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Abstract

A stochastic interpretation of the quantum transport in nanoscale electronic devices is proposed. The Wigner potential is treated as a

scattering source which determines the electron–potential interaction. A particle picture where each scattering event generates positive and

negative particles is associated to the transport process.
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1. Introduction

The numerical theory of the Monte Carlo (MC) method is

used to propose a particle picture of the quantum transport

in nanoscale devices. The approach is just opposite to the

classical case, where the transport picture is used to devise

the MC method. The Wigner equation is considered which

accounts for the coherent part of the transport via the

Wigner potential Vw and for dissipation processes intro-

duced by phonons via the Boltzmann collision operator B

[1]. For one-dimensional devices the equation reads
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where V is the device potential. The Boltzmann operator is

defined in the standard way by the scattering rate Sðk0; kÞ

which is the probability density per unit time for scattering

from state ðk0Þ to state ðkÞ: S determines the total out-

scattering rate l as the integral over all after-scattering

states: lðkÞ ¼
Ð

Sðk;k0Þdk0: From a mathematical point of

view, Eq. (1) is very similar to the Boltzmann equation.

Without Vw Eq. (1) is the zero field Boltzmann equation

(BE). The classical limit of Vw leads to a force term

converting Eq. (1) into the standard BE. This similarity

allows to reformulate Eq. (1) using the steps applied to the

BE in the formal theory of the MC method [2]. First the

integral form of Eq. (1) is obtained for the case of stationary

transport
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where the boundary condition fðx; kÞ determines the device

characteristics. xðtÞ ¼ x þ vxðkÞt is the backward Newton’s

trajectory ðt , 0Þ initialized at t ¼ 0 by the initial phase

point ðx;kÞ and tb is the time of intersection of the trajectory

with the boundary. In the sum m ¼ lþ n an arbitrary

function n is introduced which will be determined later. In

Eq. (2) G is defined by
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0
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The negative time scale characterizes the backward

evolution of the trajectory. A particle interpretation of the

equation requires forward evolution and positive times

which are introduced by the conjugate equation to Eq. (2).

It is shown that the mean value ðA; fwÞ of any physical

quantity A can be expressed by the series

ð
Afw dkdx ¼ ðA; fwÞ ¼ f;

X
i
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where KiA denotes the ith iteration of the conjugate kernel K

on A: KiA ¼ ðK;Ki21AÞ:
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A Monte Carlo algorithm which evaluates Eq. (3) has

been derived. In the framework of the weighted single

particle MC method [2], the quantum potential is included

as a scattering source. The algorithm retains the basic

features of the classical counterpart. A particle injected into

the device propagates over a numerical trajectory built up by

consecutive iterations of K: When the trajectory leaves the

device a new particle is injected. Each trajectory provides an

independent MC experiment, which contributes to the

statistics collected for the mean value (3). The injection

from the boundary distribution, the accumulation of the

weight over the trajectory and the recording of the physical

averages follow the classical prescriptions.

The rules for building the trajectories, imposed by the

structure of K are discussed in Section 2. It is shown that

the number of simulated trajectories must be huge for

reasonable nanoscale devices. Aiming at variance

reduction, in Section 3 a modification of the method is

proposed, which gives rise to a particle picture of the

quantum process.

2. Stochastic approach

For the sake of transparency the kernel of the coherent

equation is discussed
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Extra factors are introduced in a way conserving the value

of the integrand. They serve for normalization of the

probabilities, enclosed in curly brackets, which are used for

construction of the particle trajectory. The subscripts denote

the order of application of these conditional probabilities.

{ }1 generates the free flight duration so that the particle

drifts between an initial, ðkx; x; 0Þ; and a final state,

ðkx; xðtÞ; tÞ; over a classical trajectory. At the final point a

scattering occurs. { }2 is the probability to use the first

kernel component for selection of the after scattering k0x:

Since m ¼ gþ n; the second component is selected

according { }20 ¼ 1 2 { }2: Thus k0x is chosen either with

the probability density { }3 or with the probability density

{ }30 : The normalization of the latter is ensured by the

function g : gðxðtÞÞ ¼
Ð
lVwðxðtÞ; kÞldk: Note that this

procedure is relevant if n and g differ no more than one

order of magnitude. The after-scattering state ðk0x; xðtÞ; tÞ is

the initial state of a free flight for the next iteration of the

kernel.

