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The stationary Monte Carlo method for device simulation.
[I. Event biasing and variance estimation

M. Nedjalkov, H. Kosina,® and S. Selberherr
Institute for Microelectronics, TU Vienna, Gul3hausstralRe 27-29, A-1040 Vienna, Austria

(Received 28 October 2002; accepted 13 December)2002

A theoretical analysis of the Monte Carlo method for the solution of the stationary boundary value
problem defined by the Boltzmann equation has been presented in Part I. Based on this analysis, the
independent, identically distributed random variables of the simulated process are identified.
Estimates of the stochastic error of the single-particle Monte Carlo method are derived. An
event-biasing technique for carrier transport across an energy barrier is developed and its suitability
for variance reduction is demonstrated. 2003 American Institute of Physics.
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I. INTRODUCTION domain boundaryky, ro, the free-flight timeg;, and the

H a
In the Monte Carlo(MC) simulation of semiconductor after-scattering statek,

devices, measures have to be taken to enhance the statistics x;={kg, ro, to, k3, t1, k]a t, ..}, i=N;, (1)

in sparsely populated regions of interest. The purpose of sta-

tistical enhancement is to reduce the variance of the M@vhereN;+1 is the number of free-flight segments for the

estimates in those regions. Such a reduction comes at ttf@nsidered trajectory. The random variapX) is defined

expense of increased variance in other, less interestingy its realizations

regionst There are two general classes of statistical enhance- b b :

ment techni ) . Yi={ki, ro, Kb TSN 2
gues, namely, population control techniques and

event biasing techniques. To date, virtually all MC device\/\/herekjb denote the before-scattering states anthe par-

simulation codes utilize population control techniques. Orticle locations at the times of scattering.

the other hand, the event-biasing technique was introduced in  Given a quantity of interes(k, r), a random variable

the field of semiconductor transport end of the 1980s, wher,(X) is defined, the realization of which is given by the

the weighted ensemblsIC method was proposéd How- time-averaging estimator

ever, until now, this method has not been used in MC device

simulation. The present work describes the application of the Ji N a a

event-biasing technique to devices with a realistically large wA(Xi)szO fo ALK(7 0.k}, 17), R(7 0, kj, rj) ] dr.

carrier concentration range. It is demonstrated that this 3)

method is suitable for variance reduction. On the other hand . b . '

the method turned out to have an inherent problem with th(ﬁnOther randpm varlableij(Y) is defined through the

particle weights, which show a tendency to decrease exp efore-scattering estimator

nentially in time. A solution to this problem for the steady NeCAKD, 1)

state is shown. biyy=> 1_1 @
IalYi =] )\(k]-b, )
with N\ being the total scattering rate. Summation is over one
Il. RANDOM VARIABLES complete trajectory.

The single-particle MC algorithm has been derived in a
formal way in Part I, where, as one significant result, the
independent, identically distributed random variables of théll. THE EVENT-BIASING METHOD
simulated process were identified. Knowledge of these ran- . . , )
dom variables forms the basis for estimating the variance of ~EXPressing the solution of the conjugate equation by the
the MC results and thus for estimating the stochastic error. Neumann series leads to a series expansion of the statistical
In the single-particle MC algorithm, a realization of average ofA(k, r):
some random variable, s& is given by a complete numeri- o
cal trajectory starting and terminating at the domain bound-  (A)= 2 (A, - (5)
ary. Theith realization ofx consists of all generated random n=0

numbers for theth trajectory, such as the initial state at the 114 explicit expression of a term of that series as given by
Eqg. (44) in Part |. There exists a variable transformation such
dElectronic mail: kosina@iue.tuwien.ac.at that the multiple integral may be expressed as
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from the physically interpreted density, the weight of the
«A»n:FDJ déo ... d&n h(&0)K(&o, &1) trajectory changes by the ratio of the two densities.
While Eq.(12) is an estimator for one iteration term, in
A(&n) the single-particle Monte Carlo method, one uses estimators
XK(&y &2) - K(én-a, g”))\(gn)' ©®  for the whole iteration series, such as E(®. and (4). In

these estimators, each element of the sum has to be multi-
plied by the weight defined earlier. In the case of event bi-
asing, the time-averaging and the before-scattering estima-
tors, Egs.(3) and(4), respectively, get extended to

where the before-scattering sta@y(kibﬂ, ri,,) are cho-
sen as integration variables. The integrand of &j.con-
tains an initial distributionh and the transition probability
K(Xij, & +1), given by the kernel of the underlying integral

equation. Ni f
The integral(6) can be written as l//A(Xi):Jz::O wi | A[K(7; 0,k 1)), R(7; 0,kf, r))]dr,
(14)
(Aho=To [ p)ByI0y. ™ N
b B 2 A(ky,r)) 15
y= (&0, &1, --- &n), ) l//A(yi)_j:l Wi)\(kb,rj)' (19
pP=ho(&0)K(&o, £1) ... K(&n—1, &n)s 9
A(&,) A. Modified probabilities
y= (10 . .
N(&n) The purpose of the event-biasing method is to enhance

