ l and terminates atl ,

0 trajectory starts and terminates at contactl ,

0 trajectory starts at contactmÞ l and terminates atnÞ l .

~47!
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The current is given by the ratio

Ī l5qND

c̄ l

T̄
, T̄5

1

N (
i 51

NTi , ~48!

where T̄ is the mean time of a trajectory. Neglecting th
variance ofT̄, the current and its variance can be estima
as

Ī l5
qND

T̄
~Pl

i2Pl
a!, ~49!

s2$ Ī %5S qND

T̄
D 2

1

N21
@Pl

i1Pl
a2~Pl

i2Pl
a!2#, ~50!

FIG. 7. Current density and standard deviation obtained from the bef
scattering method.
d

with Nl
i5Pl

iN and Nl
a5Pl

aN denoting the numbers of par
ticles injected and absorbed at contactl, respectively.

Particles can be counted at any normal plane inside
device. Since all trajectories start and terminate at the c
tacts, the estimated current and the variance will be the sa
independently of the location of the plane. This means, t
the time integration method strictly conserves the curre
Since in this example the variance of the current density
constant in the device, the variance of the terminal curr
cannot be influenced by the choice of the test function in
~46!. A general proof of the independence of the variance
the terminal current from the test function can be found
Ref. 12.

On the other hand, the before-scattering method c
serves current on the average only. Using this method
estimate the statistical averages ofA andB in Table I gives
the current density shown in Fig. 7. The variance of t
current density is much higher in the emitter/collector
gions than in the base region. Therefore, the variance of
terminal current can be minimized in this case by a pro
choice of the test function.

Table II shows the relative standard deviation of the t
minal current obtained from different methods. The lowe
stochastic error is obtained using the simple method of p

TABLE II. Relative standard deviation of terminal current for different e
timators

Estimator s I /I

Before-scattering, average over whole device 28.731023

Before-scattering, average over base only 2.3631023

Time-integration~particle counting! 2.1931023e-
IP license or copyright, see http://ojps.aip.org/japo/japcr.jsp
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ticle counting at the contact, since this method implies st
current conservation. A higher stochastic error is obtain
using the before-scattering method, because it conserves
rent only on the average. The stochastic error depends on
test function, and is always larger than that from the tim
integration method.

VI. CONCLUSION

For the single-particle Monte Carlo method, it has be
demonstrated that event biasing is a competitive statis
enhancement technique. It can be used as a stand-a
method or in combination with other, presently used varia
reduction techniques. Implementation of the method does
require structural changes of an existing code. The indep
dent, identically distributed random variables underlying
single-particle Monte Carlo method have been identifi
Based on these random variables, the stochastic error i
timated. Without variance estimation, the statistics can
collected after each free flight of the test particle, wher
variance estimation requires that over one particle traject
a substatistics is collected, which is added to the total sta
tics when the trajectory terminates at the domain boundar
mean values per particle on a mesh must be computed,
relation of the mean value per volume and the particle nu
ber per volume has to be taken into account, which lead
partial cancellation of statistical fluctuations. For the estim
tion of the stationary terminal current, the simple partic
Downloaded 12 Mar 2003 to 128.130.68.69. Redistribution subject to A
t
d
ur-
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e
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counting method is best suited as it gives lower variance t
the before-scattering estimator and does not require the
of weight functions.
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