The remaining term wi ¼ ^ðmðtÞ=nðtÞÞ; where the sign is

given by the sign of Vw; is the weight factor. wi multiplies

the weight accumulated by the trajectory during the

previous iterations of the kernel. It can be shown that the

mean accumulated weight w per trajectory does not depend

on the choice of n: If T is the mean time particles spend in

the device, the number of scattering events n is n ¼ Tn: The

mean weight is then w ¼ ^ð1 þ g=nÞn ¼ ^ð1 þ gT=nÞn;

which is evaluated by w ¼ ^egT since n is large. Indeed for

a 0.3 eV potential g . 1015 s21 while T is commonly

greater than picosecond if the device dimensions are above

10 nm. Two conclusions can be done. First n can be selected

in a way to simplify the weight factor wi: With the choice

n ¼ g=2 the weight factor becomes wi ¼ ^3: Furthermore,

the mean trajectory weight grows exponentially with the Vw

and the dwelling time T : This result is in accordance with

the exponential growth with time of the variance of the MC

evaluations of Feynman path integrals [3]. For the time and

potential scales discussed above the weight w becomes

huge. Accordingly high must be the number of independent

experiments in order to average the weights to the mean (3).

The application of the method is restricted to single barrier

tunneling and small barrier heights.

3. Particle model

To overcome the problem of growing variance, the

method can be modified in the following way. The

antisymmetric function Vw is decomposed into two positive

functions: Vw ¼ Vþ
w 2 V2

w : Due to the choice of n; it holds

n ¼
Ð

V^ dkx: The kernel can be written as:
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The three kernel components simultaneously create three

after scattering states. These states cannot coincide since the

kx space is complementary decomposed by the probabilities

{ }2: Each state gives rise of a trajectory and thus presents a

separate particle which must be simulated until exiting the

device boundary. Two of the particles carry the weight of

the initial state, the third one has a weight of opposite sign.

The absolute value of the weight remains 1 so that the

particles can be marked as positive and negative.

The following picture can be associated to the transport

process. With each iteration of the kernel a positive

(negative) particle undergoes a free flight and scattering

event. After the scattering event the particle survives in the

same state with the same weight due to the delta function.

Fig. 1. Trajectory of the randomly selected particle.
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Additionally a positive and a negative particles are created

by V^
w : Fig. 1 shows the evolution of a particle randomly

selected after each scattering event. If phonons are included

the picture remains similar. The free flights are additionally

interrupted by the phonon scattering which only changes the

momentum of the particle as in the classical case.

We note that other interpretations conserving the

absolute weight are possible. The free flight could be two

times longer on the expense that four particles must be

created per scattering event. The proposed two-particle

picture is the most simple one which shows the idea of the

approach. Instead of collecting the weight over a single

trajectory, the weight is split in the phase space. Positive and

negative particles have opposite contribution to the

statistics. They have the same probabilistic future if located

close together in the phase space and thus can be canceled.

The MC simulation follows the randomly selected particle

while remaining particles are stored on a mesh for further

processing. The active particle cancellation saves simu-

lation time leading to a variance reduction.

A resonant tunneling diode investigated in Ref. [4] has

been simulated for the coherent case. The barriers are 0.3 eV

high, 3 nm thin and the well is 5 nm wide. The potential

drops linearly in the central 17 nm part of the device.

The doping of the 19 nm electrode layers is 2 £ 1018 cm23:

The obtained I –V curve is shown in Fig. 2. Fig. 3 shows the

electron densities for initial, peak and valley bias points.

The results are in good agreement with the characteristics

presented in Ref. [4].
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Fig. 2. I –V characteristics at temperature 77 K.

Fig. 3. Electron densities at the central part of the device.
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