Since p(y) satisfies the properties of a probability densitythe _statisti<_:s in phase-space regior?s of inte_rest. To guic_i_e_ the
function, the integral can interpreted as the expected value diarticle trajectory towards such regions, various probabilities
a random variabley(y). The MC method can now be used used for trajectory construction can be modiftédgcluding

to approximate the expected val&éy} by a sample mean those for selecting thg free-flight time,. t_h_e scattering mecha-
Z_ N~IS g nism, the after scattering state, or the initial state at a contact.
= .

In Eq. (6), the initial densityh and the transition prob-
ability K reflect the physical properties of Fhe §ys'tem'. There-;. Biasing the phonon-absorption probability
fore, these physically interpreted probability distributions are
the natural choice for the construction of the particle trajec-  On the rising edge of an energy barrier, carrier diffusion
tory. However, it is possible to choose other than the naturs#an be increased by introducing artificial carrier heating.
probabilities for the MC integration obeying certain rules. In Controlled by a parametédl;=>1, the probability for phonon
that case, one constructs numerical trajectories that in pagPsorption is increased at the expense of phonon emission:
ticular aim at statistical enhancement, for example, by guid- 1 Ne
ing particles towards a sparsely populated region of interest. N =A+ )\e( 1- —) Ne=—r. (16)

: T P M, M,

One can choose an arbitrary initial distributipg and
arbitrary transition probabilitie® for numerical trajectory If, in the MC simulation, phonon absorption is selected, the
construction. Since the produgt/ has to remain unchanged, particle weight must be multiplied by,/\/, otherwise by
the random variabley has to compensate for the changes in\¢/\;=M,. The distribution of the flight time is not af-
the densityp. fected, because the sum of emission and absorption rate is

not changed.
P(Y) = Po(£0)P(£0, £1) ... P(£n-1, £0), (1) J
. No(£0)K(£o, &1) ... K(&n—1, £n) A(€n)
Po(£0)P(&0, £1) - P(&n-1, &n) N(&n)
The numerical initial distributiomp, and the numerical tran-
sition probability P have to be nonzero where the physical
counterparts are nonzero; that (&) #0 if ho(&) #0,
andP(§;, &) #0 if K(¢;, &) +0.
Furthermore, only normalized densities are considere

(12
2. Biasing the scattering-angle distribution

Carrier diffusion can also be enhanced by modifying the
distribution of the scattering angle. The event bias technique
is applied only to isotropic processes. For these, the distribu-
dt_ion of y=cos# is constant:p(y)=1/2 for ye(—1,1).

-~ - Here, 6 is defined as the angle between the after-scattering
pr('I'gr?()adrga%i:) 1ofa{]hdef Prgggigja?lldgijrielr fzt:(ljl é;iéns't over theMomentum and the field direction. The following modified
phy Y b 1y ov density function increases the probability for forward scatter-

numerically interpreted density determines the weight of a}ng at the expense of backscattering:

particle:
h K ' ...K — 1, 1= v<
MUK (o, £0) . K(En-, &) 13 o X<xo
Po(é0)P(€0, &1) --- P(&n-1, &n) p'(x)= y (17)
This formula states the rule that, whenever in the process of =2 Xos=x<1,

numerical trajectory construction a random variable, for ex- 2
ample, a free-flight time or an after-scattering state, is sewhere M,=1 is a given parameter ang, is determined
lected from a numerically constructed density rather tharfrom the normalization. The cumulative probability at this
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point evaluates toP’(xo)=(1+M,) 1. With a random

numberr, evenly distributed between 0 and 1, one obtains

for r<P’(xo),
p
Xr=2Myr—1, —,:Mz,
p

and otherwise

_2(r—1) p 1

M, p’_M_z'

xr=1

Nedjalkov, Kosina, and Selberherr

C(r) T'*(1+2aT')
C'(r) TX1+2aTy)

(29)

If the initial momentum is generated from a heated Max-
wellian distribution, the initial weight of the particle has to
be set to the ratio of the physical probability density over the
numerical probability density.

_vab(kv r)

Otk T)

This means that the particle weight is either reduced or in-

creased by the factdvl, whenevery is generated from the

density in Eq.(17).

3. Biasing the boundary distribution

In the emitter region, artificial carrier heating can be

_M21+20.’M3T0
- % 1+42aT,

el 1 25
R AER VR
The velocitiesy, in the velocity-weighted boundary distri-

butions do not depend on the parameters of the distribution,
and therefore cancel.

introduced by increasing the probability for phonon absorp-
tion as described earlier. Additionally, at the emitter contact, S .
carriers can be injected from some heated distribution to sup? Biasing the injection probabilities

port the formation of a hot carrier distribution at the emitter—

base energy barrier.

Consider a Maxwellian distribution at lattice temperaturerespect tkgTo.

Ty and a heated Maxwellian distribution at temperaftfe
=M3T0, W|th M3>1

fo(k, r):c:(r)exp[— dk)}, (18
kBTO

ft;(k,r)zc'(r)exp[—ik) . (19
kT’

The incident current density at some boundary poimtith
outward directed normal vectox(r) is given by

k
jo(n)= —C(r)fn.v<0n(r)~v(k)exr{ - %

Substituting the group velocity=(1/4)Ve(k) and assum-
ing without loss of generality thg-axis to be parallel ta,
one obtains

d®k. (20

i (r) ch )T f \Y [{ e(k }d3k (21)
ry=—-—C(r n-vVexp — ,
Jl( h ( 0 n-v<0 € kBTO

kB 8(01 ky! kZ)
_XC(F)TOJ fex;{—W dkydkz. (22)

The initial weight(25) can become considerably larger
than 1 for a large value d¥l ; and not too high energies with
However, particles with high weight are not
desirable, especially at high energies, as their occurrence rep-
resents rare events which increase the variance. Therefore, it
is better to inject the particles at a smaller weight and in-
crease the rate of injection instead.

We consider the iteration term of ordey given by Eq.

(44) in Part |, and write only the surface integral explictly,
while for the sake of brevity the remaining integral is de-
noted by some functioR,, .

ju(r)

(ADn=To %D[F—D] Ra(1)dor(r). (26

The domain boundaryD consists ofN; contacts, at which
particles are exchanged with the environment, and Neumann
boundaries, at which particles are reflected and hence the
normal current density, vanishes. Thus, one can partition
the integral(26),

Ne (1 i
(ADa=To2, {i] H%} Ru(nda(r), (27

In the last equation, the integral theorem of Gauss has begghereA, denotes the area of thth contact. The probability
applied. From the integral over the closed surface, only thef injecting a particle at contadtis given by

contribution from the Ky, k,) plane is nonzero.

Note that Eq(18) is the physical boundary distribution,

and hence the parameté(r) is known. The normalization
factor C’(r) in Eqg. (19 is obtained from the condition]
=j, . This requires evaluation of the double integ(2p).
For simple nonparabolic bands
h2k?
e(l+ae)= ,
( 2

m*

(23

C’ must satisfy

L

P :E, (28)

I'y= fAle(r)dU-

In a real simulation they, are known, for example, from the
area and the equilibrium concentration of a contact, whereas
theI'p and thel’; are commonly not known in advance.

In the following, we increase the probability of injection
for the mth contact byM,>1 and reformulate Eq.27) ac-
cordingly.
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1 =MPoB. M~ P1B=exp(— aB), (35)
<<A>>n=FD(Z o[ +Mapmir | ) o *
I#m A 4J Ap
a= M+1IogM. (36)

1
:FD(;m P JA|+pmM_4jAm>’ (30

Since the functiorr(M) is positive for all positiveM # 1 the

with T',=sI"p and modified probabilities defined as weight wg tends to zero exponentially f@—oce. An inter-
pretation is that the significance of the trajectory diminishes
P Is, I#m 31) with increasing number of biased events, as the contributions
P Mypy /s, I=m’ to the estimatof15) continuously decreases.

As discussed in Part I, settind\=1, the before-
scattering estimato{l5) gives an estimate for the real time
of the trajectory. Assuming a simple physical system with a
s:;m P+ Mspm=1+(Ms—1)pp. (32 constant scattering rafg the estimated real time of the tra-
jectory equals

The normalization factos is obtained from

Using these probabilities, the rate of injection at contaés$

[

increased byM, and the rates at all other contacts are re- w, 1 1
duced accordingly. The factavi; * in Eq. (30) determines T=2 — == exg—an)=—r———.
o X 4 » I' T &b IMNil-exp—a)]
the initial weight of a particle injected at contact The 37)
modified normalization coefficierty, is obtained from com-
puting the averag€1)) (see Sec. IV D in Part)] As the series converges, even a trajectory with infinitely

One can combine a biased boundary distribution and bimany scattering events covers only a finite physical time
ased injection probabilities. For example, one is free tanterval. Only forM =1, that is, when the physical probabil-
chooseM , equal to the energy-independent parigfgiven ity density is usedg vanishes and the particle weight stays
by Eg. (25). Since now the initial weight also contains the constant.
multiplier M, * from Eq. (30), the initial weight will be re-

duced:
M= M2 1+2aM;T, 33 IV. VARIANCE ESTIMATION
4= WNMg———FF——,
1+2aTo Most generally, the result of a stationary MC device
e(k) 1 simulation can be expressed as a ratio of statistical averages:
Wo=€X| _F 1—M— . (34)
B'0 3

«A)

The algorithm assuming a modified injection probability and C= @ (38

a heated Maxwellian distribution at contaotcan be sum-

marized as follows. When a particle has left the simulationwith the statistical average defined d§ )= [pdr[dk
domain, a new one must be injected at a contact selected byf(k, r). D denotes the simulation domain.

the probabilitieg31). If | #m, the initial momentum must be The random variable to be considered now is given by
generated from a cold Maxwellian distribution with an the =¥, /¥g. In the MC simulation, one has to generate
initial weight set to one; otherwise the initial momentum the samples),; and ¢g; using estimator§14) or (15). The
must be generated from a heated Maxwellian, and the initiago-called classical estimator Gfis given by the ratio of the

weight set to Eq(34). sample means:
. . W, 1 N
B. Evolution of the weights C=C= :A, %ZN Z Yo a@=A,B. (39)
The particle weigh{13) evolves randomly along a tra- VB =1

jectory. MC simulations show that at a given time the Additionally, the sample variances? andsZ, and the

weights on different trajectories show a large spreadingggmpie covariance?; have to be evaluated using the defi-
Most of the weights evolve to fairly small values, such that

new terms in the weighted suni4) or (15) sooner or later
become negligible. 1 [N 1
This behavior can be investigated analytically for the Si=m[2 iﬂii—ﬁ(
simple case of the density functioh7), which assumes only =t
two discrete values, say, &Band 0.3 1. With a probabil- 5 1
ity of po=(1+M) ™1, the valueM is selected as the multi- SABTN—1
plier of the weight, and with probability, =M (1+M) !
the valueM ! is selected, respectively. The expected valuewvhere N is the number of trajectories constructed in the
of the selected multipliers equatgM +p,M ~1=1. simulation. From these inputs the variance of the random
Consider a trajectory containirgjbiased events. On av- variableW ¢ can be estimated.
erage, the multiplieM will appearp,B times, andv ~* will _ _
. : ) . 2_2_ 2 22
appeamp;B times. The particle weight can be estimated as ~ Sc=Sa—2Cspgt C”sg. (42)

nitions

N 2
1%) } a=A,B, (40)

N L N N
21 Yaibei— N ;1 lﬁAiiZl lﬂsi}' (41)
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FIG. 1. Mean energy of the physical systémean and of the simulated
carriers(num) in the n—p—n—structure with 0.8-eV barrier height. Com-
parison of the event-bias methd@/-MC) and a particle-split method is

shown.

The standard deviation of the res(@ltis finally given by

Sc

00

o{C}=

For a confidence coefficient (15), a confidence inter-

val | can be constructed:

I=[C+zs0{C},
)
= -1 —_ —
zs=d 4 1 2),

(43

(44)

(49
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FIG. 3. The electron concentration varies by more than 14 orders. In the
base region the event bias method gives significantly less variance than the
split method.

emitter, base, and collector. The semiconductor model of sili-
con assumes analytical bands and the phonon spectrum re-
ported in Ref. 6.

A. The Event-biasing technique

The modified probabilities described in Sec. Il have
been used to simulate electron transport throughnthep
—n structure, assuming an emitter—base barrier of 0.8 eV
and a collector—emitter voltage of 1 V.

To enhance statistics in the emitter—base barrier region,
artificial carrier heating is introduced. In the barrier and the
base region, the distribution of the scattering angle is biased
in order to induce artificial carrier diffusion towards the col-

where® denotes the standard normal distribution function.jector. Optimal values for the parametevs, and M., con-
An often used value igs= 3, which gives - 6=0.997.

V. RESULTS AND DISCUSSION

trolling the bias are not knowa priori. For instance, iM 4

is chosen too small, not enough particles will surmount the
barrier, rendering statistical enhancement inefficient. Choos-
ing M, and M, too large, plenty of numerical trajectories

A one-dimensionaln—p—n structure has been ana- Will pass through the low-concentration region. However,
lyzed. The three segments of the device are referred to i€ to the aggressive bias, the individual particle weights

! | |

—— mean energy, bias method
0.8 |~ num. energy, bias method

4
0.6 /

3

/]

; \
NN/
0O 0.05 0.1 0.15

distance (um)

0.2

4 | |
—— bias method
—- gplit method
3 M‘\f\ ——- 5% error limits
U
- %q____ PV NSO E A S LA
8 N NS e T D e L — —_
£2 [T S
(]
5
o ’[\/W
| r{‘
0
0 1 2 3 4 5

number of scattering events (10"

FIG. 2. Mean energy in the 0.8-eV structure. In addition to Fig. 1, electronsFIG. 4. Evolution of the device current for extremely long simulation times,
are injected at the left contact at 1500 K, whereas at the right contact avaluated every fOscattering events. W-MC converges faster and shows

Maxwellian at 300 K is assumed.

better stability than the split method.
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FIG. 5. Correlation coefficients of the the energy density) andn, and of £ 6. Mean energy and its standard deviation, including the fluctuations of
the particle current(v,) andn. energy density and particle densistd. dev), and neglecting the fluctuation
of particle density(std. dev. A.

will evolve to extremely different values. Because of the
large spreading of the particle weights the recorded averagestude. Figure 4 shows the superior convergence of the
will again show a large variance. Reasonable values foundvent-biasing technique. Because of the poor convergence of
for the considered structure aké;=2 andM,=2. the split method for the 0.8-eV barrier structure, 4 B

The described behavior of the event-biasing techniqu&cattering events needed to be processed to permit realistic
suggests the usage of additional variance reductiokomparisons.
techniques. The general goal must be a reduction of the
spreading of the weights. Such techniques are not subject of _ o "
this study. Here, we investigate the event-bias algorithmb: Vaniance of distributed quantities
which is predominantly used to govern the evolution of the  The variances of the distributed quantities summarized
particle weight. Explicit measures are taken only to prevenin Table | have been calculated, using the single-particle MC
weights from getting extremely high or low. The rare eventmethod without statistical enhancement. The emitter—base
in which a particle gains a very large weight is treated bybarrier of then—p—n diode was set to 0.2 eV. The simula-
splitting that particle. On the other hand, when a particletion of 5x 10° scattering events resulted in the construction
weight falls below a predefined limit, event biasing is dis-of N=5.48x 10 trajectories.
abled such that the weight is not further changed. For the sake of simplicity, the nearest grid point scheme

The event-biasing method has been compared with & used for charge assignméniThe assignment function
simple particle-split method. To first order such a comparisorW,,(x) for grid pointx, is given by the indicator function of
is fair since the lightweight particles generated with eitherthe finite box associated with that grid point. The box vol-
method are not further recycled. Figure 1 demonstrates fonme isV,= [W,(r)dr.
the mean energy that, with event biasing, the correct physical When computing the mean velocity using Eg8), (A))
mean values are reproduced. Also shown is the mean energgpresents the particle current density &) the particle
of the simulated particles, which is considerably higher thardensity. The correlation factor of the MC estimate of these
the actual physical mean energy. two densities is plotted in Fig. &dashed ling In the base

In the simulation shown in Fig. 2, a biased boundaryregion, a large positive correlation exists.
distribution is also assumed. Electrons are injected from the The energy density and the particle density show a large
emitter contact with a Maxwellian distribution at five times positive correlation throughout the devigeg. 5, solid line.
the lattice temperature. Again, the correct physical mean emAccording to Eq.(42), such a correlation gives a significant
ergy is obtained. In Fig. 3, the electron concentration and theeduction in standard deviation. This means that a mean
standard deviations of the two MC methods are depicted. lvalue per carrier has less variance than a mean value per unit
the quasineutral base regi¢r6—90 nm event biasing gives volume, as demonstrated in Fig. 6. Accounting for the fluc-
a standard deviation reduced by more than one order of maguations of both the energy density and the particle density

gives the lower standard deviatiocurve std. dey, while by
neglecting the fluctuation of the particle density the standard

TABLE I. Examples of physical quantities used in Eg8). deviation is clearly increase@urve std. dev. A
Quantity c A B The pre;ented method of. varian_ce estimation_ i.s param-
. . eter free. Neither has the particle’s history to be divided into
gar”ertc(fncg?”at'on : (N?/ VP)V&/P“) 1 subhistories of some artificially predefined lenf§jthor does
Miginvelsgf;y <i/> (qNDV(\ll(‘;)V\\//(&;N"(r) W.(r) an unknown parameter of a stochastic process, such as the
Mean energy (e) s(k)WZ(r) Wz(r) correlation time, need to be estimaf@dinstead, the total

history is divided naturally into independent subhistories at
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the times when the particle reenters the simulation domain. A For the one-dimensional structure considered here, it can
process with such a property is referred to as regenerativeasily be shown that calculating the current density by the

stochastic process. time-averaging method is equivalent to counting particles
passing through a normal plane. We consider a control vol-
C. Variance of terminal currents ume formed by the normal planes=x, and x=x,+ AX.

_ _ ~The time integral/v[k(7)] dr over that part of a trajectory
A stationary terminal current can be expressed as an inyhich is inside the control volume can take on only three

tegral over the device domalb: values:+ Ax if the particle enters through the left plane and
exits through the right one; Ax in the opposite case, and 0
= ij(r)-Vm(r) dr, (46) if the particle leaves and exits through the same plane. Since

only a constanfAx is added or subtracted from the estimator,
whereh; is a test function, which assumes 1 at ttrecontact  this method corresponds to particle counting. In the limit
and 0 at all other contactd.In this section, we discuss how Ax—0 particles passing through a single plane are counted.
the choice of the test function and MC estimators affect the  To determine the current at contdctve define a random
variance of the estimated current. variable which has the realizations:

1 trajectory starts at contalcand terminates ah+1,
— 1 trajectory starts at contact#| and terminates &t

=

o

trajectory starts and terminates at contact (47)
trajectory starts at contact# | and terminates at#1.

o

The current is given by the ratio with NI P N and N?=PZN denoting the numbers of par-
— ticles |njected and absorbed at contgatespectively.
T.=aN ¢| E NT. 48 Particles can be counted at any normal plane inside the
I=ANp = i ( ) . . . . .
T device. Since all trajectories start and terminate at the con-
tacts, the estimated current and the variance will be the same,
where T is the mean time of a trajectory. Neglecting the independently of the location of the plane. This means, that
variance ofT, the current and its variance can be estimatedhe time integration method strictly conserves the current.

as Since in this example the variance of the current density is
gN constant in the device, the variance of the terminal current
_lsz(p:— PP, (49) cannot be influenced by the choice of the test function in Eq.

T (46). A general proof of the independence of the variance of

o Nol2 1 _ _ the terminal current from the test function can be found in
a1 }=(T m[P;+F>f‘—(F>;—F>|a)2], (500  Ref. 12.

T On the other hand, the before-scattering method con-
serves current on the average only. Using this method to
estimate the statistical averagesfofndB in Table | gives

4 the current density shown in Fig. 7. The variance of the
ﬂ current density is much higher in the emitter/collector re-
gions than in the base region. Therefore, the variance of the

A I\ terminal current can be minimized in this case by a proper
choice of the test function

/ \/ \ H_P/H-.\ Table Il shows the relative standard deviation of the ter-

minal current obtained from different methods. The lowest

current density (10°A/cm’)

\ v stochastic error is obtained using the simple method of par-
» 4
0 2= - 1
1 — current density || TABLE Il. Relative standard deviation of terminal current for different es-
-- std. deviation timators
-2 | Estimator ol
0 0.05 0.1 0.15 02
distance (um) Before-scattering, average over whole device 28102
Before-scattering, average over base only 3673
FIG. 7. Current density and standard deviation obtained from the beforeTime-integration(particle counting 2.19x10°3

scattering method.
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ticle counting at the contact, since this method implies strictounting method is best suited as it gives lower variance than
current conservation. A higher stochastic error is obtainedhe before-scattering estimator and does not require the use
using the before-scattering method, because it conserves cwf weight functions.

rent only on the average. The stochastic error depends on the

test function, and is always larger than that from the time-AckNOWLEDGMENT
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